Metabolic Interconversion of Yeast Fractose-1,6-Bisphosphatase

  • H. Holzer
  • P. Tortora
  • M. Birtel
  • A.-G. Lenz
Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

After the addition of glucose to acetate- or ethanol-grown yeast cells a small group of enzymes is rapidly inactivated. This phenomenon has been called “catabolite inactivation” (Holzer 1976). Among other enzymes participating in gluconeogenesis, fructose-1,6-bisphosphatase is inactivated during catabolite inactivation (Harris and Ferguson 1967; Gancedo 1971). As shown in Fig. 1, the simultaneous presence of phosphofructokinase and fructose-1,6-bisphosphatase would lead after addition of glucose to a “futile cycle” which continously splits ATP to ADP and inorganic phosphate. The rapid inactivation of fructose-1,6-bisphosphatase after addition of glucose therefore protects the cells from ATP depletion. Experiments with specific antibodies have shown that catabolite inactivation of cytoplasmic malate dehydrogenase (Neeff et al. 1978), aminopeptidase I (Frey and Röhm 1979), fructose-1,6-bisphosphatase (Funayama et al. 1980), and phosphoenolpyruvate carboxykinase (Müller et al. 1981), is the result of proteolytic degradation of the respective enzymes.

Keywords

Sugar Fluoride Carbonyl Glutamine Cyanide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frey J, Röhm K-H (1979) The glucose-induced inactivation of aminopeptidase I in Saccharomyces cerevisiae. FEBS Lett 100: 261–264.PubMedCrossRefGoogle Scholar
  2. Funayama S, Gancedo JM, Gancedo C (1980) Turnover of yeast fructose-1,6-bisphosphatase in different metabolic interconversion. Eur J Biochem 109: 61–66.PubMedCrossRefGoogle Scholar
  3. Gancedo C (1971) Inactivation of fructose-1,6-bisphosphatase by glucose in yeast. J Bacteriol 107: 401–405.PubMedGoogle Scholar
  4. Harris W, Ferguson JJ Jr (1967) Inactivation of yeast fructose diphosphatase in the course of catabolite repression. Fed Proc 26: 678.Google Scholar
  5. Holzer H (1976) Catabolite inactivation in yeast. Trends Biochem Sci (TIBS) 1: 178–181.Google Scholar
  6. Holzer H, Heinrich PC (1980) Control of proteolysis. Annu Rev Biochem 49: 63–91.PubMedCrossRefGoogle Scholar
  7. Lenz A-G (1980) Studien zum Mechanismus der Katabolit-Inaktivierung in Hefe. Doctoral thesis, University FreiburgGoogle Scholar
  8. Lenz A-G, Holzer H (1980) Rapid reversible inactivation of fructose-1,6-bisphosphatase in Saccharomyces cerevisiae by glucose. FEBS Lett 109: 271–274.PubMedCrossRefGoogle Scholar
  9. Mecke D, Wulff K, Liess K, Holzer H (1966a) Characterization of a glutamine synthetase inactivating enzyme from Escherichia coli. Biochem Biophys Res Commun 24: 452–458.PubMedCrossRefGoogle Scholar
  10. Mecke D, Wulff K, Holzer H (1966b) Metabolit-induzierte Inaktivierung von Glutaminsynthetase aus Escherichia coli im zellfreien System. Biochim Biophys Acta 128: 559–567.Google Scholar
  11. Müller M, Müller H, Holzer H (1981) Immunochemical studies on catabolite inactivation of phosphoenolpyruvate carboxykinase in Saccharomyces cerevisiae. J Biol Chem (in press)Google Scholar
  12. Neeff J, Hägele E, Nauhaus J, Heer U, Mecke D (1978) Evidence for catabolite degradation in the glucose-dependent inactivation of yeast cytoplasmic malate dehydrogenase. Eur J Biochem 87: 489–495.PubMedCrossRefGoogle Scholar
  13. Wibo M, Poole B (1974) Protein degradation in cultured cells. II. The uptake of chloroquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B1. J Cell Biol 63: 430–440.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1981

Authors and Affiliations

  • H. Holzer
    • 1
    • 2
  • P. Tortora
    • 1
  • M. Birtel
    • 1
  • A.-G. Lenz
    • 2
  1. 1.Biochemisches InstitutUniversität FreiburgFreiburgGermany
  2. 2.GSF-Abteilung für EnzymchemieNeuherberg/bei MünchenGermany

Personalised recommendations