Skip to main content

Insulin Mediators and Their Control of Covalent Phosphorylation

  • Conference paper
Metabolic Interconversion of Enzymes 1980

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

  • 79 Accesses

Abstract

We have detailed two separate mechanisms for insulin to activate glycogen synthase. In mechanism I, insulin acts without glucose present via a mediator to convert the cyclic AMP-dependent protein kinase to a desensitized holoenzyme, effectively lowering the response of the cell machinery to existing concentrations of cyclic AMP. Mechanism II, originally discovered in rat adipocytes, is seen in the presence of glucose, or of a hexose whose transport is accelerated by insulin. Enhanced phosphorylation of the 6 position is also required, since the hexose-6-phosphate acts informationally to activate the phospho-protein phosphatase to convert glycogen synthase to its dephospho state. Today I should like to discuss recent findings of our laboratory which demonstrate the presence of mechanism II in muscle, namely, mouse diaphragm, pointing out the generality of this mechanism and discuss our recent studies on the identification of insulin mediators which control protein phosphorylation state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander MC, Kowaloff EM, Witters LA, Denniby DT, Avruch J (1979) Purification of a hepatic 123,000-dalton hormone-stimulated 32P-peptide and its identification as ATP-citrate lyase. J BiolChem 254: 8052–8056.

    CAS  Google Scholar 

  • Avruch J, Leone GR, Martin DB (1976) Effect of epinephrine and insulin on phosphopeptide metabolism in adipocytes. J Biol Chem 251: 1511–1515.

    PubMed  CAS  Google Scholar 

  • Beg ZH, Allman DW, Gibson DM (1973) Modulation of 3-hydroxy-3-methyl glutaryl coenzyme A reductase activity with cAMP and with protein fractions from rat liver cytosol. Biochem Biophys Res Commun 54: 1362–1369.

    Article  PubMed  CAS  Google Scholar 

  • Benjamin WB, Singer I (1975) Actions of insulin, epinephrine, and dibutyryl cyclic adenosine 3′-5′-monophosphate on fat cell protein phosphorylations. Biochemistry 14: 3301–3309.

    Article  PubMed  CAS  Google Scholar 

  • Bishop JS, Larner J (1967) Rapid activation-inactivation of liver uridine diphosphate glucose-glycogen transferase and phosphorylase by insulin and glucagon in vivo. J Biol Chem 242: 1355–1356.

    Google Scholar 

  • Brand IA, Soling HD (1976) Activation and inactivation of rat liver phosphofructokinase by phosphorylation-dephosphorylation. FEBS lett 57: 163–168.

    Article  Google Scholar 

  • Brautigan DL, Kerrick WGL, Fischer EH (1980) Insulin and glucose 6-phosphate stimulation of Ca2+ uptake by skinned muscle fibers. Proc Natl Acad Sci USA 77: 936–939.

    Article  PubMed  CAS  Google Scholar 

  • Carlson CA, Kim KH (1973) Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J Biol Chem 248: 378–380.

    PubMed  CAS  Google Scholar 

  • Carney DH, Cunningham DD (1978a) Cell surface action of thrombin is sufficient to indicate division of chick cells. Cell 14: 811–823.

    Article  PubMed  CAS  Google Scholar 

  • Carney DH, Cunningham DD (1978b) Role of specific cell surface receptors in thrombin stimulated cell division. Cell 15: 1341–1349.

    Article  PubMed  CAS  Google Scholar 

  • Chang LY, Huang LC (1980) Effects of insulin treatment on the activities of phosphoprotein phosphatase and its inhibitors. Acta Endocrinol 95: 427432.

    Google Scholar 

  • Cheng K, Galasko G, Huang L, Kellogg J, Larner J (1980) Studies on the insulin mediator II Separation of two antagonistic biologically active materials from fraction II. Diabetes 29: 659–661.

    Article  PubMed  CAS  Google Scholar 

  • Corbin JD, Reimann EM, Walsh DA, Krebs EG (1970) Activation of adipose tissue lipase by skeletal muscle cyclic adenosine 3′5′-monophosphate stimulated protein kinase. J Biol Chem 245: 4849–4851.

    PubMed  CAS  Google Scholar 

  • DeHaen C, Swanson E, Teller DC (1976) The evolutionary origin of proinsulin. J Mol Biol 106: 639–661.

    Article  CAS  Google Scholar 

  • Eboué-Bonis D, Chambout AM, Volfin P, Clauser H (1967) Selective action of N-ethylmaleimide on the stimulation by insulin of the metabolism of surviving diaphragms. Biol Soc Chim Biol 49: 415–431.

    Google Scholar 

  • Ernst V, Levin DH, London IM (1978) Evidence that glucose 6-phosphate regulates protein synthesis initiation in reticulocyte lysates. J Biol Chem 253: 7163–7172.

    PubMed  CAS  Google Scholar 

  • Foulkes JG, Jefferson LS, Cohen P (1980) The hormonal control of glycogen metabolism: dephosphorylation of protein phosphatase inhibitor I in vivo in response to insulin. FEBS Lett 112: 21–24.

    Article  PubMed  CAS  Google Scholar 

  • Friedman DL, Larner J (1963) Studies on UDPG-α-glucan transglucosylase III. Interconversion of two forms of muscle UDPG-α-glucan transglu cosylase by a phosphorylation-dephosphorylation reaction sequence. Biochemistry 2: 669–675.

    CAS  Google Scholar 

  • Guinovart J, Lawrence JC, Larner J (1978) Hormonal effects on fat cell adenosine 3′5′-monophosphate-dependent protein kinase. Biochim Biophys Acta 539: 181–194.

    Article  PubMed  CAS  Google Scholar 

  • Halestrap AP, Denton RM (1974) Hormonal regulation of adipose tissue acetyl-coenzyme A carboxylase by changes in polymeric state of the enzyme. Biochem J 142: 365–377.

    PubMed  CAS  Google Scholar 

  • Huang FL, Glinsmann WH (1976) Phosphorylase phosphatase inhibitors from rabbit skeletal muscle. Fed Proc 35: 1410.

    Google Scholar 

  • Huijing F, Nuttall FQ, Villar-Palasi C, Larner J (1969) A dissociation in the action of insulin on transport and transferase conversion. Biochim Biophys Acta 177: 204–212.

    Article  PubMed  CAS  Google Scholar 

  • Huttunen JK, Steinberg D, Mayer SE (1970) ATP-dependent and cyclic AMP-dependent activation of rat adipose tissue lipase by protein kinase from rabbit skeletal muscle. Proc Natl Acad Sci USA 67: 290–295.

    Article  PubMed  CAS  Google Scholar 

  • Ingebritsen TS, Lee HS, Parker RA, Gibson DM (1978) Reversible modulation of the activities of both liver microsomal HMG-CoA reductase and its activating enzyme. Evidence for regulation by phosphorylation-dephosphorylation. Biochem Biophys Res Commun 81: 1268–1277.

    CAS  Google Scholar 

  • Ingebritsen TS, Geelen MJH, Parker RA, Evenson KJ, Gibson DM (1979) Modulation of hydroxymethyl glutaryl-CoA reductase activitiy, reductase kinase and cholesterol synthesis in rat hepatocytes in response to insulin and glucagon. J Biol Chem 254: 9986–9989.

    PubMed  CAS  Google Scholar 

  • Jarett L, Seals JR (1979) Pyruvate dehydrogenase activation in adipocyte mitochondria by an insulin-generated mediator from muscle. Science 206: 1407–1408.

    Article  PubMed  CAS  Google Scholar 

  • Jungas RL (1970) Effect of insulin on fatty acid synthesis from pyruvate, lactate, or endogenous sources in adipose tissue. Evidence for the hormonal regulation of pyruvaie dehydrogenase. Endocrinology 86: 1368–1375.

    CAS  Google Scholar 

  • Khoo C, Steinberg D, Thompson B, Mayer SE (1973) Hormonal regulation of adipocyie membranes: The effects of epinephrine and insulin on the control of lipase, phosphorylase kinase, phosphorylase and glycogen synthase. J Biol Chem 248: 3823–3830.

    PubMed  CAS  Google Scholar 

  • Larner J (1972) Insulin and glycogen synthase. Diabetes 21 Suppl 2, 428–438.

    PubMed  CAS  Google Scholar 

  • Larner J, Takeda Y, Brewer HB, Huang LC, Hazen R, Brooker G, Murad F, Roach P (1976) In: Shaltiel S (ed) Studies on glycogen synthase and its control by hormones in metabolic interconversion of enzymes 1975. Springer, Berlin Heidelberg New York, pp 71–85.

    Google Scholar 

  • Larner J, Galasko G, Cheng K, DePaoli-Roach AA, Huang L, Daggy P, Kellogg J (1979a) Science 206: 1408–1410.

    Article  PubMed  CAS  Google Scholar 

  • Larner J, Lawrence JC, Roach PJ, DePaoli-Roach AA, Walkenbach RJ, Guinovart J, Hazen RJ (1979b) About insulin and glycogen, hormones and cell culture. Cold Spring Harbor Conf Cell Prolifer 6: 95–112.

    CAS  Google Scholar 

  • Lastick SM, McConkey EH (1978) In: Prescott DM, Fox CF (eds) Ribosomal protein phosphorylation and control of cell growth in cell reproduction. Academic Press London New York, pp 61–69.

    Google Scholar 

  • Lawrence JC, Larner J (1978) Activation of gly cogen synthase in rat adipocytes by insulin involves increased glucose transport and phosphorylation. J Biol Chem 253: 2104–2113.

    PubMed  CAS  Google Scholar 

  • Lawrence JC Jr, Larner J, Kahn CR, Roth J (1979) Auto antibodies to the insulin receptor activate glycogen synthase in rat adipocytes. Mol Cell Biochem 22: 153–157.

    Article  Google Scholar 

  • Levin DH, Ranu RS, Ernst V, Fefer MA, London IM (1975) Association of a cyclic AMP-dependent protein kinase with a purified translational inhibitor isolated from hemin-deficient rabbit reticulocyte lysates. Proc Natl Acad Sci USA 72: 4849–4853.

    Article  PubMed  CAS  Google Scholar 

  • Linn TC, Pettit FH, Reed LJ (1969) a-keto acid dehydrogenase complexes X regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc Natl Acad Sci USA 62: 234–241.

    Article  PubMed  CAS  Google Scholar 

  • Ljungstrom O, Hjelmquist G, Engstrom L (1974) Phosphorylation of purified rat liver pyruvate kinase by cyclic 3′,5′-AMP stimulated protein kinase. Biochem Biophys Acta 358: 289–298.

    Google Scholar 

  • Miller TB, Larner J (1972) Anti-insulin actions of a bovine pituitary diabetogenic peptide on glycogen synthesis. Proc Natl Acad Sci USA 69: 2774–2777.

    Article  PubMed  CAS  Google Scholar 

  • Miller TB, Larner J (1973) Mechanisms of control of hepatic glycogenesis by insulin. J Biol Chem 248: 3483–3488.

    PubMed  CAS  Google Scholar 

  • Ng FM, Larner J (1976) Actions of insulin-potentiating peptides on glycogen synthesis. Diabetes 25: 413–419.

    Article  PubMed  CAS  Google Scholar 

  • Northrup JE, Krezowski PA, Palumbo PJ, Kim JK, Hui YSF, Dousa TP (1979) Insulin inhibition of hormone-stimulated protein kinase systems in rat renal cortex. Am J Phys 236: E649–654.

    CAS  Google Scholar 

  • Oron Y, Larner J (1980) Insulin action in intact mouse diaphragm I Activation of glycogen synthase through stimulation of sugar transport and phosphorylation. Mol Cell Biochem 32: 153–160.

    PubMed  CAS  Google Scholar 

  • Oron Y, Galasko G, Larner J (1980) Insulin action in intact mouse diaphragm II Inhibition of endogenous protein phosphorylation. Mol Cell Biochem 254: 161–167.

    Google Scholar 

  • Posner JB, Stern P, Krebs EG (1965) Effects of electrical stimulation and epinephrine in muscle phosphorylase, phosphorylase b kinase and adenosine 3′,5′-phosphate. J Biol Chem 240: 982–985.

    PubMed  CAS  Google Scholar 

  • Ramakrishna S, Benjamin WB (1979) Fat cell protein phosphorylation identification of phosphoprotein — 2 as ATP citrate lyase. J Biol Chem 254: 9232–9236.

    PubMed  CAS  Google Scholar 

  • Rieser P, Rieser CH (1964) Anabolic responses of diaphragm muscle to insulin and to other pancreatic proteins. Proc Soc Exp Biol Med 116: 669–671.

    PubMed  CAS  Google Scholar 

  • Roach PJ, Rosell-Perez M, Larner J (1977) Muscle glycogen synthase in vivo state. Effects of insulin administration on the chemical and kinetic properties of the purified enzyme. FEBS Lett 80: 95–98.

    CAS  Google Scholar 

  • Rosell-Perez M, Larner J (1964) Studies on UDPG-α-glucan transglucosylase V. Two forms of the enzyme in dog skeletal muscle and their interconversion. Biochemistry 3: 81–88.

    CAS  Google Scholar 

  • Seals JR, Czech MP (1980) Evidence that insulin activates an intrinsic plasma membrane protease in generating a secondary chemical mediator. J Biol Chem 255: 6529–6531.

    PubMed  CAS  Google Scholar 

  • Shen LC, Villar-Palasi C, Larner J (1970) Hormonal alteration of protein kinase sensitivity to 3′,5′-cyclic AMP. Physiol Chem Phys 2: 536–544.

    CAS  Google Scholar 

  • Smith CH, Brown NE, Larner J (1971) Molecular characteristics of the totally dependent and independent forms of glycogen synthase of rabbit skeletal muscle. Biochim Biophys Acta 242: 81–88.

    PubMed  CAS  Google Scholar 

  • Smith CJ, Wejksnora PJ, Warner JR, Rubin CS, Rosen OM (1979) Insulin-stimulated protein phosphorylation in 3T3-L1 preadipocytes. Proc Natl Acad Sci USA 76: 2725–2729.

    Article  PubMed  CAS  Google Scholar 

  • Takeda Y, Brewer HB, Larner J (1975) Structural studies on rabbit muscle glycogen synthase. J Biol Chem 250: 8943–8950.

    PubMed  CAS  Google Scholar 

  • Taunton OD, Shifel FB, Greene HL, Herman RH (1972) Rapid reciprocal changes of rat hepatic glycolytic enzymes and fructose-1, 6-diphosphatase following glucagon and insulin injection in vivo. Biochem Biophys Res Commun 48: 1663–1670.

    Article  PubMed  CAS  Google Scholar 

  • Torres HN, Marechal LR, Bernard E, Belocopitow E (1968) Control of muscle glycogen phosphorylase activity by insulin. Biochim Biophys Acta 156: 206–209.

    Article  PubMed  CAS  Google Scholar 

  • Trezeciak WH, Boyd GS (1974) Activation of cholesteryl esterase in bovine adrenal cortex. Eur J Biochem 46: 201–207.

    Article  Google Scholar 

  • Villar-Palasi C, Larner J (1960) Insulin mediated effect on the activity of UDPG-glycogen transglucosylase activity of muscle. Biochim Biophys Acta 39: 171–173.

    Article  PubMed  CAS  Google Scholar 

  • Villar-Palasi C, Larner J (1961) Insulin treatment and increased UDPG-glycogen transglucosylase activity in muscle. Arch Biochem Biophys 94: 436–442.

    Article  PubMed  CAS  Google Scholar 

  • Villar-Palasi C, Wenger JI (1967) In vivo effect of insulin on muscle glycogen synthetase. Identification of the action pathway. Fed Proc 26: 563.

    Google Scholar 

  • Walaas O, Walaas E, Gronnerod O (1972) Effect of insulin and epinephrine on cyclic AMP-dependent protein kinase in rat diaphragm. Isr J Med Sci 8: 353–357.

    PubMed  CAS  Google Scholar 

  • Walaas O, Walaas E, Lystad E, Alertsen AR, Horn RS, Fossum S (1977) A stimulatory effect of insulin on phosphorylation of a peptide in sarcolemma-enriched membrane preparation from rat skeletal muscle. FEBS Lett 80: 417–422.

    Article  PubMed  CAS  Google Scholar 

  • Walkenbach RJ, Hazen R, Larner J (1978) Reversible inhibition of cyclic AMP-dependent protein kinase by insulin. Mol Cell Biochem 19: 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Walkenbach RJ, Hazen R, Larner J (1980) Hormonal regulation of glycogen synthase. Insulin decreases protein kinase sensitivity to cyclic AMP. Biochim Biophys Acta 629: 421430.

    Google Scholar 

  • Wosilait WD, Sutherland EW (1956) The relationship of epinephrine and glucagon to liver phosphorylase: Enzymatic inactivation of liver phosphorylase. J Biol Chem 218: 469–481.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Larner, J., Oron, Y., Cheng, K., Galasko, G., Cabelli, R., Huang, L. (1981). Insulin Mediators and Their Control of Covalent Phosphorylation. In: Holzer, H. (eds) Metabolic Interconversion of Enzymes 1980. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68211-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68211-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68213-1

  • Online ISBN: 978-3-642-68211-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics