Skip to main content

Modeling of Uptake and Clearance of Inhaled Vapors and Gases

  • Conference paper
Industrial and Environmental Xenobiotics

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

  • 69 Accesses

Abstract

With progressing technology, toxicologists and hygienists confront the problem of securing safe exposure to an increasing number of air pollutants. The adverse biological effect of pollutants, like the therapeutic effect of drugs, is related to blood concentration and/or time integral of concentration in the target organs. Passage of pollutants from the environment to the target organ has the same significance as migration of drugs from the site of administration to the target organ. Pharmacokinetics describing the transport of drugs in the body is a potent tool for designing dosage regimens of optimum therapeutic effect [1]. Methods similar to those used by pharmacokineticists can be employed to design exposures with minimal undesirable biological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sheiner LB, Tozer TN (1978) Ginical pharmacokinetics: The use of plasma concentrations of drugs. In: Melmon KL, Morrelli HF (eds) Clinical pharmacology, chap 3. Macmillan, New York

    Google Scholar 

  2. Eger EI (1963) A mathematical model of uptake and distribution. In: Papper EM, Kitz RJ (eds) Uptake and distribution of anesthetic agents. McGraw-Hill, New York, p 72

    Google Scholar 

  3. Mapleson WW (1963) Quantitative prediction of anesthetic concentrations. In: Papper EM, Kitz RJ (eds) Uptake and distribution of anesthetic agents. McGraw-Hill, New York, p 104

    Google Scholar 

  4. Fiserova-Bergerova V, Vlach J, Singhai K (1974) Simulation and prediction of uptake, distribution and exhalation of organic solvents. Br J Ind Med 31: 45–52

    PubMed  CAS  Google Scholar 

  5. Fiserova-Bergerova V, Vlach J, Cassady JC (1980) Predictable “individual differences” in uptake and excretion of gases and lipid soluble vapors. Simulation study. Br J Ind Med 37: 42–49

    PubMed  CAS  Google Scholar 

  6. Severinghaus JW (1963) Role of lung factors. In: Papper EM, Kitz RJ (eds) Uptake and distribution of anesthetic agents. McGraw-Hill, New York, p 59

    Google Scholar 

  7. Mapleson WW (1964) Inert gas-exchange theory using an electric analogue. J Appl Physiol 19: 1193–1199

    PubMed  CAS  Google Scholar 

  8. Mapleson WW (1963) An electric analogue for uptake and exchange of inert gases and other agents. J Appl Physiol 18: 197–204

    PubMed  CAS  Google Scholar 

  9. Fiserova-Bergerova V, Cettl L (1972) Electric analogue for the absorption, metabolism and excretion of benzene in man. Pracov Lek 24: 56–61

    CAS  Google Scholar 

  10. Fiserova-Bergerova V (1976) Mathematical modeling of inhalation exposure. J Combust Toxicol 3: 201–210

    CAS  Google Scholar 

  11. Adolph EF (1949) Quantitative relations in the physiological constitutions of mammals. Science 109: 579–585

    Article  PubMed  CAS  Google Scholar 

  12. Brody S (1945) Bioenergetics and growth. Reinhold Publishing Corp, New York

    Google Scholar 

  13. Dedrick RL (1973) Animal scale-up. J Pharmacokinet Biopharm 1: 435–461

    Article  PubMed  CAS  Google Scholar 

  14. Dedrick RL, Bischoff KB, Zaharko DS (1970) Interspecies correlation of plasma concentration history of methotrexate, part 1. Cancer Chemother Rep 54: 95–101

    PubMed  CAS  Google Scholar 

  15. Teisinger J, Soucek B (1952) Significance of metabolism of toxic gases for their absorption and elimination in man. Cas Lek Cesk 1372–1375

    Google Scholar 

  16. Fiserova-Bergerova V (1980) Determination of kinetic constants from pulmonary uptake. Proceedings of the 10th Conference on Environmental Toxicology. AFAMLR-TR-79-121 Aerospace Meical Division Wriht-Patterson Air Force Base, Ohio, pp 93–102

    Google Scholar 

  17. Andersen ME, French JE, Gargas ML, Jones RA, Jenkins LJ Jr (1979) Saturable metabolism and the acute toxicity of 1,1-dichlorethylene. Toxicol Appl Pharmacol 47: 385–393

    Article  PubMed  CAS  Google Scholar 

  18. Hitt BA, Mazze RI, Beppu WJ, Stevens WC, Eber EI Jr (1977) Enflurane metabolism in rats and man. J Pharmacol Exp Ther 203: 193–202

    PubMed  CAS  Google Scholar 

  19. Astrand I (1975) Uptake of solvents in the blood and tissues of man, A review. Scand J Work Environ Health 1: 199–218

    Article  PubMed  CAS  Google Scholar 

  20. Astrand I, Gamberale F (1978) Effects on humans of solvents in the inspiratory air: A method for estimation of uptake. Environ Res 15: 1–4

    Article  PubMed  CAS  Google Scholar 

  21. Fiserova-Bergerova V, Holaday DA (1979) Uptake and clearance of inhalation anesthetics in man. Drug Metab Rev 9: 43–60

    Article  PubMed  CAS  Google Scholar 

  22. Holaday DA, Fiserova-Bergerova V (1979) Fate of fluorinated metabolites of inhalation anesthetics in man. Drug Metab Rev 9: 61–78

    Article  PubMed  CAS  Google Scholar 

  23. Fiserova-Bergerova V (Unpublished data)

    Google Scholar 

  24. Fiserova-Bergerova V, Vlach J, Vlach M (in preparation) Uptake and distribution of trichloro- ethylene in respect to Michaelis-Menten Kinetics

    Google Scholar 

  25. Singhal K, Vlach J (1975) Computation of time domain response by numerical inversion of the Laplace Transform. J Franklin Inst 299: 109–126

    Article  Google Scholar 

  26. Singhal K, Vlach J, Nakhla M (1976) Absolutely stable, high order method for time domain solution of networks. Arch Elektron Ubertragungstech 30: 157–166

    Google Scholar 

  27. Teisinger J, Bergerova-Fiserova V, Kudrna J (1952) The metabolism of benzene in man. Pracov Lek 4: 175–188

    PubMed  CAS  Google Scholar 

  28. (1971) TLV’s for chemical substances and physical agents in the workroom environment. ACGIH

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fiserova-Bergerova, V. (1981). Modeling of Uptake and Clearance of Inhaled Vapors and Gases. In: Gut, I., Cikrt, M., Plaa, G.L. (eds) Industrial and Environmental Xenobiotics. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68195-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68195-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68197-4

  • Online ISBN: 978-3-642-68195-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics