Breakdown and Wearout Phenomena in SiO2

  • D. R. Wolters
Part of the Springer Series in Electrophysics book series (SSEP, volume 7)


Technological improvements have largely cancelled the effects of contaminations but the mechanisms of shorting at high and medium fields have not been understood so well. New experimental evidence is incompatible with existing breakdown theories. Novel electrical testing techniques have given evidence that charge incorporation or charge flux through the dielectric plays an essential role in the deterioration of the insulator. In the absence of a sound theory a model will be discussed assuming gaseous discharges.


Field Strength Oxide Thickness Field Enhancement Thickness Dependence Field Breakdown 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Budenstein, P.P., IEEE, E. I. 15, 1980, p. 225Google Scholar
  2. 2.
    Klein, N., Thin Sol. Films 50, 1078, p. 223CrossRefGoogle Scholar
  3. 3.
    Solomon, P., J. Vac. Sci. Technol. 14, 1977, p. 1122CrossRefGoogle Scholar
  4. 4.
    Osburn, C.M., J. of Sol. St. Chem. 12, 1975, 232CrossRefGoogle Scholar
  5. 5.
    Kern,W., RCA Review 31, 1973, 234Google Scholar
  6. 6.
    Harari, E., J. Appl. Phys., 49, 1978, p. 2478CrossRefGoogle Scholar
  7. 7.
    Johnson, N., Kotz S., Distribution in Statistics (1970) John Wiley and Sons, N.Y.Google Scholar
  8. 8.
    Gumbel, E.J., Statistics of Extremes, 1958, Columbia University Press, N.Y.Google Scholar
  9. 9.
    de Wit, H.J., Wijenberg, C., and Crevecoeur, C., J. El. Chem. Soc. 123, 1976, p. 231Google Scholar
  10. 10.
    Solomon, P., Klein, N., and Albert, M., Thin Solid Films 35, 1976, p. 321CrossRefGoogle Scholar
  11. 11.
    Kristiansen, K., Vacuum 27, 1977, p. 227CrossRefGoogle Scholar
  12. 12.
    Weber, K.H., and Endicott, H.S., AIEE Trans. 76, Power App. Syst. p. 393Google Scholar
  13. 13.
    Wolters, D.R., Hoogestijn, T., and Kraay, H., The Phys. of MOS Insulators, Proc. Int. Top Conf. Raleigh N.C. (1980) 349Google Scholar
  14. 14.
    Lenzlinger, M., and Snow, E.H., J. Appl. Phys. 40, 1969, p. 287Google Scholar
  15. 15.
    Anolick, E.S., and Nelson, G.R., Proceedings 17th annual IEEE, 1979, Reliability Physics p.8Google Scholar
  16. 16.
    Crook, D.L., IEEE, 1979, Reliability Physics, 17th annual Proceedings, p.1Google Scholar
  17. 17.
    Li, S.P., and Maserjian, J., IEEE trans E.D. 23, 1976, p. 525CrossRefGoogle Scholar
  18. 18.
    Metzler, R.A., IEDM (1979) 233Google Scholar
  19. 19.
    Walden, R.H., J. Appl. Phys. 43, 1972, p. 1178CrossRefGoogle Scholar
  20. 20.
    Ushirokawa, A., Suzuki, E., Warashina M., Jap. J. Appl. Phys. 12, 1973, 398CrossRefGoogle Scholar
  21. 21.
    Harari, E., J. Appl. Phys. Lett., 30, 1977, p. 601Google Scholar
  22. 22.
    Osburn, C.M., and Ormond, D.W., J. El. Chem. Soc. 119, 1972, p. 591–597Google Scholar
  23. 23.
    Osburn, C.M., Bassous, E., J. El. Chem. Soc. 122, 1975, p. 89Google Scholar
  24. 24.
    Eernisse, E.P., Appl. Phys. Lett., 30, 1977, p. 290–293CrossRefGoogle Scholar
  25. 25.
    Kolbesen, B., and Strunk, H., Inst. Phys. Cont. Ser. 57, 1980, p. 21Google Scholar
  26. 26.
    Wolters, D.R., J. El. Chem. Soc. 127, 1980, p. 2072Google Scholar
  27. 27.
    Isomae, S., Tamaki, Y., Yajima, A., Nanba, M., and Maki, M., J. Electrochem. Soc. 126, 1014 (1979)CrossRefGoogle Scholar
  28. 28.
    Ferry, D.K., Sol. State Comm., 18, 1976, p. 1051CrossRefGoogle Scholar
  29. 29.
    Wolters, D.R., and Verwey, J.F., This proceedings (1981)Google Scholar
  30. 30.
    Solomon, P., J. Appl. Phys. 48, (1977) p. 3847Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • D. R. Wolters
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations