Use of Radioactively Labeled Glycosides

  • H. Flasch
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 56 / 1)


We owe our present knowledge of the pharmacokinetics and biotransformations of cardiac glycosides primarily to the successful use of the isotope technique. As in the case of other drugs, radioisotope labeled cardiac glycosides offer valuable analytical advantages in the study of absorption, distribution, metabolic breakdown, and elimination. They can be used to measure glycoside concentrations in all forms of biological material. The technique is easy, inexpensive, highly sensitive, and extremely precise. As impurities and accompanying substances do not interfere with the radioactivity measurements, there is no need for preliminary purification or concentration of the kind required in most physicochemical methods.


Radiochemical Purity Cardiac Glycoside Specific Radioactivity Lactone Ring Radioactivity Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bayly, R.J., Evans, E.A.: Storage and stability of compounds labeled with radioisotopes. Part II. J. Comp. 3, 349–374 (1967)Google Scholar
  2. Bayly, R.J., Evans, E.A.: Stability and storage of compounds labeled with radioisotopes. J. Comp. 2, 1–34 (1966)Google Scholar
  3. Boutagy, J., Thomas, R.: Cardenolide Analogues III. Synthesis of C l7α-and C 17β-(α,β-unsaturated), esters, ketones, nitriles and related derivatives from digixogenin. Aust. J. Pharm. Sci. NS. 2, 9–20 (1973)Google Scholar
  4. Bretschneider, H.J., Doering, P., Eger, W., Haberland, G., Kochsiek, K., Mercher, H., Scheler, F., Schulze, G.: Arterielle Konzentration, arterio-venöse Differenz im Coronarblut and Organverteilung von 14C-markiertem Lanatosid C nach rascher intravenöser Injektion. Naunyn-Schmiedebergs Arch. Exp. Path. Pharmak. 244, 117–144 (1962)CrossRefGoogle Scholar
  5. Carvalhas, M.L., Figueira, M.A.: Comparative study of thin-layer chromatographic techniques for separation of digoxin, digitoxin and their metabolites. J. Chromatogr. 86, 254–260 (1973)PubMedCrossRefGoogle Scholar
  6. Catch, J.R.: Purity and analysis of labelled compounds. Review 8. The Radiochemical Centre Amersham, England 1968Google Scholar
  7. Di Carlo, F.J.: Goodbye Wilzbach. Drug Metab. Rev. 9, 1 (1979)Google Scholar
  8. Dobbs, H.E.: Oxygen flask method for the assay of tritium, carbon-14 and sulfur-35 labeled compounds. Anal. Chem. 35, 783–786 (1963)CrossRefGoogle Scholar
  9. Evans, E.A.: Tritium and its compounds, pp 306–379. London: Butterworths 1966Google Scholar
  10. Evans, E.A.: Self-decomposition of radiochemicals. Review 16. The Radiochemical Centre Amersham, England 1976.Google Scholar
  11. Figge, K., Piater, H., Ossenbrüggen, H.: Radio-Schichtchromatographie schwacher /I-Strahler. GIT-Fachz. Lab. 14, 900–910 (Teil I ), 1013–1026 (Teil II) (1970)Google Scholar
  12. Flasch, H., Heinz, N.: Konzentration von Herzglykosiden im Myocard und im Gehirn. Arzneim. Forsch. 26, 1213–1216 (1976)Google Scholar
  13. Flaskamp, E., Budzikiewicz, H.: Darstellung von spezifisch D- und ‘80-markierten Cardenoliden. Z. Naturforsch. 32b, 187–192 (1977)Google Scholar
  14. Gault, M.H., Sugden, D., Maloney, C., Ahmed, M., Tweeddale, M.: Biotransformation and elimination of digoxin with normal and minimal renal function. Clin. Pharmacol. Ther. 25, 499–513 (1979)PubMedGoogle Scholar
  15. Geiling, E.M.K., Kelsey, F.E., McIntosh, B.J., Ganz, A.: Biosynthesis of radioactive drugs using carbon-14. Science 108, 558–559 (1948)PubMedCrossRefGoogle Scholar
  16. Geiling, E.M.K.: Biosynthesis of radioactive medicinally important drugs with special reference to digitoxin. Trans. Assoc. Am. Physicians 63, 191–195 (1950)PubMedGoogle Scholar
  17. Geller, L.E., Silberman, N.: The effect of chemical impurities on the stability of labelled steroids. Steroids 9, 157–161 (1967)PubMedCrossRefGoogle Scholar
  18. Geller, L.E., Silberman, N.: Some factors involved in the decomposition of labelled steroids on storage. J. Comp. 5, 66–71 (1969)Google Scholar
  19. Gleit, C.E.: Electronic apparatus for ashing biologic specimens. Am. J. Med. Electronics 2, 112–114 (1963)Google Scholar
  20. Haberland, G., Maerten, G.: Spezifischer Deuterium-und Tritium-Austausch in Cardenoliden und Cardenolidglykosiden. Naturwissenschaften 56, 516 (1969)PubMedCrossRefGoogle Scholar
  21. Haberland, G., Maerten, G.: Verfahren zur Herstellung von durch Deuterium oder Tritium substituierten Cardenoliden und Cardenolidglykosiden. Deutsches Patent (FRG) Offenlegungsschrift 1.959. 064 (1971)Google Scholar
  22. Hine, G.J., Brownell, G.L.: Radiation Dosimetry. New York: Academic Press 1956Google Scholar
  23. Hodenberg, A.V., Kleimisch, W., Vollmer, K.-O.: Metabolismus und Pharmakokinetik von Piprozolin bei Ratte, Hund und Mensch. Arzneim. Forsch. 27, 508–511 (1977)Google Scholar
  24. ICRP Publication 2: Report of Committee II on permissible dose for internal radiation. Publication of the International Commission on Radiological Protection. Oxford: Pergamon Press 1959Google Scholar
  25. ICRP Publication 10 and 10 a (Deutsche Ausgabe des Bundesgesundheitsamtes Berlin): Ermittlung der Körperdosis bei beruflich strahlenexponierten Personen nach Inkorporation radioaktiver Stoffe. Stuttgart: G. Fischer 1978Google Scholar
  26. Kaiser, F.: Chromatographische Analyse der herzwirksamen Glykoside von Digitalis-Arten. Arch. Pharm. 299, 263–274 (1966)CrossRefGoogle Scholar
  27. Kartwig, T., Kobosil, P.: Zur Trennung der Digitalis-Cardenolide mit Hilfe der Hochleistungs-Dünnschichtchromatographie. J. Chromatogr. 138, 238–242 (1977)CrossRefGoogle Scholar
  28. Kuhlmann, J., Abshagen, U., Rietbrock, N.: Pharmacokinetics and metabolism of digoxigenin-mono-digitoxoside in man. Eur. J. Clin. Pharmacol. 7, 87–94 (1974)PubMedCrossRefGoogle Scholar
  29. Kuhlmann, J., Rietbrock, N., Schnieders, B.: Tissue distribution and elimination of digoxin and methyldigoxin after single and multiple doses in dogs. J. Cardiovasc. Pharmacol. 1, 219–234 (1979)PubMedCrossRefGoogle Scholar
  30. Mahin, D.T., Lofberg, R.T.: A simplified method of sample preparation for determination of tritium, carbon-14, or sulfur-35 in blood or tissue by liquid scintillation counting. Anal. Biochem. 16, 500–509 (1966)CrossRefGoogle Scholar
  31. Marzo, A., Sardini, D., Merlo, L., Marchetti, G.: Quantitative determination of tritium-labelled ouabain in organs and biological fluids by the liquid scintillation technique. Biochim. Biol. Sper. 8, 263–271 (1969)Google Scholar
  32. Miller, J.P.: Health hazards of radioactive pharmaceuticals. In: Radionuclides in pharmacology. Cohen, Y. (ed.), Vol. II, pp. 883–908. Oxford: Pergamon Press 1971Google Scholar
  33. Nover, L., Jüttner, G., Noack, S., Baumgarten, G., Luckner, M.: Über die Beziehung zwischen chemischer Struktur und chromaotgrafischem Verhalten bei Herzglykosiden. V. Mitteilung. Dünnschichtchromatographische Untersuchungen an Herzglykosiden und ihren Geninen. J. Chromatogr. 39, 419–449 (1969)PubMedCrossRefGoogle Scholar
  34. Okita, G.T., Kelsey, F.E., Walaszek, E.J., Geiling, E.M.K.: Biosynthesis and isolation of carbon-14 labelled digitoxin. J. Pharmacol. Exp. Ther. 110, 244–250 (1954)PubMedGoogle Scholar
  35. Peters, U., Kalman, S.M.: Dihydrierte Metaboliten des Digoxins: Klinische Bedeutung und Nachweisverfahren. Z. Kardiol. 67, 342–345 (1978)PubMedGoogle Scholar
  36. Prydz, S., Melö, T.B., Eriksen, E.L., Koren, J.F.: Tritium detection by β-radioluminescence in standard media for thinlayer chromatography. J. Chromatogr. 47, 157–175 (1970)CrossRefGoogle Scholar
  37. Rabitzsch, G.: Separation of the cardiac glycosides, digitoxin and digoxin from their 20.22dihydro derivatives by multiple thin-layer chromatography on cellulose films. J. Chromatogr. 35,122–125 (1968 a)PubMedCrossRefGoogle Scholar
  38. Rabitzsch, G.: Untersuchungen zur quantitativen Radiodünnschicht-Chromatographie tritiummarkierter Verbindungen. J. Chromatogr. 37,476–486 (1968 b)CrossRefGoogle Scholar
  39. Rabitzsch, G.: Spezifische Tritierung von Herzglykosiden unter Wilzbach-Bedingungen. Naturwissenschaften 56, 328 (1969)PubMedCrossRefGoogle Scholar
  40. Randerath, K.: An evaluation of film detection methods for weak ß-emitters, particularly tritium. Anal. Biochem. 34, 188–205 (1970)PubMedCrossRefGoogle Scholar
  41. Rietbrock, N., Abshagen, U., Bergmann, K.v., Rennkamp, H.: Disposition of ß-methyldigoxin in man. Eur. J. Clin. Pharmacol. 9, 105–114 (1975)PubMedCrossRefGoogle Scholar
  42. Rochlin, P.: Self-decomposition of carbon-14 labelled organic compounds. Chem. Rev. 65, 685–696 (1965)CrossRefGoogle Scholar
  43. Roesch, A., Koch, K., Schaumann, W.: ß-Methyldigoxin V. Protein binding, tissue distribution and extra-cardiac effects in rats and mice. Naunyn Schmiedebergs Arch. Pharmacol. 279, 211–226 (1973)Google Scholar
  44. Roy, A.B.: The enzymic synthesis of steroid sulphates. Biochem. J. 63, 294–300 (1956)PubMedGoogle Scholar
  45. Ruben, S., Kamen, M.D.: Radioactive carbon of long half-life. Phys. Rev. 57, 549 (1940)CrossRefGoogle Scholar
  46. Schenk, G., Albrecht, H.P., Lietz, H.: Radioaktive Markierung von Meproscillaridin in der C-19-Methylgruppe mit Tritium. Arzneim. Forsch. 28, 518–529 (1978)Google Scholar
  47. Schmoldt, A., Benthe, H.F., Haberland, G.: Impaired biliary excretion of digitoxin and its metabolites after treatment with polychlorinated biphenyls. Toxicol. Appl. Pharmacol. 47, 483–491 (1979)PubMedCrossRefGoogle Scholar
  48. Segel, K.H.: Die Markierung von Herzglykosiden mit Tritium. Acta Biol. Med. Ger. Suppl. 1, 202–207 (1961)Google Scholar
  49. Sheppard, G.: The radiochromatography of labelled compounds. Review 14. The Radiochemical Centre Amersham, England 1972Google Scholar
  50. Storstein, L.: Studies on digitalis IV. A method for thin-layer chromatographic separation and determination of digitoxin and cardioactive metabolites in human blood and urine. J. Chromatogr. 117, 87–96 (1976)PubMedCrossRefGoogle Scholar
  51. Thomas, R., Boutagy, G., Gelbart, A.: Synthesis and biological activity of semisynthetic digitalis analogs. J. Pharm. Sci. 63, 1649–1683 (1974)PubMedCrossRefGoogle Scholar
  52. Vöhringer, H.F., Rietbrock, N.: Metabolism and excretion of digitoxin in man. Clin. Pharmacol. Ther. 16, 796–806 (1974)PubMedGoogle Scholar
  53. Wang, C.C., Robbins, L.L.: Biological and medical effects of radiation. In: Radiation Dosimetry. Hine, G.J., Brownell, G.L. (eds.), pp. 125–152. New York: Academic Press 1956Google Scholar
  54. Wartburg, A.v., Kalberer, F., Rutschmann, J.: Tritium-labelled cardiac glycosides: Di-goxin-[l2a-3H]. Biochem. Pharmacol. 14, 1883–1889 (1965)PubMedCrossRefGoogle Scholar
  55. Wegner, L.A., Winkelmann, H.: Die Verbrennung 14C- oder 3H-haltiger Proben als Vorstufe zur LS-Messung. Atompraxis 16, 1–7 (1970)Google Scholar
  56. Werbin, H., Chaikoff, I.L., Imada, M.R.: Rapid sensitive method for determining 3H-water in body fluids by liquid scintillation spectrometry. Proc. Soc. Exp. Biol. Med. 102, 8–12 (1959)PubMedGoogle Scholar
  57. Wilson, A.T., Spedding, D.J.: Detection of tritium on paper and thin-layer chromatograms. J. Chromatogr. 18, 76–80 (1965)PubMedCrossRefGoogle Scholar
  58. Wilzbach, K.E.: Tritium-labeling by exposure of organic compounds to tritium gas. J. Am. Chem. Soc. 79, 1013 (1957).CrossRefGoogle Scholar
  59. Zelnik, R., Ziti, L.M., Guimaraes, C.V.: A chromatographic study of the bufadienolides isolated from the venom of the parotid-glands of Bufo paracnemis Lutz. J. Chromatogr. 15, 9–14 (1964)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • H. Flasch

There are no affiliations available

Personalised recommendations