Skip to main content

Part of the book series: Encyclopedia of Plant Physiology ((922,volume 14 / A))

  • 435 Accesses

Abstract

The immune system of higher vertebrates possesses the fascinating ability to distinguish between “self” and “non-self” and can produce, in response to a challenge, antibodies which will react specifically with the antigen that induced their formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrell IPS (1966) The mitogenic action of phosphate and phytohemagglutinin on free-living amebae. Exp Cell Res 43: 691–694

    PubMed  CAS  Google Scholar 

  • Alexandrescu V (1974) Water-soluble proteins from maize in the first growing stages. Electrophoretic and immunoelectrophoretic study. Rev Roum Biochim 11: 77–85

    CAS  Google Scholar 

  • Alexandrescu V, Cǎlin I (1969) Electrophoretic and immunoelectrophoretic study of maize isoperoxidasis. Rev Roum Biochim 6: 171–178

    CAS  Google Scholar 

  • Alexandrescu V, Hagima I (1973) Peroxidase in leaves of some cereals immunochemical study. Rev Roum Biochim 10: 15–21

    CAS  Google Scholar 

  • Alexandrescu V, Mihǎilsecu F (1973) Immunochemical investigations on germinated seeds endosperm α-amylase of some cereals. Rev Roum Biochim 10: 89–94

    CAS  Google Scholar 

  • Alexandrescu V, Mihǎilescu F, Pǎun L ( 1975 a) Amylases in the endosperm of wheat, rye and triticale germinated seeds. I Electrophoretic and immunoelectrophoretic investigations. Rev Roum Biochim 12: 3–6

    CAS  Google Scholar 

  • Alexandrescu V, Mihǎilescu F, Pǎun L ( 1975 b) Amylases in the endosperms of wheat, rye and triticale germinated seeds. II Immunological and immunochemical investigations. Rev Roum Biochim 12: 61–66

    CAS  Google Scholar 

  • Allen LW, Neuberger A, Sharon N (1973) The purification, composition and specificity of wheat-germ agglutinin. Biochem J 131: 155–162

    PubMed  CAS  Google Scholar 

  • Anioł A (1974a) IsTriticum macha ssp.tubalicum var.sublets-chumicum an ancientTriticale? Z Pflanzenzuecht 72: 226–232

    Google Scholar 

  • Anioł A (1974b) A serological investigation of wheat evolution. Z Pflanzenzuecht 73: 194–203

    Google Scholar 

  • Anioł A (1976 a) Serological studies within the tribeTriticeae. VIII. Serological affinity between genera. Genet Pol 17: 523–529

    Google Scholar 

  • Anioł A (1976b) Serological studies in the tribeTriticeae. VII. Serological affinity within the genusElymus. Genet Pol 17: 343–351

    Google Scholar 

  • Anioł A, Nowacki E (1973) Serological relationships within Hordeum genus. Genet Pol 14: 255–267

    Google Scholar 

  • Arnon R (1973) Immunochemistry of enzymes. In: Sela M (ed) The antigen, Vol I. Academic Press, London New York, pp 87–159

    Google Scholar 

  • Arnon R, Sela M (1969) Antibodies to an unique region in lysozyme provoked by a synthetic antigen conjugate. Proc Natl Acad Sci USA 62: 163–170

    PubMed  CAS  Google Scholar 

  • Arnon R, Shapira E (1967) Antibodies to papain. A selective fractionation according to inhibitory capacity. Biochemistry 6: 3942–3950

    Google Scholar 

  • Aru LH, Mikk HT (1965) O serologicheskoi identifikatsii rastiletnykhkelkev. Fiziol Rast 12: 182–184

    CAS  Google Scholar 

  • Augustin R (1959) Grass pollen allergens. II Antigen-antibody precipitation patterns in gel; their interpretation as a serological problem and in relation to skin reactivity. Immunology 2: 148–169

    PubMed  CAS  Google Scholar 

  • Axelsen NH (ed) (1975) Quantitative immunoelectrophoresis. Scand Immunol Suppl 2, Universitetsforlaget, Oslo Bergen Tromsø

    Google Scholar 

  • Axelsen NH, Krøll J, Weeke B (eds) (1973) A manual of quantitative immunoelectrophoresis. Scand J Immunol Suppl 1, Universitetsforlaget, Oslo Bergen Tromsø

    Google Scholar 

  • Bakardieva NT, Dimirevska-Kepova K (1976) Immunochemical characteristic of peroxidase from green and etiolated pea plants, enriched by calcium and copper ions. Fiziol Rast II 4: 28–37

    Google Scholar 

  • Bal AK, Verma DPS, Byrne H, Maclachlan GA (1976) Subcellular localization of celluloses in auxin-treated pea. J Biol Chem 69: 97–105

    CAS  Google Scholar 

  • Barrett JT, Whiteaker RS (1977) Serological studies with the ficin-antificin system. In: Colombo JP, Frei J, Greengard O, Knox WE (eds) Enzyme, vol XXII. S Karger, Basel, pp 266–269

    Google Scholar 

  • Basha SMM, Beevers L (1975) The development of proteolytic activity and protein degradation during germination ofPisum sativum L. Planta 124: 77–87

    CAS  Google Scholar 

  • Baumann C, Rüdiger H, Strossberg AD (1979) A comparison of the two lectins fromVicia cracca. FEBS Lett 102: 216–218

    PubMed  CAS  Google Scholar 

  • Baumgartner B, Chrispeels MJ (1977) Purification and characterization of vicilin peptidohy-drolase, the major endopeptidase in the cotyledons of mung bean seedlings. Eur J Biochem 77: 223–233

    PubMed  CAS  Google Scholar 

  • Baumgartner B, Matile Ph (1976) Immunocytochemical localization of acid ribonuclease in morning glory flower tissue. Biochem Physiol Pflanz 170: 279–285

    CAS  Google Scholar 

  • Baumgartner B, Tokuyasu KT, Chrispeels MJ (1978) Localization of vicilin peptidohydrolase in the cotyledons of mung bean seedlings by immunofluorescence microscopy. J Cell Biol 79: 10–19

    PubMed  CAS  Google Scholar 

  • Beckwith AC, Heiner DC (1966) An immunological study of wheat gluten proteins and derivatives. Arch Biochem Biophys 117: 239–247

    PubMed  CAS  Google Scholar 

  • Belin L (1972) Separation and characterization of birch pollen antigens with special reference to the allergenic components. Int Arch Allergy Appl Immunol 42: 329–342

    PubMed  CAS  Google Scholar 

  • Benhamou-Glynn N, Escribano M-J, Grabar P (1965) Study of gluten proteins by means of immunochemical methods. Bull Soc Chim Biol 47: 141–156

    PubMed  CAS  Google Scholar 

  • Berzborn RJ, Lockau W (1977) Antibodies. In: Trebst A, Avron M (eds) Encyclopedia of plant physiology, vol V. Photosynthesis I. Springer, Berlin Heidelberg New York, pp 283–296

    Google Scholar 

  • Bhuvaneswari TV, Pueppke SG, Bauer WD (1977) Role of lectins in plant-microorganism interactions. I. Binding of soybean lectin to rhizobia. Plant Physiol 60: 486–491

    Google Scholar 

  • Bird GWG, Uhlenbruck G, Pardoe GJ (1971) Serochemical studies of the specificity of some plant and animal agglutinins. Bibl Haematol 38: 58–64

    Google Scholar 

  • Bjerrum OJ (1977) Immunological investigations of membrane proteins. A methodological survey with emphasis placed on immunoprecipitation in gels. Biochim Biophys Acta 472: 135–195

    PubMed  CAS  Google Scholar 

  • Bøg-Hansen TC, Daussant J (1974) Immunochemical quantitation of isoenzymes, α-amylase

    Google Scholar 

  • isoenzymes in barley malt. Anal Biochem 61: 522–527

    Google Scholar 

  • Bøg-Hansen TC, Brogren C-H, McMurrough IC (1974) Identification of enzymes as glycol-proteins containing glucose or mannose. J Inst Brew 80: 443–446

    Google Scholar 

  • Bohlool BB, Schmidt EL (1974) Lectins: a possible basis for specificity in theRhizobium legume root nodule symbiosis. Science 185: 269–271

    PubMed  CAS  Google Scholar 

  • Bollini R, Chrispeels MJ (1978) Characterization and subcellular localization of vicilin and phytohemagglutinin, the two major reserve proteins ofPhaseolus vulgaris L. Planta 142: 291–298

    CAS  Google Scholar 

  • Booth MR, Ewart JAD (1969) Studies on four components of wheat gliadins. Biochim Biophys Acta 181: 226–233

    PubMed  CAS  Google Scholar 

  • Booth MR, Ewart JAD (1970) Relationship between wheat proteins. J Sci Food Agric 21: 187–192

    CAS  Google Scholar 

  • Boutenko RG, Volodarsky AD (1968) Analyse immunochimique de la différentiation cellulaire dans les tissus de culture de tabac. Physiol Veg 6: 299–309

    Google Scholar 

  • Bowden L, Lord JM (1977) Serological and developmental relationships between endoplasmic reticulum and glyoxysomal proteins of castor bean endosperm. Planta 134: 267–272

    CAS  Google Scholar 

  • Bowdenonnett L (1979) Isolation and cell-free translation of total messenger RNA from germinating castor bean endosperm. Plant Physiol 63: 769–773

    Google Scholar 

  • Bowien B, Mayer F (1978) Further studies on the quaternary structure of D-Ribulose-1,5-biphosphate carboxylase fromAlcaligenes eutrophus. Eur J Biochem 88: 97–197

    PubMed  CAS  Google Scholar 

  • Bowles DJ (1979) Lectins as membrane components: Implications of lectin-receptor interaction. FEBS Lett 102: 1–3

    PubMed  CAS  Google Scholar 

  • Bowles DJ, Kauss H (1975) Carbohydrate-binding proteins from cellular membranes of plant tissue. Plant Sci Lett 4: 411–418

    CAS  Google Scholar 

  • Bowles DJ, Schnarrenberger C, Kauss H (1976) Lectins as membrane components of mitochondria fromRicinus communis. Biochem J 160: 375–382

    PubMed  CAS  Google Scholar 

  • Burgess J, Linstead PJ (1976) Ultrastructural studies of the binding of concanavalin A to the plasmalemma of higher plant protoplasts. Planta 130: 73–79

    Google Scholar 

  • Bustin M (1976) Chromatin structure and specificity revealed by immunological techniques. FEBS Lett 70: 1–10

    PubMed  CAS  Google Scholar 

  • Buzilǎ L (1975) Hydrolysis with proteolytic enzymes of vicilin from pea seeds. Rev Roum Biochim 12: 7–10

    Google Scholar 

  • Byrne H, Christou NV, Verma DPS, Maclachlan GA (1975) Purification and characterization of two cellulases from auxin-treated pea epicotyls. J Biol Chem 250: 1012–1018

    PubMed  CAS  Google Scholar 

  • Cantagalli P, Forconi V, Gagnoni G, Pieri J (1972) Immunochemical behaviour of the proteins of the orange. J Sci Food Agric 23: 905–910

    CAS  Google Scholar 

  • Capra DJ, Edmundson AB (1977) The antibody combining site. Sci Am 236: 50–59

    PubMed  CAS  Google Scholar 

  • Casey R (1979) Immunoaffinity chromatography as a means of purifying legumin fromPisum (pea) seeds. Biochem J 177: 509–520

    PubMed  CAS  Google Scholar 

  • Catsimpoolas N (1969) Isolation of glycinin subunits by isoelectric focusing in urea-mercaptoethanol. FEBS Lett 4: 259–261

    PubMed  CAS  Google Scholar 

  • Catsimpoolas N (1978) Immunological properties of soybean proteins. In: Catsimpoolas N (ed) Immunological aspects of foods. Avi Publishing Company Inc, Westport Connecticut, pp 37–59

    Google Scholar 

  • Catsimpoolas N, Ekenstam C (1969) Isolation of alpha, beta, and gamma conglycinins. Arch Biochem Biophys 127: 338–345

    Google Scholar 

  • Catsimpoolas N, Leuthner E (1969) Immunochemical methods for detection and quantitation of Kunitz soybean trypsin inhibitor. Anal Biochem 31: 437–447

    PubMed  CAS  Google Scholar 

  • Catsimpoolas N, Meyer EW (1969) Isolation of soybean hemagglutinin and demonstration of multiple forms. Arch Biochem Biophys 132: 279–284

    PubMed  CAS  Google Scholar 

  • Catsimpoolas N, Rogers DA, Cirde SJ, Meyer EW (1967) Purification and structural studies of the 11 S component of soybean proteins. Cereal Chem 44: 631–637

    CAS  Google Scholar 

  • Catsimpoolas N, Campbell TG, Meyer EW (1968 a) Immunochemical study of changes in reserve proteins of germinating soybean seeds. Plant Physiol 43: 799–805

    PubMed  CAS  Google Scholar 

  • Catsimpoolas N, Ekenstam C, Rogers DA, Meyer EW (1968 b) Protein subunits in dormant and germinating seeds. Biochim Biophys Acta 168: 122–131

    PubMed  CAS  Google Scholar 

  • Catsimpoolas N, Kenney J A, Meyer EW (1971) The effect of thermal denaturation on the antigenicity of glycinin. Biochim Biophys Acta 229: 451–458

    PubMed  CAS  Google Scholar 

  • Cerff R (1974) Inhibitor-dependent, reciprocal changes in the activities of glyceraldehyde-3-phosphate dehydrogenases inSinapis alba cotyledons. Z Pflanzenphysiol 73: 109–118

    CAS  Google Scholar 

  • Cerff R, Chambers SE (1979) Subunit structure of higher plant glyceraldehyde-3-phosphate dehydrogenases. J Biol Chem 254: 6094–6098

    PubMed  CAS  Google Scholar 

  • Chien J, Mitchell HL (1973) Trypsin inhibitors in plants. Phytochemistry 12: 327–330

    Google Scholar 

  • Cherry JP, Katterman FRM, Endrizzi JE (1971) A comparative study of seed proteins of allopolyploidsGossypium by gel electrophoresis. Can J Genet Cytol 13: 155–158

    CAS  Google Scholar 

  • Chrispeels MJ, Baumgartner B (1978) Serological evidence confirming the assignment ofPhaseolus aureus andP. mungo to the genusVigna. Phytochemistry 17: 125–126

    CAS  Google Scholar 

  • Chrispeels MJ, Baumgartner B, Harris N (1976) Regulation of reserve protein metabolism in the cotyledons of mung bean seedlings. Proc Natl Acad Sci USA 73: 3168–3172

    PubMed  CAS  Google Scholar 

  • Chua N- H, Blomberg F (1979) Immunochemical studies of thylakoid membrane polypeptides from spinach and Chlamydomonas reinhardtii. J Biol Chem 254: 215–223

    PubMed  CAS  Google Scholar 

  • Codd GA, Schmid GH (1972) Serological characterization of the glycolate oxidizing enzymes from Tobacco, Euglena gracilis, and a yellow mutant ofChlorella vulgaris. Plant Physiol 50: 769–773

    PubMed  CAS  Google Scholar 

  • Coleman RA, Pratt LH (1974a) Phytochrome: Immunocytochemical assay of synthesis and destruction. Planta 119: 221–231

    Google Scholar 

  • Coleman RA, Pratt LH (1974 b) Subcellular localization of the redabsorbing form of phytochrome by immunocytochemistry. Planta 121: 119–131

    CAS  Google Scholar 

  • Converse CA, Papermaster DS (1975) Membrane protein analysis by two-dimensional immunoelectro phoresis. Science 189: 469–472

    PubMed  CAS  Google Scholar 

  • Croy RRD, Derbyshire E, Krishna TG, Boulter D (1979) Legumin ofPisum sativum andVicia faba. New Phytol 83: 29–35

    CAS  Google Scholar 

  • Cundiff SC, Pratt LH (1973) Immunological determination of the relationship between large and small sizes of phytochrome. Plant Physiol 51: 210–213

    PubMed  CAS  Google Scholar 

  • Daussant J (1975) Immunochemical investigations of plant proteins. In: Harborne JB, van Sumere CF (eds) The chemistry and biochemistry of plant proteins. Academic Press, London New York, pp 31–69

    Google Scholar 

  • Daussant J (1978) Immunochemistry of barley seed proteins. In: Catsimpoolas N (ed) Immunological aspects of foods. Avi Publishing Company, Westport Connecticut, pp 60–86

    Google Scholar 

  • Daussant J, Abbott DC (1969) Immunochemical study of changes in the soluble proteins of wheat during germination. J Sci Food Agric 20: 631–637

    Google Scholar 

  • Daussant J, Carfantan N (1975) Electro-immunoabsorption in gel, application to enzyme studies (α- and β-amylases from barley). J Immunol Methods 8: 373–382

    PubMed  CAS  Google Scholar 

  • Daussant J, Corvazier P (1970) Biosynthesis and modifications of α- and β-amylases in germinating wheat seeds. FEBS Lett 7: 191–194

    PubMed  CAS  Google Scholar 

  • Daussant J, Grabar P (1966) Comparaison immunologique des α-amylases extraites de céréales. Ann Inst Pasteur Paris Suppl 110: 79–83

    Google Scholar 

  • Daussant J, MacGregor AW (1979) Combined immunoabsorption and isoelectric focusing of barley and malt amylases in polyacrylamide gel. Anal Biochem 93: 261–266

    PubMed  CAS  Google Scholar 

  • Daussant J, Renard M (1972) Immunochemical comparison of α-amylase in developing and germinating wheat seeds. FEBS Lett 22: 301–304

    PubMed  CAS  Google Scholar 

  • Daussant J, Skakoun A (1974) Combination of absorption technique and α-amylase activity determination in the same gel medium. J Immunol Methods 4: 127–133

    PubMed  CAS  Google Scholar 

  • Daussant J, Grabar P, Nummi M (1966) β-amylase. II. Identification des différentes amylases de l’orge et du malt. Proc 10th Eur Brew Conv, Stockholm 1965. Elsevier, Amsterdam, pp 52–69

    Google Scholar 

  • Daussant J, Neucere NJ, Yatsu LY (1969 a) Immunochemical studies on Arachis hypogaea proteins with particular reference to the reserve proteins. I. Characterization, distribution, and properties of α-arachin and β-conarachin. Plant Physiol 44: 471–479

    Google Scholar 

  • Daussant J, Neucere NJ, Conkerton EJ (1969b) Immunochemical studies onArachis hypogaea proteins with particular reference to the reserve proteins. II. Protein modification during germination. Plant Physiol 44: 480–184

    Google Scholar 

  • Daussant J, Roussoux J, Manigault P (1971) Caractérisations immunochimiques de deux auxine oxydases extraites de tumeurs végétales. FEBS Lett 14: 245–250

    PubMed  CAS  Google Scholar 

  • Daussant J, Skakoun A, Niku-Paavola ML (1974) Immunochemical study on barley α-amylases. J Inst Brew 80: 55–58

    CAS  Google Scholar 

  • Daussant J, Ory RL, Layton LL (1976) Characterization of proteins and allergens in germinating castor seeds by immunochemical techniques. J Agric Food Chem 24: 103–107

    PubMed  CAS  Google Scholar 

  • Davey RA, Dudman WF (1979) The carbohydrate of storage glycoproteins from seeds ofPisum sativum: Characterization and distribution on component polypeptides. Aust J Plant Physiol 6: 435–447

    Google Scholar 

  • Derbyshire E, Wright DJ, Boulter D (1976) Legumin and vicilin, storage proteins of legume seeds. Phytochemistry 15: 3–24

    CAS  Google Scholar 

  • Dimitrov P, Nashkova O, Petkova S, Nashkov D, Marinkov D (1974) Immunochemical prognosis of heterosis inZea mays. Theor Appl Genet 45: 91–95

    Google Scholar 

  • Djurtoft R, Hill RJ (1965) Immunoelectrophoretic studies of proteins in barley, malt, beer and beer haze preparations. Proc 10th Eur Brew Conv, Stockholm, 1965. Elsevier, Amsterdam, pp 137–146

    Google Scholar 

  • Domoney C, Davies DR, Casey R (1980) The initiation of legumin synthesis in immature embryos ofPisum sativum L. grown in vivo and in vitro. Planta 149: 454–460

    CAS  Google Scholar 

  • Dorner RW, Kahn A, Wildman S (1958) Proteins of green leaves. VIII The distribution of fraction I protein in the plant kingdom as detected by precipitin and ultracentrifugal analyses. Biochim Biophys Acta 29: 240–245

    Google Scholar 

  • Dornhauser S (1967) Immunologische Untersuchungen über die Veränderung der salzlöslichen Eiweiβ-Fraktionen von der Gerste bis zum Bier unter Variation des Malzungsverfahrens sowie Untersuchungen über Rohfruchtbiere. Proc Eur Brew Conv II, Elsevier, Amsterdam, pp 323–325

    Google Scholar 

  • Dornhauser S (1972) Nachweisversuche an enzymatisch stabilisierten Bieren mit immunologischen Methoden. Brauwissenschaft 25: 189–192

    Google Scholar 

  • Dudman WF, Millerd A (1975) Immunochemical behaviour of legumin and vicilin fromVicia faba: a survey of related proteins in theLeguminosae subfamilyFaboideae. Biochem Syst Ecol 3: 25–33

    CAS  Google Scholar 

  • Durand B, Durand-Rivieres R (1969) Cytokinines et régulation de la synthese dune proteine antigenique spécifique du sexe femelle chez une plante dioiqueMercurialis annua L. CR Acad Sci Ser D 269: 1639–1641

    CAS  Google Scholar 

  • Durand-Rivieres RCR (1969) Mise en evidence dune proteine antigénique spécifique dans les merestemes et less feuilles femelles deMercurialis annua L. CR Acad Sci Ser D 268: 2046–2048

    Google Scholar 

  • Eder J, Arnon R (1973) Structural and functional comparison of antibodies to common and specific determinants of papain and chymopapain. Immunochemistry 10: 535–543

    PubMed  CAS  Google Scholar 

  • Elton GAH, Ewart JAD (1963) Immunological comparison of cereal proteins. J Sci Food Agric 14: 750–758

    CAS  Google Scholar 

  • Escribano M-J (1966) Application of immunochemical methods to the study of insoluble wheat proteins. Getreide Mehl Brot 12: 134–136

    Google Scholar 

  • Escribano M-J, Grabar P (1966) Immunochemical study of the insoluble proteins of wheat flour after fission of disulphide bonds. Ann Inst Pasteur Paris Suppl III. 110: 84–88

    Google Scholar 

  • Ewart JAD (1966) Cereal proteins: immunological studies. J Sci Food Agric 17: 279–284

    Google Scholar 

  • Ewart JAD (1978) Immunochemistry of wheat proteins. In: Catsimpoolas N (ed) Immunological aspects of foods. Avi Publishing Company Inc, Westport Connecticut, pp 87–116

    Google Scholar 

  • Fairbrothers DE (1977) Perspectives in plant serotaxonomy. Ann Mo Bot Gard 64: 147–160

    Google Scholar 

  • Feierabend J, Wildner G (1978) Formation of the small subunit in the absence of the large subunit of ribulose 1,5-biphosphate carboxylase in 70S ribosome-deficient rye leaves. Arch Biochem Biophys 186: 283–291

    PubMed  CAS  Google Scholar 

  • Feteanu A (ed) (1978) Labelled antibodies in biology and medicine. Abacus Press and McGraw-Hill Int Book Co Fountain DW, Foard DE, Replogle WD, Yang WK (1977) Lectin release by soybean seeds. Science 197: 1185–1187

    Google Scholar 

  • Franz H, Bergmann P, Ziska P (1979) Combination of immunological and lectin reactions in affinity histochemistry: Proposition of the term affinitin. Histochemistry 59: 335–342

    PubMed  CAS  Google Scholar 

  • Freed RC, Ryan DS (1978 a) Note on modification of the Kunitz soybean trypsin inhibitor during seed germination. Cereal Chem 55: 534–538

    CAS  Google Scholar 

  • Freed RC, Ryan DS (1978 b) Changes in Kunitz trypsin inhibitor during germination of soybean - An immunoelectrophoresis assay system. J Food Sci 43: 1316–1319

    Google Scholar 

  • Frevert J, Kindl H (1978) Plant microbody proteins. Purification and glycoprotein nature of glyoxysomal isocitrate lyase fromCucumber cotyledons. Eur J Biochem 92: 35–43

    PubMed  CAS  Google Scholar 

  • Galbraith W, Goldstein IJ (1970) Phytohemagglutinins: A new class of metalloproteins. Isolation, purification, and some properties of the lectin fromPhaseolus vulgaris. FEBS Lett 9: 197–201

    PubMed  Google Scholar 

  • Galbraith W, Goldstein IJ (1972) Phytohemagglutinin of the lima bean (Phaseolus lunatus). Isolation, characterization, and interaction with type A blood substance. Biochemistry 11: 3976–3984

    Google Scholar 

  • Gatenby AA (1978) A comparison of the polypeptide isoelectric points and antigenic determinant sites of the large subunit of fraction I protein fromLycopersicon esculentum,Nicotiana tabacum andPetunia hybrida. Biochim Biophys Acta 534: 169–172

    PubMed  CAS  Google Scholar 

  • Gietl CH, Ziegler H (1979) Lectins in the excretion of intact roots. Naturwissenschaften 66: 161–164

    CAS  Google Scholar 

  • Gill TA, Tung MA (1978) Electrophoretic and immunochemical properties of the 12 S rapeseed protein. Cereal Chem 55: 809–817

    CAS  Google Scholar 

  • Glimelius K, Wallin A, Eriksson T (1974) Agglutinating effects of Concanavalin A on isolated protoplasts ofDaucus carota. Physiol Plant 31: 225–230

    CAS  Google Scholar 

  • Glimelius K, Wallin A, Eriksson T (1978 a) Ultrastructural visualization of sites binding Concanavalin A on the cell membrane of Daucus carota. Protoplasma 97: 291–300

    CAS  Google Scholar 

  • Glimelius K, Wallin A, Eriksson T (1978 b) Ultrastructural visualization of sites binding Concanavalin A on the cell membrane of Daucus carota. Protoplasma 97: 291–300

    CAS  Google Scholar 

  • Gonzalez E, Beevers H (1976) Role of the endoplasmic reticulum in glyoxysome formation in castor bean endosperm. Plant Physiol 57: 406–109

    PubMed  CAS  Google Scholar 

  • Gooding LR, Roy H, Jagendorf AF (1973) Immunological identification of nascent subunits of wheat ribulose diphosphate carboxylase on ribosomes of both chloroplast and cytoplasmic origin. Arch Biochem Biophys 159: 324–335

    PubMed  CAS  Google Scholar 

  • Grabar P (1975) Immunological methods in tissue analysis. J Immunol Methods 7: 305–326

    PubMed  CAS  Google Scholar 

  • Grabar P, Escribano M-J, Benhamou N, Daussant J (1965) Immunochemical study of wheat, barley, and malt proteins. J Agric Food Chem 13: 392–398

    CAS  Google Scholar 

  • Graf L, Notton BA, Hewitt EJ (1975) Serological estimation of spinach nitrate reductase. Phytochemistry 14: 1241–1243

    CAS  Google Scholar 

  • Gray JC (1977) Serological relationship of fraction I proteins from species in the genusNicotiana. Plant Syst Evol 128: 53–69

    Google Scholar 

  • Gray JC (1978) Serological reactions of fraction I proteins from interspecific hybrids on the genusNicotiana. Plant Syst Evol 129: 177–183

    Google Scholar 

  • Gray JC, Kekwick RGO (1974) The synthesis of the small subunit of ribulose 1,5-biphosphate carboxylase in the french beanPhaseolus vulgaris. Eur J Biochem 44: 491–500

    PubMed  CAS  Google Scholar 

  • Gray JC, Wildman SG (1976) A specific immunoabsorbent for the isolation of fraction I protein. Plant Sci Lett 6: 91–96

    CAS  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves. A possible defense mechanism against insects. Science 175: 776–777

    Google Scholar 

  • Guldager P (1978) Immunoelectrophoretic analysis of seed proteins fromPisum sativum L. Theor Appl Genet 53: 241–250

    Google Scholar 

  • Gurusiddaiah S, Kuo T, Ryan CA (1972) Immunological comparisons of chymotrypsin inhibitor I among several genera of the Solanaceae. Plant Physiol 50: 627–631

    PubMed  CAS  Google Scholar 

  • Hall O (1959) Immuno-electrophoretic analyses of allopolyploid ryewheat and its parental species. Hereditas 45: 495–504

    Google Scholar 

  • Hamblin J, Kent SP (1973) Possible role of phytohemagglutinin inPhaseolus vulgaris L. Nature (London) 245: 28–30

    CAS  Google Scholar 

  • Hankins CN, Kindinger JI, Shannon LM (1979) Legume lectins. I. Immunological cross-reactions between the enzymic lectin from mung beans and other well characterized legume lectins. Plant Physiol 64: 104–107

    Google Scholar 

  • Hague DR (1975) Studies of storage proteins of higher plants. I. Concanavalin A from three species of the genusCanavalia. Plant Physiol 55: 636–642

    PubMed  CAS  Google Scholar 

  • Harboe N, Ingild A (1973) Immunization, isolation of immunoglobulins, estimation of antibody titre. In: Axelsen NH, Krøll J, Weeke B (eds) A manual of quantitative immunoelectrophoresis. Scand J Immunol Suppl 1 Universitetsforlaget, Oslo Bergen Tromso, pp 161–164

    Google Scholar 

  • Hartmann JY, Kao KN, Gamborg OL, Miller RA (1973) Immunological methods for the agglutination of protoplasts from cell suspension cultures of different genera. Planta 112: 45–56

    CAS  Google Scholar 

  • Hattersley PW, Watson L, Osmond CB (1976) Metabolic transport of leaves of C4 plants: specification and speculation. In: Transport and transfer processes in plants. Academic Press, London New York, pp 191–201

    Google Scholar 

  • Hattersley PW, Watson L, Osmond CB (1977) In situ immunofluorescent labelling of ribulose-1,5-biphosphate carboxylase in C3 and C4 plant leaves. Aust J Plant Physiol 4: 523–539

    CAS  Google Scholar 

  • Hejgaard J (1976) Free and protein-bound β-amylases of barley grain. Characterization by two-dimensional immunoelectrophoresis. Physiol Plant 38: 293–299

    CAS  Google Scholar 

  • Hejgaard J, Bog-Hansen TC (1974) Quantitative immunoelectrophoresis of barley and malt proteins. J Inst Brew 80: 436–142

    CAS  Google Scholar 

  • Hejgaard J, Sørensen SB (1975) Characterization of a protein-rich beer fraction by two-dimensional immunoelectrophoresis techniques. Compt Rend Trav Lab Carlsberg 40: 187–203

    CAS  Google Scholar 

  • Hill RJ, Djurtoft R (1964) Some immunoelectrophoretic studies on barley proteins. J Inst Brew 70: 416–424

    CAS  Google Scholar 

  • Hill RJ, Djurtoft R (1964) Some immunoelectrophoretic studies on barley proteins. J Inst B

    Google Scholar 

  • Hillebrand GP, Fairbrothers DE (1970 b) Serological investigation of the systematic position of the Caprifoliaceae. I. Correspondence with selected Rubiaceae and Cornaceae. Am J Bot 57: 810–815

    Google Scholar 

  • Hiral A (1977) Random assembly of different kinds of small subunit polypeptides during formation of fraction I protein macromolecules. Proc Natl Acad Sci USA 74: 3443–3445

    Google Scholar 

  • Hochkeppel H-K (1973) Isolierung einer Endopeptidase aus alternden Tabakblattern und ihre Beziehung zum Vergilben. Z Pflanzenphysiol 69: 329–343

    CAS  Google Scholar 

  • Hock B (1974) Antikörper gegen Glyoxysomenmembranen. Planta 115: 271–280

    CAS  Google Scholar 

  • Horikoshi M, Morita Y (1975) Localization of γ-globulin in rice seed and changes in γ-globulin content during seed development and germination. Agric Biol Chem 39: 2309–2314

    CAS  Google Scholar 

  • Horisberger M, Vonlanthen M (1980) Ultrastructural localization of soybean agglutinin on this sections ofGlycine max (soybean) var.Altona by the gold method. Histochemistry 65: 181–186

    PubMed  CAS  Google Scholar 

  • Houts KP, Hillebrand GR (1976) An electrophoretic and serological investigations of seed proteins in Galeopsis tetrahit L. (Labiatae) and its putative parental species. Am J Bot 63: 156–165

    Google Scholar 

  • Howard CN, Kindinger JI, Shannon LM (1979) Conservation of antigenic determinants among different seed lectins. Arch Biochem Biophys 192: 457–465

    PubMed  CAS  Google Scholar 

  • Howard IK, Sage HJ, Horton CB (1972) Studies on the appearance and location of hemagglutinins from common lentil during the life cycle of the plant. Arch Biochem Biophys 149: 323–326

    PubMed  CAS  Google Scholar 

  • Huang AHC, Bowman PhD, Beevers H (1974) Immunological and biochemical studies on isozymes of malate dehydrogenase and citrate synthetase in castor bean glyoxysomes. Plant Physiol 54: 364–368

    PubMed  CAS  Google Scholar 

  • Hubscher T, Eisen AH (1972) Localization of ragweed antigens in the intact ragweed pollen grain. Int Arch Allergy Appl Immunol 42: 466–173

    PubMed  CAS  Google Scholar 

  • Huebner FR, Rothfus JA, Wall JS (1967) Isolation and chemical comparison of different γ-gliadins from hard red winter wheat flour. Cereal Chem 44: 221–226

    CAS  Google Scholar 

  • Hunt RE, Pratt LH (1979a) Phytochrome radioimmunoassay. Plant Physiol 64: 327–331

    PubMed  CAS  Google Scholar 

  • Hunt RE, Pratt LH (1979b) Phytochrome immunoaffinity purification. Plant Physiol 64: 332–336

    PubMed  CAS  Google Scholar 

  • Hurrell JGR, Nicola NA, Broughton WJ, Dilworth MJ, Minasian E, Leach SJ (1976) Comparative structural and immunochemical properties of leghemoglobins. Eur J Biochem 66: 389–399

    PubMed  CAS  Google Scholar 

  • Hurrell JGR, Thulborn KR, Broughton WJ, Dilworth MJ, Leach SJ (1977) Leghemoglobins: Immunochemistry and phylogenetic relationships. FEBS Lett 84: 244–246

    Google Scholar 

  • Hurrell JGR, Smith J A, Leach SJ (1978) The detection of five antigenically reactive regions in the soybean leghemoglobin molecule. Immunochemistry 15: 297–302

    PubMed  CAS  Google Scholar 

  • Husain SS, Lowe GC (1970) The amino acid sequence around the active-site cysteine and histidine residues of stem bromelain. Biochem J 117: 341–346

    PubMed  CAS  Google Scholar 

  • Huystee van RB (1976) Immunological studies on proteins released by a peanut (Arachis hypogaea L.) suspension culture. Bot Gaz 137: 325–329

    Google Scholar 

  • Hwang DL, Lin K-T, Yang W-K, Ford DE (1977) Purification, partial characterization, and immunological relationships of multiple low molecular weight protease inhibitors of soybean. Biochim Biophys Acta 495: 369–382

    PubMed  CAS  Google Scholar 

  • Hwang DL, Yang W-K, Ford DE (1978) Rapid release of protease inhibitors from soybeans. Immunochemical quantitation and parallels with lectins. Plant Physiol 61: 30–34

    Google Scholar 

  • Iida S, Sasaki M, Ota S (1973) Immunological cross-reaction between thiol proteases of plant origin: stem and fruit bromelains. J Biochem 73: 377–386

    PubMed  CAS  Google Scholar 

  • Ivanov VN, Khavkin EE (1976) Protein patterns of developing mitochondria at the onset of germination in maize (Zea mays L.). FEBS Lett 65: 383–385

    PubMed  CAS  Google Scholar 

  • Jacks TJ, Neucere NJ, Yatsu LY (1972) Characterization of proteins from subcellular fractions of peanuts. J Am Peanut Res E Due Assoc 4: 195–205

    Google Scholar 

  • Jacobsen JV, Knox RB (1973) Cytochemical localization and antigenicity of α-amylase in barley aleurone tissue. Planta 112: 213–224

    CAS  Google Scholar 

  • Jacobsen JV, Knox RB (1974) The proteins released by isolated barley aleurone layers before and after gibberellic-acid treatment. Planta 115: 193–206

    CAS  Google Scholar 

  • Jaffe WG (1978) Immunology of plant agglutinins. In: Catsimpoolas N (ed) Immunological aspects of foods. Avi Publishing Company Inc, Westport Connecticut, pp 170–180

    Google Scholar 

  • Jaffé WG, Lery A, Gonzalez DI (1974) Isolation and partial characterization of bean phytohemagglutinins. Phytochemistry 13: 2685–2693

    Google Scholar 

  • Jendrisak J, Guilfoyle TJ (1978) Eukaryotic RNA polymerases: comparative subunit structures, immunological properties, and α-amanitin sensitivities of the class II enzymes from higher plants. Biochemistry 17: 1322–1327

    PubMed  CAS  Google Scholar 

  • Jermyn MA, Yeow YM (1975) A class of lectins present in the tissue of seed plants. Aust J Plant Physiol 2: 501–531

    CAS  Google Scholar 

  • Johal S, Bourque DP (1979) Crystalline ribulose 1,5-biphosphate carboxylase-oxygenase from spinach. Science 204: 75–77

    PubMed  CAS  Google Scholar 

  • Johnson BL, Barnhart D, Hall O (1967) Analysis of genome and species relationships in the polyploid wheats by protein electrophoresis. Am J Bot 54: 1089–1098

    CAS  Google Scholar 

  • Jones RL, Chen R (1976) Immunohistochemical localization of α-amylase in barley aleurone cells. J Cell Sci 20: 183–198

    PubMed  CAS  Google Scholar 

  • Kabat EA, Mayer MM (eds) (1967) Experimental immunochemistry. Thomas Springfield, Illinois

    Google Scholar 

  • Kagawa T, Lord JM, Beevers H (1973) The origin and turnover of organelle membranes in castor bean endosperm. Plant Physiol 51: 61–65

    PubMed  CAS  Google Scholar 

  • Kahlem G (1973) Proteins and development in a dioecious plant:Mercurialis annua L. Z Pflanzenphysiol 69: 377–380

    CAS  Google Scholar 

  • Kahlem G (1976) Isolation and localization by histoimmunology of isoperoxidases specific for male flowers of the dioecious species (Mercurialis annua L.). Dev Biol 50: 58–67

    PubMed  CAS  Google Scholar 

  • Kanamori M, Ibuki F, Tashiro M, Yamada M, Mioyshi M (1976) Purification and partial characterization of a proteinase inhibitor isolated from egg plant exocarp. Biochim Biophys Acta 439: 398–405

    PubMed  CAS  Google Scholar 

  • Kato G, Maruyama Y, Nakamura M (1979) Role of lectins and lipo–polysaccharides in the recognition of specific legume -Rhizobium symbiosis. Agric Biol Chem 43: 1085–1092

    CAS  Google Scholar 

  • Kato T, Sasaki M (1974) Biological significance and localization of antigenic determinant common to thiol proteases of plant origin. J Biochem 76: 1021–1030

    PubMed  CAS  Google Scholar 

  • Kawashima N, Imai A, Tamaki E (1968) Immunological comparison of fraction I proteins from various plants. Agric Biol Chem 32: 535–536

    CAS  Google Scholar 

  • Kawashima N, Kwok S-Y, Wildman SG (1971) Studies on fraction-I protein. III. Comparison of the primary structure of the large and small subunits obtained from five species ofNicotiana. Biochim Biophys Acta 236: 578–586

    PubMed  CAS  Google Scholar 

  • Khavkin EE, Kohl J-G, Misharin SI, Iwanow WN (1972) Enzymatische Identifikation der Antigene der wachsenden Wurzelzellen vonZea mays L. Biochem Physiol Pflanz 163: 308–315

    CAS  Google Scholar 

  • Khavkin EE, Misharin SJ, Ivanov VN (1977) Embryonal antigens in maize caryopses: The temporal order of antigen accumulation during embryogenesis. Planta 135: 225–231

    Google Scholar 

  • Khavkin EE, Misharin SI, Markov YY, Peshkova AA ( 1978 a) Identification of embryonal antigens of maize: Globulins as primary reserve proteins of the embryo. Planta 143: 11–20

    Google Scholar 

  • Khavkin EE, Misharin SJ, Monastyreva LE, Polikarpochkina RT, Sokhorzhevskaia TB (1978b) Specific proteins maintained in maize callus cultures. Z Pflanzenphysiol 86: 273–277

    CAS  Google Scholar 

  • Khavkin EE, Markov EY, Misharin SJ (1980) Evidence for proteins specific for vascular elements in intact and cultured tissues and cells of maize. Planta 148: 116–123

    CAS  Google Scholar 

  • Kirk J, Sumner JB (1932) Immunological identity of soy and jack bean urease. Proc Soc Exp Biol Med 29: 712–713

    Google Scholar 

  • Kling H (1975) Immunochemische Untersuchungen an Prolaminen. Z Pflanzenphysiol 76: 155–162

    Google Scholar 

  • Kloz J (1971) Serology of theLeguminosae. In: Harborne JB, Boutler D, Turner BL (eds) Chemotaxonomy of theLeguminosae. Academic Press, London New York, pp 309–366

    Google Scholar 

  • Kloz J, Klozová E (1974) The protein euphaseolin inPhaseolinae - a chemotaxonomical study. Biol Plant 16: 290–300

    CAS  Google Scholar 

  • Klozova E, Kloz J, Winfield PJ (1976) A typical composition of seed proteins in cultivars ofPhaseolus vulgaris L. Biol Plant 18: 200–205

    Google Scholar 

  • Knox RB (1973) Pollen wall proteins: Pollen-stigma interactions in ragweed and cosmos (Compositae). J Cell Sci 12: 421–443

    PubMed  CAS  Google Scholar 

  • Knox RB, Heslop-Harrison J (1971) Pollen-wall proteins: the fate of intine-held antigens on the stigma in compatible and incompatible pollinations ofPhalaris tuberosa L. J Cell Sci 9: 239–251

    PubMed  CAS  Google Scholar 

  • Knox RB, Willing RR, Ashford AE (1972) Pollen-wall proteins; role as recognition substances in interspecific incompatibility in poplars. Nature (London) 237: 381–383

    CAS  Google Scholar 

  • Köller W, Frevert J, Kind H (1979) Albumins, glyoxysomal enzymes and globulins in dry seeds ofCucumis sativus: Qualitative and quantitative analysis. Hoppe-Seylers Z Physiol Chem 360: 167–176

    PubMed  Google Scholar 

  • Konieczny A, Legocki AB (1978) Isolation and in vitro translation of leghaemoglobin mRNA from yellow lupin root nodules. Acta Biochem Pol 25: 379–390

    CAS  Google Scholar 

  • Koshiyama I (1972) A never method for isolation of the 7S globulin in soybean seeds. Agric Biol Chem 36: 2255–2257

    CAS  Google Scholar 

  • Krøll J, Andersen MM (1976) Specific antisera produced by immunization with precipitin lines. J Immunol Methods 13: 125–130

    PubMed  Google Scholar 

  • Ku MSB, Schmitt MR, Edwards GE (1979) Quantitative determination of RuBP carboxylase - oxygenase protein in leaves of several C3 and C4 plants. J Exp Bot 30: 89–98

    CAS  Google Scholar 

  • Kurth PD, Bustin M, Moudrianakis EN (1979) Concanavalin A binds to puffs in polytene chromosomes. Nature (London) 279: 448–150

    CAS  Google Scholar 

  • Lanzerotti PM, Gullino PM (1972) Immunochemical quantitation of enzymes using multi-specific antisera. Anal Biochem 50: 344–353

    PubMed  CAS  Google Scholar 

  • Larkin PJ (1977) Plant protoplast agglutination and membrane-bound β-lectins. J Cell Sci 26: 31–46

    PubMed  CAS  Google Scholar 

  • Lee YS, Dickinson DB (1979) Characterization of pollen antigens fromAmbrosia L. (Compositae) and related taxa by immunoelectrophoresis and radial immunodiffusion. Am J Bot 66: 245–252

    CAS  Google Scholar 

  • Lee YS, Dickinsin DB, Schlager D, Velu JG (1979) Antigen E content of pollen from individual plants of short ragweed (Ambrosia artemisiifolia). J Allergy Clin Immunol 63: 336–339

    PubMed  CAS  Google Scholar 

  • Legocki RP, Verma DPS (1979) A nodule-specific plant protein (Nodulin-35) from soybean. Science 205: 190–193

    PubMed  CAS  Google Scholar 

  • Levine D, Kaplan MJ, Greenaway PJ (1972) The purification and characterization of wheat-germ agglutinin. Biochem J 129: 847–856

    PubMed  CAS  Google Scholar 

  • Lichtenfeld C, Manteuffel R, Muntz K, Neumann D, Scholz G, Weber E (1979) Protein degradation and proteolytic activities in germinating field beans (Vicia faba, var. minor). Biochem Physiol Pflanz 174: 255–274

    CAS  Google Scholar 

  • Liener IE (1976) Phytohemagglutinins (Phytolectins). Annu Rev Plant Physiol 27: 291–319

    CAS  Google Scholar 

  • Liener IE, Rose JE (1953) Soyin, a toxic protein from the soybean. III. Immunochemical properties. Proc Soc Exp Biol Med 83: 539–545

    Google Scholar 

  • Lis H, Sharon N (1973) The biochemistry of plant lectins ( Phytohemagglutinins ). Annu Rev Biochem 42: 541–574

    Google Scholar 

  • Lolas GM, Markakis P (1975) Phytic acid and other phosphorus compounds of bean (Phaseolus vulgaris L.). J Agric Food Chem 23: 13–15

    CAS  Google Scholar 

  • Loomis WD, Battaile J (1966) Plant phenolic compounds and the isolation of plant enzymes. Phytochemistry 5: 423–438

    CAS  Google Scholar 

  • Lord MJ, Bowden L (1978) Evidence that glyoxysomal malate synthase is segregated by the endoplasmic reticulum. Plant Physiol 61: 266–270

    PubMed  CAS  Google Scholar 

  • Lotan R, Cacan R, Cacan M, Debray H, Carter WG, Sharon N (1975) On the presence of two types of subunit in soybean agglutinin. FEBS Lett 57: 100–103

    PubMed  CAS  Google Scholar 

  • Luizzi A, Angeletti PU (1969) Application of immunodiffusion in detecting the presence of barley in wheat flour. J Sci Food Agric 20: 207–209

    Google Scholar 

  • Maher P, Molday RS (1977) Binding of concanavalin A toRicinus communis agglutinin and its implication in cell–surface labeling studies. FEBS Lett 84: 391–394

    PubMed  CAS  Google Scholar 

  • Mākinen YLA, Lewis D (1962) Immunological analysis of incompatibility (S) proteins and of cross-reacting material in a self–compatible mutant ofOenothera organensis. Genet Res 3: 352–363

    Google Scholar 

  • Manteuffel R, Scholz G (1975) Studies on seed globulins from legumes. V. Immunoelectrophoretic control of vicilin purification by gel filtration. Biochem Physiol Pflanz 168: 277–285

    CAS  Google Scholar 

  • Marcinowski S, Falk H, Hammer DK, Hoyer B, Grisebach H (1979) Appearance and localization of a β-glucosidase hydrolyzing coniferin in spruce (Picea abies) seedlings. Planta 144: 161–165

    CAS  Google Scholar 

  • Marsh DG (1975) Allergens and the genetics of allergy. In: Sela M (ed) The antigens, vol III. Academic Press, London New York, pp 271–295

    Google Scholar 

  • Matsumoto J, Osawa T (1970) Purification and characterization of a cytisus-type anti-M(O) phytohemagglutinin fromUlex europeus seeds. Arch Biochem Biophys 140: 484–191

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Nishimura M, Akazawa T (1977) Ribulose-1,5-biphosphate carboxylase in the bundle sheath cells of maize leaf. Plant Cell Physiol 18: 1281–1290

    CAS  Google Scholar 

  • Maurer PH, Gerulat BF, Pinchuk P (1964) Antigenicity of polypeptides (poly-α-amino acids). J Biol Chem 239: 922–929

    PubMed  CAS  Google Scholar 

  • Mayer RJ, Walker JH (1978) Techniques in enzyme and protein immunochemistry. In: Kornberg HL, Metcalfe JC, Northcote DH, Pogson CJ, Tipton KF (eds) Techniques in life science. Techniques in protein and enzyme biochemistry, vol B1/II. Elsevier/North-Holland, Biomedical Press, pp 1–32

    Google Scholar 

  • McFadden BA, Tabita FR (1974) D-ribulose-l, 5-diphosphate carboxylase and the evolution of autotrophy. Bio-Systems 6: 93–112

    PubMed  CAS  Google Scholar 

  • McGowan RE, Gibbs M (1974) Comparative enzymology of the glyceraldehyde 3-phosphate dehydrogenase fromPisum sativum. Plant Physiol 54: 312–319

    PubMed  CAS  Google Scholar 

  • Melville JC, Ryan CA (1972) Chymotrypsin inhibitor I from potatoes. J Biol Chem 247: 3445–3453

    PubMed  CAS  Google Scholar 

  • Millerd A (1975) Biochemistry of legume seed proteins. Annu Rev Plant Physiol 26: 53–72

    CAS  Google Scholar 

  • Millerd A, Simon M, Stern H (1971) Legumin synthesis in developing cotyledons ofVicia faba L. Plant Physiol 48: 419–425

    PubMed  CAS  Google Scholar 

  • Millerd A, Thomson JA, Schroeder HE (1978) Cotyledonary storage proteins inPisum sativum. III. Patterns of accumulation during development. Aust J Plant Physiol 5: 519–534

    Google Scholar 

  • Millerd A, Thomson JA, Randall PJ (1979) Heterogeneity of sulphur content in the storage proteins of pea cotyledons. Planta 146: 463–166

    CAS  Google Scholar 

  • Mühlethaler K (1977) Introduction to structure and function of the photosynthesis apparates. In: Trebst M, Avron M (eds) Photosynthetic electron transport and photophosphorylation, vol V. Springer, Berlin Heidelberg New York, pp 503–521

    Google Scholar 

  • Murphy TM (1978) Immunochemical comparisons of ribulose-biphosphate carboxylase using anti-sera to tobacco and spinach enzymes. Phytochemistry 17: 439–143

    CAS  Google Scholar 

  • Murray DR, Knox RB (1977) Immunofluorescent localization of urea in the cotyledons of jack bean,Canavalia ensiformis. J Cell Sci 26: 9–18

    PubMed  CAS  Google Scholar 

  • Nagata Y, Burger MM (1974) Wheat germ agglutinin, molecular characteristics and specificity for sugar binding. J Biol Chem 249: 3116–3121

    PubMed  CAS  Google Scholar 

  • Nagl W (1972) Phytohemagglutinin: Transitory enhancement of growth inPhaseolus andAllium. Planta 106: 269–272

    CAS  Google Scholar 

  • Nairn PC (ed) (1976) Fluorescent protein tracing, 4th edn. Edu Livingstone, Edinburgh London

    Google Scholar 

  • Nasrallah ME, Wallace DH (1967 a) Immunochemical detection of antigens in self-incompatibility genotypes of cabbage. Nature (London) 213: 700–701

    Google Scholar 

  • Nasrallah ME, Wallace DH (1967b) Immunogenetics of self-incompatibility inBrassica oleracea L. Heredity 22: 519–527

    Google Scholar 

  • Nasrallah ME, Barber JT, Wallace DH (1969) Self-incompatibility proteins in plants: detection genetics and possible mode of action. Heredity 24: 23–27

    Google Scholar 

  • Nasrallah ME, Wallace DH, Savo RM (1972) Genotype, protein, phenotype relationships in self-incompatibility of Brassica. Genet Res 20: 151–160

    Google Scholar 

  • Nelson OE, Burr B (1973) Biochemical genetics of higher plants. Annu Rev Plant Physiol 24: 493–518

    CAS  Google Scholar 

  • Neucere NJ (1969) Isolation of a-arachin, the major peanut globulin. Anal Biochem 27: 15–24

    PubMed  CAS  Google Scholar 

  • Neucere NJ (1974) Antigenic and electrophoretic changes of α-arachin after heating in vitro. J Agric Food Chem 22: 146–148

    PubMed  CAS  Google Scholar 

  • Neucere NJ (1978 a) Aminopeptidase activity associated with ai-conarachin (peanut protein). Phytochemistry 17: 546–548

    CAS  Google Scholar 

  • Neucere NJ (1978b) Immunochemistry of peanut proteins. In: Catsimpoolas N (ed) Immunological aspects of foods. Avi Publishing Company Inc, Westport Connecticut, pp 117– 151

    Google Scholar 

  • Neucere NJ, Cherry JO (1975) An immunochemical survey of proteins in species of Arachis. Peanut Sci 2: 66–72

    CAS  Google Scholar 

  • Neucere NJ, Ory RL (1970) Physicochemical studies on the proteins of the peanut cotyledon and embryonic axis. Plant Physiol 45: 616–619

    PubMed  CAS  Google Scholar 

  • Neucere NJ, Yatsu LY (1975) Genesis of storage protein synthesis in the developing peanut seed. Peanut Sci 2: 38–41

    CAS  Google Scholar 

  • Neucere NJ, Ory RL, Carney WB (1969) Effect of roasting on the stability of peanut proteins. J Agric Food Chem 17: 25–28

    CAS  Google Scholar 

  • Newman RA (1977) Heterogeneity among the anti-TF lectins derived from Arachis hypogaea. Hoppe-Seylers Z Physiol Chem 358: 1517–1520

    PubMed  CAS  Google Scholar 

  • Nimmo CC, O’Sullivan MT (1967) Immunochemical comparisons of antigenic proteins of durum and hard red spring wheats. Cereal Chem 44: 584–591

    Google Scholar 

  • Nishimura M, Akazawa T (1974a) Studies on spinach leaf ribulosebiphosphate carboxylase. Carboxylase and oxygenase reaction examined by immunochemical methods. Biochemistry 13: 2277–2281

    PubMed  CAS  Google Scholar 

  • Nishimura M, Akazawa T (1974b) Reconstitution of spinach ribulose-1,5-diphosphate carboxylase from separated subunits. Biochem Biophys Res Commun 59: 584–590

    PubMed  CAS  Google Scholar 

  • Northoft H, Jungfer H, Resch K (1978) The effect of anticon A on the binding of con A to lymphocytes. Exp Cell Res 115: 151–158

    Google Scholar 

  • Nowacki E, Prus-Glowacki W (1971) Differentiation of protein fractions in species and varieties of the genusLupinus with the use of serological methods. Genet Pol 12: 245–260

    Google Scholar 

  • Nowacki E, Aniol A, Bieber D (1972) An attempted cross of Zea mays and Coix lacryma jobi and the serological relationships of these species. Bull Acad Pol Sci XX: 695–698

    Google Scholar 

  • Nummi M (1963) Fractionation of barley globulins on dextran gel columns. Acta Chem Scand 17: 527–529

    CAS  Google Scholar 

  • Nummi M, Vilhunen R, Enari T-M (1965) β-amylase: I. β-amylases of different molecular size in barley and malt. Proc 10th Congr Eur Brew Conv, Stockholm 1965, Elsevier, Amsterdam, pp 52–61

    Google Scholar 

  • Nummi M, Daussant J, Niku-Paalova ML, Kalsta H, Enari T-M (1970) Comparative immunological and chromatographic study of some plant β-amylases. J Sci Food Agric 21: 258–260

    CAS  Google Scholar 

  • Ochiai-Yanagi S, Fukazawa C, Harada K (1978) Formation of storage protein components during soybean seed development. Agric Biol Chem 42: 697–702

    CAS  Google Scholar 

  • Okamoto K, Akazawa T (1979) Enzymic mechanism of starch breakdown in germinating rice seeds. Plant Physiol 64: 337–340

    PubMed  CAS  Google Scholar 

  • Okita TW, Decaleya R, Rappaport L (1979) Synthesis of a possibile precursor of α–amylase in wheat aleurone cells. Plant Physiol 63: 195–200

    PubMed  CAS  Google Scholar 

  • Olsen HS (1978) Faba bean protein for human consumption. In: Adler-Nissen J (ed) Biochemical aspects of new protein food, vol 44 A3. Pergamon Press, Oxford New York, pp 31–42

    Google Scholar 

  • Osborne TB (ed) (1924) The vegetable proteins, 2nd edn. London

    Google Scholar 

  • Ouchterlony O (ed) (1968) Handbook of immunodiffusion and immunoelectrophoresis.

    Google Scholar 

  • Publ Ann Arbor Sci Publ Inc Paus E (1976) Immunoadsorbent affinity purification of the two enzyme forms of α-mannosidase fromPhaseolus vulgaris. FEBS Lett 72: 39–12

    Google Scholar 

  • Pereira MEA, Kabat EA, Lotan R, Sharon N (1976) Immunochemical studies on the specificity of the peanut (Arachis hypogaea) agglutinin. Carbohydr Res 51: 107–118

    PubMed  CAS  Google Scholar 

  • Pick K-H, Wöber G (1978) Proteinaceous a-amylase inhibitor from beans (Phaseolus vulgaris). Immunological characterization. Hoppe-Seylers Z Physiol Chem 359: 1379–1384

    PubMed  CAS  Google Scholar 

  • Pickering JL, Fairbrothers DE (1970) A serological comparison ofUmbelliferae subfamilies. Am J Bot 57: 988–992

    Google Scholar 

  • Pierard D, Jacmard A, Bernier G (1977) Changes in the protein composition of the shoot apical bud of Sinapis alba in transition of flowering. Physiol Plant 41: 254–258

    Google Scholar 

  • Polacco JC, Havir EA (1979) Comparisons of soybean urease isolated from seed and tissue culture. J Biol Chem 254: 1707–1715

    PubMed  CAS  Google Scholar 

  • Prager MD, Fetcher MA, Efron K (1962) Mechanism of the immunohematologic effect of papain and related enzymes. J Immunol 89: 834–840

    PubMed  CAS  Google Scholar 

  • Pratt LH (1973) Comparative immunochemistry of phytochrome. Plant Physiol 51: 203–209

    PubMed  CAS  Google Scholar 

  • Pratt LH, Coleman RA (1971) Immunocytochemical localization of phytochrome. Proc Natl Acad Sci USA 86: 2431–2435

    Google Scholar 

  • Pratt LH, Coleman RA (1974) Phytochrome distribution in etiolated grass seedlings as assayed by an indirect antibody-labelling method. Am J Bot 61: 195–202

    CAS  Google Scholar 

  • Pratt LH, Kidd GH, Coleman RA (1974) An immunochemical characterization of the phytochrome destruction reaction. Biochim Biophys Acta 365: 93–107

    PubMed  CAS  Google Scholar 

  • Prus-Glowacki W (1975) Changes of protein fractions in the ontogenesis of four Lupin species studied by immunological methods. I. Differences in the seed protein fractions of the studiedLupin species and varieties. Genet Pol 16: 37–16

    CAS  Google Scholar 

  • Prus-Glowacki W, Sulinowski S, Nowacki E (1971) Immunoelectrophoretic studies ofLolium-Festuca alloploid and its parental species. Biochem Physiol Pflanz 162: 417–426

    CAS  Google Scholar 

  • Pueppke SG (1979) Distribution of lectins in the jumbo Virginia and spanish varieties of the peanut,Arachis hypogaea L. Plant Physiol 64: 575–580

    PubMed  CAS  Google Scholar 

  • Rayle DL (1973) Auxin–induced hydrogen ion secretion inAvena coleoptiles and its implications. Planta 114: 63–73

    CAS  Google Scholar 

  • Reichlin M (1977) Use of antibody in the study of protein structure. In: Needleman SB (ed) Molecular biology, biochemistry and biophysics. Advanced methods in protein sequence determination, vol XXV. Springer, Berlin Heidelberg New York, pp 55–185

    Google Scholar 

  • Rice HV, Briggs WR (1973 a) Partial characterization of oat and rye phytochrome. Plant Physiol 51: 927–938

    PubMed  CAS  Google Scholar 

  • Rice HV, Briggs WR (1973 b) Immunochemistry of phytochrome. Plant Physiol 51: 939–945

    PubMed  CAS  Google Scholar 

  • Richardson M (1977) The proteinase inhibitors of plants and micro-organisms. Phytochemistry 16: 159–169

    CAS  Google Scholar 

  • Roberts LM, Lord JM (1979) Developmental changes in the activity of messenger RNA isolated from germinating castor bean endosperm. Plant Physiol 64: 630–634

    PubMed  CAS  Google Scholar 

  • Roland B, Pallotta D (1978) An immunological comparison of rye and calf histones. Can J Biochem 56: 1021–1027

    PubMed  CAS  Google Scholar 

  • Roth J, Binder M (1978) Colloidal gold, ferritin and peroxidase as markers for electron microscopic double labeling lectin techniques. J Histochem Cytochem 26: 163–169

    PubMed  CAS  Google Scholar 

  • Rude E (1971) Antigens and immunogenicity. FEBS Lett 17: 6–10

    PubMed  Google Scholar 

  • Ruoslathi E (ed) (1976) Immunoadsorbents in protein purification. Universitetsforlaget, Oslo

    Google Scholar 

  • Ryan CA (1973) Proteolytic enzymes and their inhibitors in plants. Annu Rev Plant Physiol 24: 173–196

    CAS  Google Scholar 

  • Ryan CA (1974) Assay and properties of the proteinase inhibitor inducing factor, a wound hormone. Plant Physiol 54: 328–332

    PubMed  CAS  Google Scholar 

  • Ryan CA (1978) Immunology of plant proteinase inhibitors. In: Catsimpoolas N (ed) Immunological aspects of foods. Avi Publishing Company Inc, Westport Connecticut, pp 182–198

    Google Scholar 

  • Ryan CA, Santarius K (1976) Immunological similarities of proteinase inhibitors from potatoes. Plant Physiol 58: 683–685

    PubMed  CAS  Google Scholar 

  • Ryan CA, Huisman OC, Van Denburgh RW (1968) Transitory aspects of a single protein in tissues ofSolanum tuberosum and its coincidence with the establishment of new growth. Plant Physiol 43: 589–596

    PubMed  CAS  Google Scholar 

  • Sabir MA, Sosulki FW, Finlayson AJ (1974) Chlorogenic acid. Protein interactions in sunflower. Agric Food Chem 22: 575–578

    Google Scholar 

  • Sano H, Spaeth E, Burton WG (1979) Messenger RNA of the large subunit of ribulose-1,5- biphosphate carboxylase fromChlamydomonas reinhardi. Eur J Biochem 93: 173–180

    PubMed  CAS  Google Scholar 

  • Sasaki M, Kato T, Iida S (1973) Antigenic determinant common to four kinds of thiol proteases of plant origin. J Biochem (Tokyo) 74: 635–637

    CAS  Google Scholar 

  • Schlesier B, Manteuffel R, Scholz G (1978) Studies on seed globulins from legumes. VI. Association of vicilin fromVivia faba L. Biochem Physiol Pflanz 172: 285–290

    CAS  Google Scholar 

  • Scholz G, Richter J, Manteuffel R (1974) Studies on seed globulins from legumes. I. Separation and purification of legumin and vicilin fromVicia faba L. by zone precipitation. Biochem Physiol Pflanz 166: 163–172

    CAS  Google Scholar 

  • Schuster K, Dornhauser SC (1967 a) Auftrennung und Spezifizierung der bei den technologischen Vorgangen der Bierbereitung auftretenden salzlöslichen Proteine von Gerste und Rohfrucht durch immunologische und physic-chemische Methoden. Brauwis-senschaft 20: 135–144

    CAS  Google Scholar 

  • Schuster K, Dornhauser S (1967 b) Auftrennung und Spezifizierung der bei den technologischen Vorgangen der Bierbereitung auftretenden salzlöslichen Proteine von Gerste und Rohfrucht durch immunologische und physico-chemische Methoden. Brauwissenschaft 20: 209–214

    Google Scholar 

  • Schuster K, Dornhauser S (1967 c) Auftrennung und Spezifizierung der bei den technologischen Vorgängen der Bierbereitung auftretenden salzlöslichen Proteine von Gerste und Rohfrucht durch immunologische und physico-chemische Methoden. Brauwis-senschaft 20: 234–247

    Google Scholar 

  • Sedgley M (1974) Assessment of serological techniques for S-allele identification inBrassica oleracea. Euphytica 23: 543–551

    Google Scholar 

  • Sela B-A, Lis H, Sharon N, Sachs L (1977) Isolectins from wax bean with differential agglutination of normal and transformed mammalian cells. Biochem Biophys Acta 310: 273–277

    Google Scholar 

  • Sela M (1969) Antigenicity: Some molecular aspects. Science 166: 1365–1374

    PubMed  CAS  Google Scholar 

  • Sharon N (1977) Lectins. Am Sci 236: 108–119

    CAS  Google Scholar 

  • Sharon L, Lis H (1972) Cell-agglutinating and sugar-specific proteins. Science 177: 949–959

    PubMed  CAS  Google Scholar 

  • Shepard DV, Moore KG (1978) Concanavalin A - mediated agglutination of plant plastids. Planta 138: 35–39

    CAS  Google Scholar 

  • Shun way LK, Yang VV, Ryan CA (1976) Evidence for the presence of proteinase inhibitor I in vacuolar protein bodies of plant cells. Planta 129: 161–165

    Google Scholar 

  • Singh J, Dieckert JW (1973) Isolation and partial characterization of arachin - P 6. Prep Biochem 3: 53–72

    PubMed  CAS  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of the cell membranes. Science 175: 720–731

    PubMed  CAS  Google Scholar 

  • Smith PM (1972) Serological and species relationships in annual bromes (Bromus L. sectBromus). Ann Bot 36: 1–30

    Google Scholar 

  • So LL, Goldstein IJ (1972) Protein–carbohydrate interaction. IV. Application of the quantitative precipitin method to polysaccharide-concanavalin A interaction. J Biol Chem 242: 1617–1622

    Google Scholar 

  • Sprey B (1976) Intrathylakoidal occurrence of ribulose 1,5-diphosphate carboxylase in spinach chloroplasts. Z Pflanzenphysiol 78: 85–89

    CAS  Google Scholar 

  • Sprey B, Lambert C (1977) Lamellae-bound inclusions in isolated spinach chloroplasts. II. Identification and composition. Z Pflanzenphysiol 83: 227–247

    Google Scholar 

  • Stegemann H (1977) Plant proteins evaluated by two-dimensional methods. In: Graesslin D, Radola BJ (eds) Electrofocusing and isotachophoresis. Walter de Gruyter amf; Co, Berlin New York, pp 385–394

    Google Scholar 

  • Stegemann H (1979) Indicator proteins in potato and maize for use in taxonomy and physiology. Gel-electrophoretic patterns. In: Miintz K (ed) Seed proteins of dicotyledonous plants. Proc Symp, Gatersleben 1977. Academie Verlag, Berlin, pp 217–224

    Google Scholar 

  • Stegemann H, Frankensen H, Macko V (1973) Potato proteins: genetic and physiological changes evaluted by one-and two-dimensional PAA-gel-techniques. Z Naturforsch 28c: 722–733

    CAS  Google Scholar 

  • Strobel GA, HessWM (1974) Evidence for the presence of the toxin-binding protein on the plasma membrane of sugarcane cells. Proc Natl Acad Sci USA 71: 1413–1417

    PubMed  CAS  Google Scholar 

  • Sugiyama T, Matsumoto C, Akazawa T (1970) Structure and function of chloroplast proteins. XI. Dissociation of spinach leaf ribulose-1,5-diphosphate carboxylase by urea. J Biochem (Tokyo) 68: 821–831

    CAS  Google Scholar 

  • Synge RLM (1975) Polyphenole in Pflanzen. Naturwiss Rundsch 28: 204–208

    CAS  Google Scholar 

  • Szabolcs M, Csorba S, Hauk M (1978) Eigenschaften und Antigenitat der aus Brot isoliertenGluteneiweiBe. Acta Paediatr Acad Sci Hung 19: 125–135

    PubMed  CAS  Google Scholar 

  • Takabe T, Akazawa T (1973) Catalytic role of subunit A in ribulose diphosphate carboxylase fromChromatium strain D. Arch Biochem Biophys 157: 303–308

    PubMed  CAS  Google Scholar 

  • Thanh VH, Shibasaki K (1977) /?–conglycinin from soybean proteins. Isolation and immunelogical and physic-chemical properties of the monomeric form. Biochim Biophys Acta 490: 370–384

    Google Scholar 

  • Thomson JA, Schroeder HE, Dudman WF (1978) Cotyledonary storage proteins inPisum sativum. I. Molecular heterogeneity. Aust J Plant Physiol 5: 263–279

    CAS  Google Scholar 

  • Thomson JA, Millerd A, Schroeder HE (1979) Genotype-dependent patterns of accumulation of seed storage proteins in Pisum. In: International atomic energy agency. Seed protein improvement in cereals and grain legumes, vol I. Vienna, pp 231–240

    Google Scholar 

  • Toms GL, Western A (1971) Phytohemagglutinins. In: Harborne JB, Boulter D, Turner BL (eds) Chemotaxonomy of the legumes. Academic Press, London New York, pp 367–462

    Google Scholar 

  • Toro-Goyco E, Rodriguez-Costas J (1976) Immunochemical studies on pinguinain, a sulfhydryl plant protease. Arch Biochem Biophys 175: 359–366

    PubMed  CAS  Google Scholar 

  • Tronier B, Ory RL (1970) Association of bound β-amylase with protein bodies in barley. J Inst Brew 47: 464–471

    CAS  Google Scholar 

  • Tronier B, Ory RL, Djurtoft RJ (1974) Immunochemical identification of neutral peptide hydrolases in dormant and germinating barley grains. Int J Peptide Protein Res 6: 13–19

    CAS  Google Scholar 

  • Trop M, Grossman S, Veg Z (1974) The antigenicity of lipoxygenase from various plant sources. Ann Bot 38: 783–794

    CAS  Google Scholar 

  • Tsuda M (1979) Purification and characterization of a lectin from rice bran. J Biochem 86: 1451–1461

    PubMed  CAS  Google Scholar 

  • Tucker WG (1969) Serotaxonomy of the Solanaceae: a preliminary survey. Ann Bot 33: 1–23

    Google Scholar 

  • Uhlenbruck G, Pardoe GI, Bird GWG (1969) On the specificity of lectins with a broad agglutination spectrum. 2. The nature of the T-antigen and the specific receptors forArachis hypogaea lectin. Z Immunitaetsforsch Allerg Klin Immunol 138: 423–133

    CAS  Google Scholar 

  • Uriel J (1963) Characterization of enzymes in specific immune-precipitates. Ann New York Acad Sci 103: 956–979

    CAS  Google Scholar 

  • Verma DPS, Bal AK (1976) Intracellular site of synthesis and localization of leghemoglobin in root nodules. Proc Natl Acad Sci USA 73: 3843–3847

    PubMed  CAS  Google Scholar 

  • Verma DPS, Ball S, Guerin C, Wanamaker L (1979) Leghemoglobin biosynthesis in soybean root nodules. Characterization of the nascent and released peptides and the relative rate of synthesis of the major leghemoglobins. Biochemistry 18: 476–483

    Google Scholar 

  • Wainwright JM, Ting JP (1976) Microbody malate dehydrogenase isoenzyme in cotyledons ofCucumis sativus L. during development. Plant Physiol 58: 447–452

    PubMed  CAS  Google Scholar 

  • Walk R-A, Hock B (1976) Mitochondrial malate dehydrogenase of watermelon cotyledons: Time course and mode of enzyme activity changes during germination. Planta 129: 27–32

    Google Scholar 

  • Walk R-A, Hock B (1977) Glyoxysomal malate dehydrogenase of watermelon cotyledons: De novo synthesis on cytoplasmic ribosomes. Planta 134: 277–285

    Google Scholar 

  • Walk R-A, Hock B (1978) Cell-free synthesis of glyoxysomal malate dehydrogenase. Biochem Biophys Res Commun 81: 636–643

    PubMed  CAS  Google Scholar 

  • Walker-Simmons M, Ryan CA (1977) Immunological identification of proteinase inhibitors I and II in isolated tomato leaf vacuoles. Plant Physiol 60: 61–63

    PubMed  CAS  Google Scholar 

  • Weber E, Manteuffel R, Jakubek MF, Neumann D (1981) Comparative studies on protein bodies and storage proteins ofPisum sativum L. andVica faba L. Biochem Physiol Pflanz 176: 342–356

    Google Scholar 

  • Weeke B, Lowenstein H (1975) Quantitative immunoelectrophoresis used in analysis of allergen extracts and diagnosis of allergy. Int Arch Allergy Appl Immunol 49: 74–78

    PubMed  CAS  Google Scholar 

  • Weir DM (ed) (1967) Handbook of experimental immunology. Blackwell, Oxford Wells G, Osborne TB (1911) The biological reactions of the vegetable proteins. I. Anaphylaxis. J Infect Dis 8: 66–124

    Google Scholar 

  • William CA, Chase MW (eds) (1967a)Methods of immunology, vol I. Preparation of antigens and antibodies. Academic Press, London New York

    Google Scholar 

  • William CA, Chase MW (eds) ( 1967 b) Methods of immunology, vol II. Physical and chemical methods. Academic Press, London New York

    Google Scholar 

  • William CA, Chase MW (eds) (1973) Methods of immunology, vol III. Reaction of antibodies with soluble antigens. Academic Press, London New York

    Google Scholar 

  • William CA, Chase MW (eds) (1976) Methods of immunology, vol IV. Agglutination, complement, neutralization and inhibition. Academic Press, London New York

    Google Scholar 

  • William CA, Chase MW (eds) (1977) Methods of immunology, vol V. Antigen-antibody reactions in vivo. Academic Press, London New York

    Google Scholar 

  • Williamson FA, Fowke LC, Constable FC, Gamborg OL (1976) Labelling of Concanavalin A sites on the plasma membrane of soybean protoplasts. Protoplasma 89: 305–316

    CAS  Google Scholar 

  • Woychik JH, Boundy JA, Dimler RJ (1961) Starch gel electrophoresis of wheat gluten proteins with concentrated urea. Arch Biochem Biophys 94: 477–482

    PubMed  CAS  Google Scholar 

  • Wright STC (1960) Occurrence of an organ specific antigen associated with the microsome fraction of plant cells and its possible significance in the process of cellular differentiation. Nature (London) 185: 82–85

    CAS  Google Scholar 

  • Youle RJ, Huang AHC (1978 a) Albumin storage proteins in the protein bodies of castor bean. Plant Physiol 61: 13–16

    PubMed  CAS  Google Scholar 

  • Youle RJ, Huang AHC (1978 a) Albumin storage proteins in the protein bodies of castor bean. Plant Physiol 61: 13–16

    PubMed  CAS  Google Scholar 

  • Youle RC, Huang AHC (1979) Albumin storage protein and allergens in cotton seeds. J Agric Food Chem 27: 500–503

    PubMed  CAS  Google Scholar 

  • Yoshida K (1978) Novel lectins in the endoplasmic reticulum of wheat germ and their possible role. Plant Cell Physiol 19: 1301–1305

    CAS  Google Scholar 

  • Zech L (1966) The effect of phytohemagglutinin on growth of some protozoa. Exp Cell Res 44: 312–320

    PubMed  CAS  Google Scholar 

  • Ziegenfus TT, Clarkson RB (1971) A comparison of the soluble seed proteins of certainAcer species. Can J Bot 49: 1951–1957

    Google Scholar 

  • Zschoche WC, Ting IP (1973) Purification and properties of microbody malate dehydrogenase fromSpinacia oleracea leaf tissue. Arch Biochem Biophys 159: 767–776

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manteuffel, R. (1982). Immunology. In: Boulter, D., Parthier, B. (eds) Nucleic Acids and Proteins in Plants I. Encyclopedia of Plant Physiology, vol 14 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68237-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68237-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68239-1

  • Online ISBN: 978-3-642-68237-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics