On the Perfect Delay Convention or the Revolt of the Slaved Variables

  • Marc Diener
  • Tim Poston
Part of the Springer Series in Synergetics book series (SSSYN, volume 11)


Suppose we have a family of “potential” functions φλ:IRn→ IR, evolving with λ (=time/varying load on a system/temperature/magnetic field/…) and that for any fixed φ the state x = (x,…, xn)ɛIRntends to “occupy” a minimum of φ (More exactly, for most such systems, the difference of x and some x0at which φ has a minimum dies away exponentially.) The set of minima of φλvaries with λ in ways discussed in elastic stability theory [TH], thermodynamies [C],economics [B], laser dynamics [Ha],etc. - choosing a merely representative reference in each case - and most generally in catastrophe theory [Th,Z,PS]. How does x vary in consequence?


Chaotic Attractor Catastrophe Theory Control Space Slow Manifold Stable Branch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B]
    Y. Balasko: The behaviour of economic equilibria: a Catastrophe Theory Approach, Behavioral Science 23, 1978, 375–382CrossRefGoogle Scholar
  2. [BCDD]
    E. Benoit, J.-L. Callot, F. Diener, M. Diener: Chasse au Canard, Publ. de l’Institut de Recherche Mathématique Avancée, Strasbourg, 1980Google Scholar
  3. [C]
    H.B. Callen: Thermodynamics, Wiley, N.Y. and London, 1960Google Scholar
  4. [D]
    M. Diener: Etude Génerique des Canards, Thèse de doctorat, Strasbourg, 1981Google Scholar
  5. DD] F. Diener, M. Diener: Quelques Formulas Relatives aux Canards, to appearGoogle Scholar
  6. [Ha]
    H. Haken: Synergetics, An Introduction, 2nd ed., Springer Series in Synergetics, Vol. 1 ( Springer Berlin, Heidelberg, New York 1978 )Google Scholar
  7. [Hr]
    H. Hrbacek; Non-standard Set Theory, Am.Math.Month!y (86), 1 979 pp. 659–677Google Scholar
  8. [LL]
    L.D. Landau, E.M. Lifshitz; Statistical Physics (trans.Peierls and Peierls), 2nd English edition, Pergamon, Oxford and New York, 1959Google Scholar
  9. [LG]
    R. Lutz, M. Gose; Non-Standard Analysis, a Practical Guide, ‘Lecture Notes in Mathematics’ (Springer Berlin, Heidelberg, New York 1981 )Google Scholar
  10. [N]
    E. Nelson; Internal Set Theory, B.A.M.S. (83) no. 6, 1977, pp 1165–1198CrossRefGoogle Scholar
  11. [PS]
    T. Poston, I.N. Stewart; Catastrophe Theory and its Applications, Pitman, London 1978Google Scholar
  12. [P]
    T. Poston: “Various Catastrophe Machines”, in Structure Stability, The Theory of Catastrophes, and Applications in the Sciences, ed. by P. Hilton; Lecture Notes in Mathematics, Vol. 525 ( Springer Berlin, Heidelberg, New York 1976 ) pp. 111–126CrossRefGoogle Scholar
  13. [Ro]
    A. Robinson; Non Standard Analysis, 2nd. edition, Elsevier, New York, 1974Google Scholar
  14. [RÖ]
    O.O.E. Rössler: “Continuous Chaos”, in Synergetics, A Workshop, ed. by H. Haken, Springer Series in Synergetics, Vol. 2 ( Springer Berlin, Heidelberg, New York 1977 ) pp. 184–197Google Scholar
  15. [Ta1]
    F. Takens: “Constrained Equations: A Study of Implicit Differential Equations and Their Discontinuous Solutions”, in Structural Stability, the Theory of Catastrophes, and Their Applications in the Sciences, ed. by P.J. Hilton, Lecture Notes in Mathematics, Vol. 525 ( Springer Berlin, Heidelberg, New York 1976 ) pp. 143–234CrossRefGoogle Scholar
  16. [Ta2]
    F. Takens: Implicit Differential Equations: Some Open Problems, in Singularités d’Applications Différentiables, ed. by O. Burlet, F. Ronga, Lecture Notes in Mathematics, Vol. 535 ( Springer Berlin, Heidelberg, New York 1976 ) pp. 237–253Google Scholar
  17. [Th]
    R. Thom, Stabilité Structurelle et Morphogenese, Benjamin, New York 1972, translated D.H. Fowler as Structural Stability and Morphogenesis, Benjamin, Addison-Wesley, New York, 1975Google Scholar
  18. [TH]
    J.M.T. Thompson, G.W. Hunt: A General Theory of Elastic Stability, Wiley, London, New York, 1973Google Scholar
  19. [W]
    U. Weiß: The Uses of Path Integrals for Diffusion Processes, these proceedingsGoogle Scholar
  20. [Z]
    E.C. Zeeman: Catastrophe Theory: Selected Papers 1972–1977, Addison-Wesley, Reading, Mass. 1977Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Marc Diener
    • 1
  • Tim Poston
    • 2
  1. 1.Dépt. de MathématiquesUniversité d’OranAlgeria
  2. 2.Institut für Theoretische PhysikUniversität StuttgartStuttgartFed. Rep. of Germany

Personalised recommendations