Advertisement

Branched-Chain Sugars

Part of the Encyclopedia of Plant Physiology book series (PLANT, volume 13 / A)

Abstract

Comparison of the list of branched-chain monosaccharides presented in the first review on this matter by Shafizadeh in 1956 with that given in this chapter and a recent chapter by Grisebach (1980) shows that not only new representatives of this class of natural compounds have been detected, but also that some (cordyceptose, abequose, tyvelose) had to be cancelled as a consequence of more detailed chemical analysis. Nevertheless, at present, some 20 monosaccharides with a branched skeleton are known, two of which are produced by green plants while the remaining originate from microorganisms.

Keywords

Streptomyces Griseus Pectic Substance Viscum Album Intramolecular Rearrangement Petroselinum Crispum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenbach H, Grisebach H (1964) Biogenesis of the macrolides. XI. Biosynthesis of magnamycin. Z Naturforsch 19b: 561–568Google Scholar
  2. Achenbach H, Karl W (1975a) Zur Struktur des Antibiotikums Aldgamycin E. Chem Ber 108: 759–771Google Scholar
  3. Achenbach H, Karl W (1975b) Aldgamycin F, ein neues Antibiotikum aus Streptomyces lavendulae. Chem Ber 108: 780–789Google Scholar
  4. Anderson RL, Hanson RE, Sapico VL (1975) D-Fructose-1-phosphate kinase. Methods Enzymol 42 C: 63–66PubMedGoogle Scholar
  5. Ankel H, Feingold DS (1965) Biosynthesis of uridine diphosphate D-xylose. I. Uridine diphosphate glucuronate carboxy-lyase of wheat germ. Biochemistry 4: 2468–2475Google Scholar
  6. Bacon JSD (1963) The occurrence of apiose in polysaccharide fractions from certain plants. Biochem J 89:103 P–104 PGoogle Scholar
  7. Bacon JSD, Cheshire MV (1971) Apiose and mono-O-methyl sugars as minor constituents of the leaves of deciduous trees and various other species. Biochem J 124: 555–562PubMedGoogle Scholar
  8. Baddiley J, Blumson NL, Di Girolamo A, Di Girolamo M (1961) Thymidine diphospate sugar derivatives and their transformation in Streptomyces griseus. Biochim Biophys Acta 50: 391–393PubMedGoogle Scholar
  9. Bakhaeva GP, Berlin YA, Chuprunova OA, Kolosov MN, Peck GY, Piotrovich LA, Shemyakin MM, Vasina IV (1967) The stereochemistry of olivomycins. Chem Commun 1: 10–11Google Scholar
  10. Bakhaeva GP, Berlin YA, Boldyreva EF, Chuprunova OA, Kolosov MN, Soifer VS, Vasiljeva TE, Yartseva IV (1968) The structure of aureolic acid (mithramycin). Tetrahedron Lett 32: 3595–3598PubMedGoogle Scholar
  11. Baron D, Grisebach H (1973) Further studies on the mechanism of action of UDP-apiose/UDP-xylose synthase from cell cultures of parsley. Eur J Biochem 38: 153–159Google Scholar
  12. Baron D, Streitberger U, Grisebach H (1973) Improved method for purification of UDP- apiose/UDP-xylose synthase from cell cultures of parsley. Biochim Biophys Acta 293: 526–533PubMedGoogle Scholar
  13. Beck E (1967) Isolierung und Charakterisierung eines Apiogalakturonans aus der Zellwand von Lemna minor. Z Pflanzenphysiol 57: 444–461Google Scholar
  14. Beck E (1969) Isolierung und Identifizierung von Clusianose, einem 1-O-oc-D-Galactopyrano-syl-Hamamelit. Z Pflanzenphysiol 61: 360–366Google Scholar
  15. Beck E, Kandier O (1965) Apiose als Bestandteil der Zellwand höherer Pflanzen. Z Naturforsch 20 b: 62–67Google Scholar
  16. Beck E, Kandier O (1966) Isotopenstudien zur Biosynthese von Apiose in Lemna. Z Pflanzenphysiol 55: 71–84Google Scholar
  17. Beck E, Knaupp I (1974) Biosynthese der Hamamelose. III. Identifizierung von Hamamelose- 21,5-Diphosphat, Hamamelose-5-Phosphat und Hamamelose-21-Phosphat. Z Pflanzenphysiol 72: 141–147Google Scholar
  18. Beck E, Sellmair J, Kandier O (1968) Biosynthese der Hamamelose. I. Die intramolekulare 14C-Verteilung in Hamamelose nach Assimilation von 14C02 und 14C-positionsmarkier- ter Glucose durch Blätter von Primula clusiana Tausch. Z Pflanzenphysiol 58: 434–451Google Scholar
  19. Beck E, Stransky H, Fürbringer M (1971) Synthesis of hamamelose-diphosphate by isolated spinach chloroplasts. FEBS Lett 13: 229–234PubMedGoogle Scholar
  20. Beck E, Wieczorek J, Reinecke W (1980) Purification and properties of hamamelosekinase. Eur J Biochem 107: 485–489PubMedGoogle Scholar
  21. Bell DJ, Isherwood FA, Hardwick NE, Cahn RS (1954) D-(+)-Apiose from the monocotyledon, Posidonia australis. J Chem Soc: 3702–3706Google Scholar
  22. Berlin YA, Esipov SE, Kolosov MN, Shemyahin MM (1966a) Olivomycin IV. The structure of olivomycin. Tetrahedron Lett 14: 1431–1436PubMedGoogle Scholar
  23. Berlin YA, Esipov SE, Kolosov MN, Shemyakin MM (1966b) The structure of the olivomycin-chromomycin antibiotics. Tetrahedron Lett 15: 1643–1647PubMedGoogle Scholar
  24. Beusekom CF van (1967) Über einige Apiose-Vorkommnisse bei den Helobiae. Phytochemistry 6: 573–576Google Scholar
  25. Birch AJ, Cameron DW, Holloway RW, Rickards RW (1960) Further examples of biological C-methylation. Novobiocin and actinomycin. Tetrahedron Lett 25: 26–31Google Scholar
  26. Birch A J, Holloway PW, Rickards RW (1962) Biosynthesis of noviose, a branched-chain monosaccharide. Biochim Biophys Acta 57: 143–145PubMedGoogle Scholar
  27. Blumson NL, Baddiley J (1961) Thymidine diphosphate mannose and thymidine diphosphate rhamnose in streptomyces griseus. Biochem J 81: 114–124Google Scholar
  28. Brimacombe JS, Smith CW, Minshall J (1974) A synthesis of methyl D-aldgaroside B. Tetrahedron Lett 35: 2997–3000Google Scholar
  29. Brimacombe JS, Mahmood S, Rollins A J (1975) Branched-chain sugars V. Identification and synthesis of vinelose. J Chem Soc Perkin Trans 1: 1292–1297Google Scholar
  30. Bruton J, Horner WH (1966) Biosynthesis of streptomycin III. Origin of the carbon atoms of streptose. J Biol Chem 241: 3142–3146PubMedGoogle Scholar
  31. Burton JS, Overend WG, Williams NR (1965) Branched-chain sugars III. The introduction of branching into methyl 3,4-O-isopropylidene-ß-L-arabinoside and the synthesis of L- hamamelose. J Chem Soc: 3433–3445Google Scholar
  32. Candy DJ, Baddiley J (1965) The biosynthesis of streptomycin: the origin of the C-formyl group of streptose. Biochem J 96: 526–529PubMedGoogle Scholar
  33. Candy DJ, Blumson NL, Baddiley J (1964) Biosynthesis of streptomycin. Incorporation of 14C-labeled compounds into streptose and N-methyl-L-glucosamine. Biochem J 91:31–35 Chakraborti SR ( 1959 ) Chemical investigation of Indian species. Chem Abstr 22602aGoogle Scholar
  34. Chakraborti SR (1959) Chemical investigation of Indian species. Chem Abstr 22602aGoogle Scholar
  35. Chrastil J (1956) Identification of carbohydrates in kok-saghyz (Taraxacum kok-saghyz) and chromatography of apiose. Chem Listy 50: 163–164Google Scholar
  36. Cooper DJ, Yudis MD, Guthrie RD, Prior AM (1971) The gentamicin antibiotics. I. Structure and absolute stereochemistry of methyl garosaminide. J Chem Soc (C): 960–963Google Scholar
  37. Corcoran JW (1961) Actinomycete antibiotics II. Participation of the methionine methyl group in the biogenesis of L-cladinose, a branched-chain monosaccharide. J Biol Chem 236: PC 27–28Google Scholar
  38. Corcoran JW (1964) The biosynthesis of erythromycin. Lloydia 27:1-14 Corcoran JW (1975) S-adenosylmethionine: erythromycin-C,0-methyltransferase. Methods Enzymol 43: 487–498Google Scholar
  39. Corcoran JW (1975) S-adenosylmethionine: erythromycin-C,0-methyltransferase. Methods Enzymol 43:487–498Google Scholar
  40. Darvill AG, McNeil M, Albersheim P (1978) Structure of plant cell walls VIII. A new pectic polysaccharide. Plant Physiol 62: 418–422PubMedGoogle Scholar
  41. Davenport HE, Dupont MS (1972) The enzymic hydrolysis of malonated flavone glycosides. Biochem J 129:18 P–19 PGoogle Scholar
  42. Duff RB (1965) The occurrence of apiose in Lemna (duckweed) and other angiosperms. Biochem J 94: 768–772PubMedGoogle Scholar
  43. Duff RB, Knight AH (1963) The occurrence of apiose in Lemna (duckweed) and other angiosperms. Biochem J 88:33 P–34 PGoogle Scholar
  44. Eguchi Y, Takagi M, Uda F, Kimata K, Okuda S, Suzuki N, Suzuki S (1973) Biosynthesis of branched-chain deoxysugars V. J Biol Chem 248: 3341–3352PubMedGoogle Scholar
  45. Eickenbusch JD, Sellmair J, Beck E (1971) Biosynthese der Hamamelose II. Der Einbau von Radiokohlenstoff aus 14C-markierten Substanzen des Glykolat- und Tricarbonsäure-zyklus in Hamamelose in Blättern von Primula clusiana Tausch. Z Pflanzenphysiol 65: 24–34Google Scholar
  46. Ellestad GA, Kunstmann MP, Lancaster JE, Mitscher LA, Morton G (1967) Structures of methyl aldgarosides A and B obtained from the neutral macrolide antibiotic aldgamycin E. Tetrahedron 23: 3893–3902Google Scholar
  47. Ezekiel AD, Overend WG, Williams NR (1969) Branched-chain sugars IX. The synthesis of hamamelitannin. Carbohydr Res 11: 233–239Google Scholar
  48. Farooq MO, Gupta SR, Riamuddin M, Rahman W, Seshadri TR (1953) Chemical examination of celery seeds. J Sci Ind Res 12 B: 400–407Google Scholar
  49. Farooq MO, Varshney JP, Rahman W (1957) On the glycosides of Apium petroselinum (parsley). Naturwissenschaften 44: 444Google Scholar
  50. Farooq MO, Varshney JP, Rahman W (1958) On the presence of apiin in Indian celery seeds C. (Apium graveolens). Naturwissenschaften 45: 265Google Scholar
  51. Freudenberg K, Blümmel F (1924) Tannins and related compounds XVII. Hamameli-tannin III. Ann Chem 440: 45–59Google Scholar
  52. Funabashi M, Yamazaki S, Yoshimura J (1975) Branched-chain sugars VII. Determination of the configuration of L-vinelose by synthesis. Carbohydr Res 44: 275–283Google Scholar
  53. Ganguly AK, Sarre OZ (1969) Structure and absolute stereochemistry of evermicose. Chem Commun 1149–1150Google Scholar
  54. Ganguly AK, Sarre OZ, Reimann H (1968) Evernitrose, a naturally occurring nitro sugar from everninomicins. J Am Chem Soc 90: 7129–7130PubMedGoogle Scholar
  55. Ganguly AK, Sarre OZ, Szmulewicz S (1971) Structure of evertetrose and everninonitrose. Chem Commun 746Google Scholar
  56. Gaugler RW, Gabriel O (1973) Biological mechanisms involved in the formation of deoxy sugars VII. J Biol Chem 248: 6041–6049PubMedGoogle Scholar
  57. Gebb C, Baron D, Grisebach H (1975) Spectroscopic evidence for the formation of a 4-keto intermediate in the UDP-Apiose/UDP-Xylose synthase reaction. Eur J Biochem 54: 493–498PubMedGoogle Scholar
  58. Gilck H (1972) Der Mechanismus der Hamamelose-Biosynthese: In vivo Untersuchungen mit Blättern von Primula clusiana Tausch. Thesis Univ MunichGoogle Scholar
  59. Gilck H, Beck E (1974) Biosynthese der Hamamelose IV. Nachweis der Biosynthesesequenz: Fructose-diphosphat → Hamamelose-diphosphat → Hamamelose-monophosphat → Hamamelose. Z Pflanzenphysiol 72: 395–409Google Scholar
  60. Gilck H, Thanbichler A, Sellmair J, Beck E (1975) A simple method for the isolation of crystalline D-hamamelose. Carbohydr Res 39: 160–161Google Scholar
  61. Gonzales-Porque P, Strominger JL (1972) Enzymatic synthesis of cytidine diphosphate 3,6-dideoxyhexose VI. J Biol Chem 247: 6748–6756Google Scholar
  62. Gottlieb D, Shaw PD (1967) Antibiotics. Springer, Berlin Heidelberg New York Grisebach H (1978) Biosynthesis of sugar components of antibiotic substances. Adv Carbohydr Chem 35: 81–126Google Scholar
  63. Grisebach H (1978) Biosynthesis of sugar components of antibiotic substances. Adv Carbohydr Chem 35:81–126Google Scholar
  64. Grisebach H (1980) Branched chain sugars: occurrence and biosynthesis. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, Vol. Ill Preiss J (ed) Carbohydrates: structure and function. Academic Press, New YorkGoogle Scholar
  65. Grisebach H, Achenbach H (1962) Biogenesis of the macrolides V. The origin of the carbon chain of mycarose. Z Naturforsch 17 b: 63–64Google Scholar
  66. Grisebach H, Bilhuber W (1967) Zur Biosynthese des Apigenins und Chrysoeriols in der Petersilie. Z Naturforsch 22 b: 746–751Google Scholar
  67. Grisebach H, Döbereiner U (1966) Zur Biosynthese der Apiose I. Einbau markierter Vorstufen in Apiose bei Apium petroselinum. Z Naturforsch 21 b: 429–435Google Scholar
  68. Grisebach H, Sandermann H Jr (1966) Zur Biosynthese der Apiose II. D-Glucuronsäureals spezifische Vorstufe der D-Apiose in Petersilie. Biochem Z 346: 322–327Google Scholar
  69. Grisebach H, Schmid R (1972) Chemie und Biochemie verzweigtkettiger Zucker. Angew Chem 84: 192–206Google Scholar
  70. Gustine DL, Yuan DHF, Kindel PK (1975) Uridine diphosphate D-glucuronic acid cyclase and uridine diphosphate D-glucuronic acid carboxy-lyase I from Lemna minor. Purification, characterization, and separation from uridine diphosphate D-glucuronic acid carboxylase II. Arch Biochem Biophys 170: 82–91PubMedGoogle Scholar
  71. Hanna R, Picken M, Mendicino J (1973) Purification of a specific D-apiitol dehydrogenase from a micrococcus isolated from the surface of germinating parsley seeds. Biochim Biophys Acta 315: 259–271Google Scholar
  72. Hanson B, Johannson I, Lindberg B (1966) A disaccharide dibenzoate from Daviesia latifolia. Acta Chem Scand 20: 2358–2362Google Scholar
  73. Hart DA, Kindel PK (1970a) Isolation and partial characterization of apiogalacturonans from the cell wall of Lemna minor. Biochem J 116: 569–579Google Scholar
  74. Hart DA, Kindel PK (1970b) A novel reaction involved in the degradation of apiogalacturonans from Lemna minor and the isolation of apibiose as a product. Biochemistry 9: 2190–2196Google Scholar
  75. Hattori S, Imaseki H (1959) A new glycoside in Viburnum furcatum Blume. J Am Chem Soc 81: 4424–4427Google Scholar
  76. Ho PT (1979) Branched-chain sugars. Reaction of furanoses with formaldehyde: A simple synthesis of D- and L-apiose. Can J Chem 57: 381–383Google Scholar
  77. Hösel W, Barz W (1970) Flavonoide aus Cicer arietinum L. Phytochemistry 9: 2053–2056Google Scholar
  78. Hofheinz W, Grisebach H (1962) Biogenesis of macrolides X. The occurrence of L-mycarose in erythromycin C. Z Naturforsch 176: 852Google Scholar
  79. Hulyalkar RK, Jones JKN, Perry MB (1965) The chemistry of D-Apiose, II. The configuration of D-apiose in apiin. Can J Chem 43: 2085–2091Google Scholar
  80. Karrer W, Cherbuliez E, Eugster CH (1977) Konstitution und Vorkommen der organischen Pflanzenstoffe. Ergänzungsband 1, Birkhäuser, Basel, StuttgartGoogle Scholar
  81. Kelleher WJ, Grisebach H (1971) Hydride transfer in the biosynthesis of uridine diphosphoapiose from uridine diphospho-D-glucuronic acid with an enzyme preparation of Lemna minor. Eur J Biochem 23: 136–142PubMedGoogle Scholar
  82. Kelleher WJ, Baron D, Ortmann R, Grisebach H (1972) Proof for the origin of the branch hydroxymethyl carbon of D-Apiose from carbon 3 of D-glucuronic acid. FEBS Lett 22: 203–204PubMedGoogle Scholar
  83. Keller-Schierlein W, Roncari G (1962) Metabolic products of actinomycetes: XXXIII. Hydrolysis products of lankamycin, lankavose and 4-O-acetylarcanose. Helv Chim Acta 45: 138–152Google Scholar
  84. Keller-Schierlein W, Roncari G (1964) Metabolic products of microorganisms. XLVI. Constitution of lankamycin. Helv Chim Acta 47: 78–103Google Scholar
  85. Kimata K, Suzuki S (1966) Studies on cytidine diphosphate glucose pyrophosphorylase and related enzymes of Azotobacter vinelandii. J Biol Chem 241: 1099–1113PubMedGoogle Scholar
  86. Kindel PK, Watson RR (1973) Synthesis, characterization and properties of uridine 5′-(α-D-apio-D-furanosyl pyrophosphate). Biochem J 133: 227–241PubMedGoogle Scholar
  87. Korzybski TG (1967) Antibiotics. Polish Sei Publ, Warzawa; Pergamon Press, Oxford Kreuzaler F, Hahlbrock K (1973) Flavonoid glycosides from illuminated cell suspension cultures of Petroselinum hortense. Phytochemistry 12: 1149–1152Google Scholar
  88. Kreuzaler F, Hahlbrock K (1973) Flavonoid glycosides from illuminated cell suspension cultures of Petroselinum hortense. Phytochemistry 12:1149–1152Google Scholar
  89. Lettau R (1969) Untersuchungen zur Verbreitung der Apiose in der Zellwand von grünen Pflanzen. Staatsexamensarbeit, Technical Univ MunichGoogle Scholar
  90. Maier W, Matern U, Grisebach H (1975) On the role of dihydrostreptomycin in streptomycin biosynthesis. FEBS Lett 49: 317–319PubMedGoogle Scholar
  91. Malhotra A, Murti WS, Seshadri TR (1965) Isolation of lanceolarin, a new glycoside of biochanin-A, from the root-bark of Dalbergia lanceolaria. Tetrahedron Lett 36: 3191–3196Google Scholar
  92. Mascaro LJ Jr., Kindel PK (1977) Characterization of [14C]apiogalacturonans synthesized in a cell-free system from Lemna minor. Arch Biochem Biophys 183: 139–148PubMedGoogle Scholar
  93. Matern U, Grisebach H (1972) Studies on the biosynthesis of the branched-chain sugars from the quinocycline complex. Eur J Biochem 29:5–11Google Scholar
  94. Matern U, Grisebach H (1974) Bildung eines oxoäthylverzweigten Zuckers aus Thymidin- diphosphatglucose und Pyruvat mit einem zellfreien System aus Streptomyces aureofaciens. Z Naturforsch 29 c: 407–413Google Scholar
  95. Matern U, Grisebach H (1977) UDP-apiose/UDP-xylose synthase. Subunit composition and binding studies. Eur J Biochem 74: 303–312PubMedGoogle Scholar
  96. Matern U, Grisebach H, Karl W, Achenbach H (1972) Structure of the sugar components of the quinocycline complex. Eur J Biochem 29: 1–4PubMedGoogle Scholar
  97. Matern H, Brillinger GU, Pape H (1973) Stoffwechselprodukte von Mikroorganismen 114. Thymidin-diphospho-D-glucose-oxidoreduktase aus Streptomyces rimosus. Arch Mikrobiol 88: 37–48PubMedGoogle Scholar
  98. Mayer W, Kunz W (1959) Über ein zweites Vorkommen von Hamamelitannin. Naturwissenschaften 46: 206–207Google Scholar
  99. Mayer W, Kunz W, Loebich F (1965) Die Struktur des Hamamelitannins. i 688: 232–238Google Scholar
  100. McNeil M, Darvill AG, Albersheim P (1979) The structural polymers of the primary cell walls of dicots. In: Herz W, Grisebach H, Kirby GW (eds) Progress in the chemistry of organic natural products. Springer, Wien, New York, Vol. 37, pp 191–249Google Scholar
  101. Melo A, Glaser L (1968) The mechanism of 6-deoxyhexose synthesis II. J Biol Chem 243: 1475–1478PubMedGoogle Scholar
  102. Melo A, Elliott WH, Glaser L (1968) The mechanism of 6-deoxyhexose synthesis I. J Biol Chem 243: 1467–1474PubMedGoogle Scholar
  103. Mendicino J, Abou-Issa H (1974) Conversion of UDP-D-glucuronic acid to UDP-D-apiose and UDP-D-xylose by an enzyme isolated from Lemna minor. Biochim Biophys Acta 364: 159–172PubMedGoogle Scholar
  104. Mendicino J, Hanna P (1970) The synthesis of isomers of D-abiofuranosyl 1-phosphate. J Biol Chem 245: 6113–6124PubMedGoogle Scholar
  105. Miyamoto M, Kawamatsu Y, Shinohara M, Nakadaira Y, Nakanashi K (1966a) Structures and properties of the sugars obtained from the chromomycins. Tetrahedron 22:2785–2799 Miyamoto M, Kawamatsu Y, Kawashima K, Shinohara M, Nakanishi K (1966 b) The full structures of three chromomycins. Tetrahedron Lett 6: 545–552PubMedGoogle Scholar
  106. Miyamoto M, Kawamatsu Y, Kawashima K, Shinohara M, Nakanishi K (1966b) The full structures of three chromomycins. Tetrahedron Lett 6:545–552Google Scholar
  107. Nakaoki T, Morita N, Motosune H, Hiraki A, Takeuchi T (1955) Medicinal resources II. Components of the leaves of Sophora angustifolia, Vicia hirsuta, and Linaria japonica. Pharm Soc Jpn 75: 172–176Google Scholar
  108. Neal DL, Kindel PK (1970) D-Apiose reductase from Aerobacter aerogenes. J Bacteriol 101: 910–915PubMedGoogle Scholar
  109. Nordström CG, Swain R, Hamblin AJ (1953) Flavone glycosides of parsley. I. Isolation of 7-C-apiosylglucosyl-luteolin. Chem Ind: 85Google Scholar
  110. Ohta N, Tagishita K (1970) Isolation and structure of new flavonoids, flavoyadorinin A., flavoyadorinin B and homoflavoyadorinin B, in the leaves of Viscum album var. coloratum epiphyting to Pyrus communis (pear). Agr Biol Chem 34: 900–907Google Scholar
  111. Okuda S, Suzuki N, Suzuki S (1967) Isolation and structure of cytidine diphosphate-6-deoxy- 3-C-methyl-2-O-methyl-L-aldohexopyranoside (cytidine diphosphate vinelose) from Azotobacter vinelandii. J Biol Chem 242: 958–966PubMedGoogle Scholar
  112. Okuda S, Suzuki N, Suzuki S (1968) Biosynthesis of branched chain deoxysugars. J Biol Chem 243: 6353–6360PubMedGoogle Scholar
  113. Ortmann R, Sandermann H Jr., Grisebach H (1970) Transfer of apiose from UDP-apiose to 7-O-(ß -D-glucosyl)-apigenin and 7-0-(ß-D-glucosyl)-chrysoeriol with an enzyme preparation from parsley. FEBS Lett 7: 164–166PubMedGoogle Scholar
  114. Ortmann R, Sutter A, Grisebach H (1972) Purification and properties of UDP-apiose: 7-0-(ß-D-glucosyl)-flavone apiosyltransferase from cell suspension cultures of parsley. Biochim Biophys Acta 289: 293–302PubMedGoogle Scholar
  115. Ortmann R, Matern U, Grisebach H, Stadler P, Sinnwell V, Paulsen H (1974) NADPH- dependent formation of thymidine-diphosphodihydrostreptose from thymidine-diphospho-D-glucose in a cell-free system from Streptomyces griseus and its correlation with streptomycin biosynthesis. Eur J Biochem 43: 265–271PubMedGoogle Scholar
  116. Overend G, Williams NR (1965) Branched-chain sugars IV. The synthesis of D-hamamelose and D-epihamamelose. J Chem Soc: 3446–3448Google Scholar
  117. Ovodov YS, Ovodova RG, Bondarenko OD, Krasikova IN (1971) Pectic substances of Zosteraceae IV. Pectinase digestion of zosterine. Carbohydr Res 18: 311–318Google Scholar
  118. Ovodova RG, Vaskovsky VE, Ovodov YS (1968) The pectic substances of Zosteraceae. Carbohydr Res 6: 328–332Google Scholar
  119. Pan YT, Kindel PK (1977) Characterization of particulate D-apiosyl- and D-xylosyl-transferase from Lemna minor. Arch Biochem Biophys 183: 131–138PubMedGoogle Scholar
  120. Pape H, Brillinger G (1973) Stoffwechselprodukte von Mikroorganismen 113. Biosynthese von Thymidin-diphosphomycarose durch ein zellfreies System aus Streptomyces rimosus. Arch Mikrobiol 88: 25–35PubMedGoogle Scholar
  121. Pape H, Schmid R, Grisebach H, Achenbach H (1969) Übertragung der intakten Methylgruppe des Methionins bei der Biosynthese der L-mycarose. Eur J Biochem 10: 479–483PubMedGoogle Scholar
  122. Patrick AD (1956) Occurrence of apiose in Hevea brasiliensis. Nature (London) 178: 216Google Scholar
  123. Paulsen H, Redlich H (1974) Synthese der vier isomeren Methyl-D-aldgaroside. Strukturermittlung des Methylaldgarosids B aus Aldgamycin E. Chem Ber 107:2992–3012 Paulsen H, Sinnwell V, Stadler P (1972) Synthese verzweigter Kohlenhydrate mit Aldehyd-Seitenkette - Einfache Synthese von L-Streptose und D-Hamamelose. Angew Chem 84: 112–113Google Scholar
  124. Paulsen H, Sinnwell V, Stadler P (1972) Synthese verzweigter Kohlenhydrate mit Aldehyd-Seitenkette - Einfache Synthese von L-Streptose und D-Hamamelose. Angew Chem 84:112–113Google Scholar
  125. Paulsen H, Roden K, Sinn well V, Koebernick W (1977) Einfache Synthese der Pillarose. Chem Ber 110: 2146–2149Google Scholar
  126. Pezzanite JO, Chardy J, Lau PY, Wood G, Walker DL, Fraser-Reid B (1975) A revised structure for the antibiotic pillaromycin A. J Am Chem Soc 97: 6250–6251PubMedGoogle Scholar
  127. Picken JM, Mendicino J (1967) The biosynthesis of D-apiose in Lemna minor. J. Biol Chem 242: 1629–1634PubMedGoogle Scholar
  128. Ragoonwala R, Friedrich H (1967) Über das Vorkommen von Flavonglykosiden in Capsicum-Pflanzen. Naturwissenschaften 54: 368Google Scholar
  129. Rahman AU (1958) Über das Vorkommen von Apiin in Sellerie. Z Naturforsch 13 b:201–202Google Scholar
  130. Rappaportt J, Giacopello D, Seldes AM, Blanco MC, Deulofeu V (1977) Phenolic glycosides from Solanum glaucophyllum: A new quercetin triglycoside containing D-apiose. Phytochemistry 16: 1115–1116Google Scholar
  131. Reimann H, Jaret RS, Cooper DJ (1971) Sisomicin: Stereochemistry and attachment of the unsaturated sugar moiety. Chem Commun: 924–925Google Scholar
  132. Roberts RM, Shah RH, Loewus F (1967) Inositol metabolism in plants IV. Biosynthesis of apiose in Lemna and Petroselinum. Plant Physiol 42: 659–666PubMedGoogle Scholar
  133. Sandermann H Jr., Grisebach H (1968) Zur Biosynthese der Apiose 3. Untersuchungen über das Vorkommen von UDP-Apiose und anderer UDP-Zucker in Petersilie (Apium petroselinum L.). Eur J Biochem 6: 404–410PubMedGoogle Scholar
  134. Sandermann H Jr., Tisue GT, Grisebach H (1968) Biosynthesis of D-apiose IV. Formation of UDP-apiose from UDP-D-glucuronic acid in cell-free extracts of parsley (Apium petroselinum L.) and Lemna minor. Biochim Biophys Acta 165: 550–552Google Scholar
  135. Scherpenberg H van, Gröbner W, Kandier O (1965) Zur Physiologie und zum Vorkommen der Hamamelose. Festschrift K. Mothes 65. Geburtstag, Gustav Fischer, Jena: 387–406Google Scholar
  136. Schildknecht H, Tansher B, Moeschier H, Edelmann J (1978) Detection and structure elucidation of leaf movement factors from Mimosaceae. Proc 11th Int Symp Chem Nat Prod Part I, Vol. 4, Bulgarian Acad Sci, Sofia: 97–111Google Scholar
  137. Schilling G, Keller A (1977) Zusammensetzung und Konformation von Hamamelose in Lösung. Ann Chem: 1475–1479Google Scholar
  138. Schmid R, Grisebach H (1970a) Zur Biosynthese der D-Aldgarose. Eur J Biochem 14: 243–252PubMedGoogle Scholar
  139. Schmid R, Grisebach H (1970b) Zur Biosynthese der D-Aldgarose II. Nauforsch 25 b: 1259–1263Google Scholar
  140. Schmidt OT (1929) Über Zucker mit verzweigter Kohlenstoffkette I. Die Konstitution des Zuckers aus Hamameli-tannin. Ann Chem 476: 250–269Google Scholar
  141. Schmidt OT (1930) Über Zucker mit verzweigter Kohlenstoffkette II. Konstitution und Konfiguration von Apiose. Ann Chem 483: 115–123Google Scholar
  142. Schmidt OT, Heintz K (1934) Über Zucker mit verzweigter Kohlenstoffkette V. Die Synthese der Hamamelonsäure. Ann Chem 515: 77–96Google Scholar
  143. Schmidt OT, Weber-Molster CC (1934) Über Zucker mit verzweigter Kohlenstoffkette IV. Das optische Verhalten der Aldonsäuren in Gegenwart von Natriummolybdat. Ann Chem 515: 65–76Google Scholar
  144. Sellmair J, Kandier O (1970) Zur Physiologie von Hamamelose und Hamamelit in Primula clusiana Tausch. Z Pflanzenphysiol 63: 65–83Google Scholar
  145. Sellmair J, Beck E, Kandier O (1968) Isolierung und Identifizierung von Hamamelit aus Primula clusiana Tausch. Z Pflanzenphysiol 59: 70–79Google Scholar
  146. Sellmair J, Beck E, Kandier O, Kress A (1977) Hamamelose and its derivatives as chemotaxonomic markers in the genus Primula. Phytochemistry 16: 1201–1204Google Scholar
  147. Seshadri TR, Vydeeswaran S (1971) Cucurbitaceae, chemical examination of Luffa echinata. Phytochemistry 10: 667–669Google Scholar
  148. Shafizadeh F (1956) Branched-chain sugars of natural occurrence. Adv Carbohydr Chem 11: 263–283Google Scholar
  149. Subramanian SS, Nagarajan S (1970) Flavonoids of three Crotalaria species. Phytochemistry 9: 2581–2584Google Scholar
  150. Thanbichler A (1973) Über den Metabolismus der Hamamelose. Thesis, Univ MunichGoogle Scholar
  151. Thanbichler A, Beck E (1974) Catabolism of hamamelose. The anaerobic dissimilation of D-hamamelose by Kluyvera citrophila 627. Eur J Biochem 50: 191–196PubMedGoogle Scholar
  152. Thanbichler A, Gilck H, Beck E (1971) Über den Katabolismus von Hamamelose [2-C- (Hydroxymethyl)-D-ribose]. I. Die Oxidation von Hamamelose durch Pseudomonas. Z Naturforsch 26 b: 912–915Google Scholar
  153. Umezawa H (1967) Index of antibiotics from actinomycetes. Univ Tokyo Press, Tokyo; Univ Park Press, State Coll, PaGoogle Scholar
  154. Vongerichten E (1901) Über Apiin und Apiose. Ann Chem 318: 121–136Google Scholar
  155. Vongerichten E (1902) Über Apiose, eine ß-Oxymethylerythrose. Ann Chem 321: 71–83Google Scholar
  156. Wagner H, Demuth G (1972) 6-O-(D-Apiofuranosyl)-1,6,8-Trihydroxy-3-Methyl-Anthrachi- non, ein neues Glykosid (Frangulin B) aus der Rinde von Rhamnus frangula L. Tetrahedron Lett 49: 5013–5014Google Scholar
  157. Wagner H, Demuth G (1974) Anthraquinone glycosides from Rhamnus frangula: 6-0-Apiofuranosyl-1,6,8-trihydroxy-3-methylanthraquinone. Z Naturforsch 29 c:204–208Google Scholar
  158. Wagner H, Kirmayer W (1957) Uber das Vorkommen von Apigeninglykosiden in einigen Kompositenblüten. Naturwissenschaften 44: 307Google Scholar
  159. Wahl HP, Matern U, Grisebach H (1975) Two enzymes in Streptomyces griseus for the synthesis of dTDP-L-dihydrostreptose from dTDP-6-deoxy-D-xylo-4-hexosulose. Biochem Biophys Res Commun 64: 1041–1045PubMedGoogle Scholar
  160. Walker DL, Fraser-Reid B (1975) Syntheses of “supposed” and “real” pillarose. J Am Chem Soc 97: 6251–6253PubMedGoogle Scholar
  161. Watson RR, Kindel PK (1970) Enzymatic synthesis of apiin from UDP-D-apiose-14C and 0-ß-D-glucopyranosyl-(l→7)-apigenin. Plant Physiol 46 S:27Google Scholar
  162. Watson RR, Orenstein NS (1975) Chemistry and biochemistry of apiose. Adv Carbohydr Chem Biochem 31: 135–184PubMedGoogle Scholar
  163. Wellmann E, Grisebach H (1971) Purification and properties of an enzyme preparation from Lemna minor catalyzing the synthesis of UDP-apiose and UDP-D-xylose from UDP-D-glucuronic acid. Biochim Biophys Acta 235: 389–397Google Scholar
  164. Wellmann E, Baron D, Grisebach H (1971) Two different enzymes for the biosynthesis of UDP-xylose from UDP-glucuronic acid in cell suspension cultures of parsley. Biochim Biophys Acta 244: 1–6PubMedGoogle Scholar
  165. Wieczorek J (1976) Anreicherung und Charakterisierung der Enzyme des Hamamelosekatabolismus. Thesis, Univ MunichGoogle Scholar
  166. Wiley PF, MacKellar FA, Caron EL, Kelly RB (1968) Isolation, characterization and degradation of nogalamycin. Tetrahedron Lett 6: 663–668PubMedGoogle Scholar
  167. Wiley PF, Duchamp DJ, Hsiung V, Chidester CG (1971) The structure, absolute configuration and chemistry of nogalose. J Org Chem 36: 2670–2673PubMedGoogle Scholar
  168. Williams DT, Jones JKN (1964) The chemistry of apiose, Part I. Can J Chem 42: 69–72Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • E. Beck

There are no affiliations available

Personalised recommendations