Skip to main content

Influence of Cardiac Glycosides on their Receptor

  • Chapter

Part of the Handbook of Experimental Pharmacology book series (HEP,volume 56 / 1)

Abstract

Although the pharmacologic effects of cardiac glycosides are well known today, their mechanism of action is still subject to speculation. It is, however, generally accepted that their effects are directly on the cardiac cell (for reviews see Lee and Klaus, 1971; Lüllmann and Peters, 1979). A great variety of cellular and subcellular systems has been studied as putative primary points of interaction such as: polymerization of cardiac actin (Horvath et al., 1949), myosin (Olson et al., 1961), myosin-ATPase (Jacobsen, 1968), contractile properties of actomyosin (Waser and Volkart, 1954), sarcoplasmic reticulum (Dutta et al., 1968), and several others (Lee and Klaus, 1971).

Keywords

  • ATPase Activity
  • Cardiac Glycoside
  • Scatchard Plot
  • Adenosine Triphosphatase
  • Sodium Pump

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-68163-9_15
  • Chapter length: 44 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-68163-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akera, T., Larsen, F.S., Brody, T.M.: The effect of ouabain on sodium-and potassium-activated adenosine triphosphatase from the hearts of several mammalian species. J. Pharmacol. Exp. Ther. 170, 17–26 (1969)

    PubMed  CAS  Google Scholar 

  • Akera, T.: Quantitative aspects of the interaction between ouabain and (Na ++K+)-activated ATPase in vitro. Biochim. Biophys. Acta (Amst.) 249, 53–62 (1971)

    CAS  CrossRef  Google Scholar 

  • Akera, T., Brody, T.M.: Membrane adenosine triphosphatase: the effect of potassium on the formation and dissociation of the ouabain-enzyme complex. J. Pharmacol. Exp. Ther. 176, 545–557 (1971)

    PubMed  CAS  Google Scholar 

  • Akera, T., Baskin, S.I., Tobin, T., Brody, T.M.: Ouabain: temporal relationship between the inotropic effect and the in vitro binding to, and dissociation from, (Na + + K +)-activated ATPase. Naunyn-Schmiedeberg’s Arch. Pharmacol. 277, 151–162 (1973)

    CAS  Google Scholar 

  • Akera, T., Bennett, R.T., Olgaard, M.K., Brody, T.M.: Cardiac Na+, K+-adenosine triphosphatase inhibition by ouabain and myocardial sodium: a computer simulation. J. Pharmacol. Exp. Ther. 199, 287–297 (1976)

    PubMed  CAS  Google Scholar 

  • Akera, T.: Membrane adenosinetriphosphatase: a digitalis receptor? Science 198, 569–574 (1977)

    PubMed  CAS  CrossRef  Google Scholar 

  • Akera, T., Brody, T.M.: The role of Na+, K+-ATPase in the inotropic action of digitalis. Pharmacol. Rev. 29, 187–220 (1978)

    Google Scholar 

  • Akera, T., Temma, K., Wiest, S.A., Brody, T.M.: Reduction of the equilibrium binding of cardiac glycosides and related compounds to Na+, K+-ATPase as a possible mechanism for the potassium-induced reversal of their toxicity. Naunyn-Schmiedebergs Arch. Pharmacol. 304, 157–165 (1978)

    CAS  Google Scholar 

  • Albers, R.W., Koval, G.J., Siegel, G.J.: Studies on the interaction of ouabain and other cardio-active steroids with sodium-potassium-activated adenosine triphosphatase. Mol. Pharmacol. 4, 324–336 (1968)

    CAS  Google Scholar 

  • Alexander, D.R.: Isolation of a digitoxin-bound protein from a brain membrane prepara-tion containing Na+, K +-activated ATPase. FEBS Letters 45, 150–154 (1974)

    PubMed  CAS  CrossRef  Google Scholar 

  • Allen, J.C., Schwartz, A.: A possible biochemical explanation for the insensitivity of the rat to cardiac glycosides. J. Pharmacol. Exp. Ther. 168, 42–46 (1969)

    PubMed  CAS  Google Scholar 

  • Allen, J.C., Schwartz, A.: Effects of potassium, temperature, and time on ouabain interaction with the cardiac Na, K+-ATPase: further evidence supporting an allosteric site. J. Mol. Cell. Cardiol. 1, 39–45 (1970)

    PubMed  CAS  CrossRef  Google Scholar 

  • Allen, J.C., Besch, H.R. Jr., Glick, G., Schwartz, A.: The binding of tritiated ouabain to sodium-and potassium-activated adenosine triphosphatase and cardiac relaxing system of perfused dog heart. Mol. Pharmacol. 6, 441–443 (1970)

    CAS  Google Scholar 

  • Allen, J.C., Martinez-Maldonado, M., Eknoyan, G., Suki, W.N., Schwartz, A.: Relation between digitalis binding in vivo and inhibition of sodium, potassium-adenosine triphosphatase in canine kidney. Biochem. Pharmacol. 20, 73–80 (1971)

    CAS  Google Scholar 

  • Allen, J.C., Harris, R.A., Schwartz, A.: The nature of the transport ATPase-digitalis complex. I. Formation and reversibility in the presence and absence of a phosphorylated enzyme. Biochem. Biophys. Res. Commun. 42, 366–370 (1971)

    CAS  Google Scholar 

  • Allen, J.C., Entman, M.L., Schwartz, A.: The nature of the transport adenosine triphosphatase-digitalis complex. VIII. The relationship between in vivo-formed (3HouabainNa+, K+-adenosine triphosphatase) complex and ouabain-induced positive inotropism. J. Pharmacol. Exp. Ther. 192, 105–112 (1975)

    PubMed  CAS  Google Scholar 

  • Anderson, G.I., Bailey, J.C., Reiser, J., Freeman, A.: Electrophysiological observations on the digitalis-potassium interaction in canine purkinje fibers. Circ. Res. 39, 717–723 (1976)

    CAS  Google Scholar 

  • Askari, A. editor: Properties and functions of (Na++K+)-activated adenosinetriphosphatase. Ann. N.Y. Acad. Sci. 242, 1–741 (1974)

    Google Scholar 

  • Baker, P.F., Willis, J.S.: Binding of the cardiac glycoside ouabain to intact cells. J. Physiol. (Lond.) 224, 441–462 (1972)

    CAS  Google Scholar 

  • Barnett, R.E.: Effect of monovalent cations on the ouabain inhibition of the sodium and potassium ion activated adenosine triphosphatase. Biochemistry 9, 4644–4648 (1970)

    PubMed  CAS  CrossRef  Google Scholar 

  • Bartels, H.-J., Hesch, R.-D.: Homotrope kooperative Effekte und aufsteigende B/F-Kurven bei Hormon-Antikörperreaktionen. Z. Klin. Chem. Klin. Biochem. 11, 311–318 (1973)

    PubMed  CAS  Google Scholar 

  • Beard, N.A., Rouse, W., Somerville, A.R.: Cardiotonic steroids: correlation of sodium-potassium adenosine triphosphate inhibition and ion transport in vitro with inotropic activity and toxicity in dogs. Br. J. Pharmacol. 54, 65–74 (1975)

    PubMed  CAS  Google Scholar 

  • Beller, G.A., Smith, Th.W., Hood, W.B.: Effects of ischemia and coronary reperfusion on myocardial digoxin uptake. Am. J. Cardiol. 36, 902–907 (1975)

    CrossRef  Google Scholar 

  • Beller, G.A., Conroy, J., Smith, Th.W.: Ischemia-induced alterations in myocardial (Na ++K+)-ATPase and cardiac glycoside binding. J. Clin. Invest. 57, 341–350 (1976)

    PubMed  CAS  CrossRef  Google Scholar 

  • Besch, H.R., Allen, J.C., Glick, G., Schwartz, A.: Correlation between the inotropic action of ouabain and its effects on subcellular enzyme systems from canine myocardium. J. Pharmacol. Exp. Ther. 171, 1–12 (1970)

    PubMed  CAS  Google Scholar 

  • Blecher, M.: Methods in receptor research. I and II, pp. 1–763. New York: Marcel Dekker 1976

    Google Scholar 

  • Bluschke, V., Bonn, R., Greeff, K.: Increase in the (Na+ + K +)-ATPase activity in heart muscle after chronic treatment with digitoxin or potassium deficient diet. Eur. J. Pharmacol. 37, 189–191 (1976)

    PubMed  CAS  CrossRef  Google Scholar 

  • Boeynaems, J.M., Dumont, J.E.: Quantitative analysis of the binding of ligands to their receptors. J. Cyclic Nucleotide Res. 1, 123–142 (1975)

    CAS  Google Scholar 

  • Boeynaems, J.M., Dumont, J.E.: The two-step model of ligand-receptor interaction. Mol. Cell. Endocrinol. 7, 33–47 (1977)

    CAS  Google Scholar 

  • Bonn, R., Greeff, K.: The effect of chronic administration of digitoxin on the activity of the myocardial (Na + K)-ATPase in guinea-pigs. Arch. Int. Pharmacodyn. Ther. 233, 53–64 (1978)

    PubMed  CAS  Google Scholar 

  • Borsch-Galetke, E., Dransfeld, H., Greeff, K.: Specific activity and sensitivity to strophanthin of the Na++K+-activated ATPase in rats and guinea-pigs with hypoadrenalism. Naunyn-Schmiedebergs Arch. Pharmacol. 274, 74–80 (1972)

    CAS  Google Scholar 

  • Bossaller, C., Schmoldt, A.: Dehydro-digitoxosides of digitoxigenin and digoxigenin: binding to beef heart (Na + + K+)-ATPase in relation to unchanged digitoxosides. NaunynSchmiedebergs Arch. Pharmacol. 306, 11–15(1979)

    Google Scholar 

  • Bower, J.O., Mengle, H.A.K.: The additive effect of calcium and digitalis. Am. Med. Assoc. 106, 1151–1153 (1936)

    Google Scholar 

  • Brody, T.M.: Discussion paper: ouabain-induced inhibition of cardiac (Na+ +K+)-ATPase and the positive inotropic response. Ann. N.Y., Acad. Sci. 242, 684–687 (1974)

    CAS  CrossRef  Google Scholar 

  • Brody, T.M., Akera, T.: Relations among Na+, K+-ATPase activity, sodium pump activity, transmembrane sodium movement, and cardiac contractility. Fed. Proc. 36, 2219–2224 (1977)

    CAS  Google Scholar 

  • Burck, H.C., Haasis, R., Larbig, D.: Beeinflussung der Erythrocyten-Elektrolyte durch ßMethyl-Digoxin bei Gesunden. Klin. Wochenschr. 53, 125–128 (1975)

    CAS  CrossRef  Google Scholar 

  • Caldwell, P.C., Keynes, R.D.: The effect of ouabain on the efflux of sodium from a squid giant axon. J. Physiol. (Lond.) 148, 8P–9P (1959)

    Google Scholar 

  • Cantley, L.C. Jr., Cantley, L.G., Josephson, L.: A characterization of vanadate interactions with the (Na, K)-ATPase. J. Biol. Chem. 253, 7361–7368 (1978)

    PubMed  CAS  Google Scholar 

  • Chamness, G.C., McGuire, W.L.: Scatchard plots: common errors in correction and interpretation. Steroids 26, 538–542 (1975)

    PubMed  CAS  CrossRef  Google Scholar 

  • Chan, P.C., Sanslone, W.R.: The influence of a low-potassium diet on rat-erythrocyten- membrane adenosine triphosphatase. Arch. Biochem. Biophys. 134, 48–52 (1969)

    CAS  Google Scholar 

  • Chang, K.-L., Jacobs, S., Cuatrecasas, P.: Quantitative aspects of hormone-receptor interactions of high affinity. Effect of receptor concentration and measurement of dissociation constants of labeled and unlabeled hormones. Biochim. Biophys. Acta (Amst.) 406294–303 (1975)

    CAS  CrossRef  Google Scholar 

  • Chang, R.S.L., Snyder, S.H.: Benzodiazepine receptors: labeling in intact animals with 3Hflunitrazepam. Eur. J. Pharmacol. 48, 213–218 (1978)

    PubMed  CAS  CrossRef  Google Scholar 

  • Charnock, J.S., Cook, D.A., Almeida, A.F., To, R.: Activation energy and phospholipid requirements of membrane-bound adenosine triphosphatases. Arch. Biochem. Biophys. 159, 393–399 (1973)

    CAS  Google Scholar 

  • Chipperfield, A.R., Whittam, R.: Ouabain binding to the sodium pump. Nature 242, 62–63 (1973)

    PubMed  CAS  CrossRef  Google Scholar 

  • Choi, Y.R., Akera, T.: Kinetics studies on the interaction between ouabain and (Na +, K+)-ATPase. Biochim Biophys. Acta (Amst.) 481, 648–659 (1977)

    CAS  Google Scholar 

  • Chopra, D., Janson, P., Sawin, C.T.: Insensitivity to digoxin associated with hypocalcemia. New Engl. J. Med. 296, 917–918 (1977)

    CAS  Google Scholar 

  • Clark, A.F., Swanson, P.D., Stahl, W.L.: Increase in dissociation rate constants of cardiotonic steroid-brain (Na ++K+)-ATPase complexes by reduction of the unsaturated lactone. J. Biol. Chem. 250, 9355–9359 (1975)

    PubMed  CAS  Google Scholar 

  • Clausen, T., Hansen, O.: Ouabain binding and Na +-K + transport in rat muscle cells and adipocytes. Biochim. Biophys. Acta (Amst.) 345, 387–404 (1974)

    CAS  CrossRef  Google Scholar 

  • Clausen, T., Hansen, O.: Active Na-K transport and the rate of ouabain binding. The effect of insulin and other stimuli on skeletal muscle and adipocytes. J. Physiol. (Lond.) 270, 415–430 (1977)

    CAS  Google Scholar 

  • Cohen, I., Daut, J., Noble, D.: The influence of extracellular potassium ions on the action of ouabain on membrane currents in sheep purkinje fibers. J. Physiol. (Lond.) 251, 42P–43P (1976)

    Google Scholar 

  • Coltart, D.J., Güllner, H.G., Billingham, A., Goldman, R.H., Stinson, E.B., Kalman, S.M., Harrison, D.C.: Physiological distribution of digoxin in human heart. Br. Med. J. 28, 733–736 (1974)

    CrossRef  Google Scholar 

  • Cuatrecasas, P.: Insulin receptor of liver and fat cell membranes. Fed. Proc. 32, 1836–1846 (1973)

    Google Scholar 

  • Cuatrecasas, P., Hollenberg, M.D.: Binding of insulin and other hormones to non-receptor materials: saturability, specificity, and apparent “negative cooperativity.” Biochem. Biophys. Res. Commun. 62, 31–40 (1975)

    CAS  Google Scholar 

  • Curfman, G.D., Crowley, T.J., Smith, Th.W.: Thyroid-induced alterations in myocardial sodium-and potassium-activated adenosine triphosphatase, monovalent cation active transport, and cardiac glycoside binding. J. Clin. Invest. 59, 586–590 (1977)

    PubMed  CAS  CrossRef  Google Scholar 

  • Dahl, J.L., Hokin, L.E.: The sodium-potassium adenosinetriphosphatase. Annu. Rev. Biochem. 43, 327–356 (1974)

    CAS  CrossRef  Google Scholar 

  • Deguchi, N., Jorgensen, P.L., Maunsbach, A.B.: Ultrastructure of the sodium pump. Comparison of thin sectioning, negative staining, and freeze-fracture of purified, membrane bound (Na ++K+)-ATPase. J. Cell. Biol. 75, 619–634 (1977)

    PubMed  CAS  CrossRef  Google Scholar 

  • De Meyts, P., Roth, J.: Cooperativity in ligand binding: a new graphic analysis. Biochem. Biophys. Res. Commun. 66, 1118–1126 (1975)

    Google Scholar 

  • De Meyts, P.: Cooperative properties of hormone receptors in cell membranes. J. Supramol. Struct. 4, 241–258 (1976)

    PubMed  CrossRef  Google Scholar 

  • Detweiler, D.K.: Comparative pharmacology of cardiac glycosides. Fed. Proc. 26, 1119–1124 (1967)

    CAS  Google Scholar 

  • Diacono, J.: Suggestive evidence for the activation of an electrogenic sodium pump in stimulated rat atria: apparent discrepancy between the pump inhibition and the positive inotropic response induced by ouabain. J. Mol. Cell. Cardiol. 11, 5–30 (1979)

    PubMed  CAS  CrossRef  Google Scholar 

  • Dixon, J.F., Hokin, L.E.: Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. Purification and properties of the enzyme from the electric organ of Electrophorus electricus. Arch. Biochem. Biophys. 163, 749–758 (1974)

    CAS  Google Scholar 

  • Doherty, J.E., Perkins, W.H.: Digoxin metabolism in hypo-and hyperthyroidism. Studies with tritiated digoxin in thyroid disease. Ann. Intern. Med. 64, 489–507 (1966)

    PubMed  CAS  Google Scholar 

  • Doherty, J.E., Perkins, W.H.: The distribution and concentration of tritiated digoxin in human tissues. Ann. Int. Med. 65, 116–124 (1967)

    Google Scholar 

  • Dransfeld, H., Greeff, K.: Der Einfluß des Prednison-und Prednisolonbisguanylhydrazons auf die Na++K+-stimulierte Membran-ATPase des Meerschweinchenherzens. Naunyn-Schmiedebergs Arch. Exp. Path. Pharmak. 249, 425–431 (1964)

    CAS  Google Scholar 

  • Dransfeld, H., Greeff, K., Berger, H., Cautius, V.: Die verschiedene Empfindlichkeit der Na+ + K +-aktivierten ATPase des Herz-und Skeletmuskels gegen k-Strophanthin. Naunyn-Schmiedebergs Arch. Exp. Path. Pharmak. 254, 225–234 (1966)

    CAS  Google Scholar 

  • Dransfeld, H., Galetke, E., Greeff, K.: Die Wirkung des Prednisolonbisguanylhydrazons auf die Na+ +K+-aktivierte Membran-ATPase des Herz-und Skeletmuskels. Arch. Int. Pharmacodyn. 166, 342–349 (1967)

    CAS  Google Scholar 

  • Dransfeld, H., Lipinski, J., Borosch-Galetke, E.: Die Na++K+-aktivierte Transport-ATPase bei experimenteller Herzinsuffizienz durch Kobaltchlorid. Naunyn-Schmiedebergs Arch. Pharmacol. 270, 335–342 (1971)

    CAS  Google Scholar 

  • Dunham, P.B., Hoffman, J.F.: Partial purification of the ouabain-binding component and of Na, K-ATPase from human red cell membranes. Proc. Natl. Acad. Sci. U.S.A. 66, 936–943 (1970)

    PubMed  CAS  CrossRef  Google Scholar 

  • Dunham, P.B., Gunn, R.B.: Adenosine triphosphatase and active cation transport in red blood cell membranes. Arch. Intern. Med. 129, 241–247 (1972)

    CAS  Google Scholar 

  • Dunham, P.B., Biostein, R.: Active potassium transport in reticulocytes of high-K+ and low-K+ sheep. Biochim. Biophys. Acta (Amst.) 455, 749–758 (1976)

    CAS  CrossRef  Google Scholar 

  • Dutta, S., Goswamin, S., Lindower, J.O., Marks, B.H.: Subcellular distribution of digoxin-H3 in isolated guinea-pig and rat hearts. J. Pharmacol. Exp. Ther. 159, 324–334 (1968)

    PubMed  CAS  Google Scholar 

  • Dutta, S., Marks, B.H.: Factors that regulate ouabain-H3 accumulation by the isolated guinea-pig heart. J. Pharmacol. Exp. Ther. 170, 318–325 (1969)

    CAS  Google Scholar 

  • Engel, H., Proppe, D., Wassermann, O.: Influence of highly unsaturated phosphatidylcholine on the effects of ouabain and some cardioactive drugs on cardiac contractile force and Na, K+-ATPase activity. Biochem. Pharmacol. 26, 381–388 (1977)

    CAS  Google Scholar 

  • Ehrlich, P.: Chemotherapeutics: scientific principles, methods and results. Lancet 1913 II, 445–451

    Google Scholar 

  • Erdmann, E., Schoner, W.: Ouabain-receptor interactions in (Na+ + K +)-ATPase preparations from different tissues and species. Determination of kinetic constants and dissociation constans. Biochim Biophys. Acta (Amst.) 307, 386–398 (1973a)

    CAS  CrossRef  Google Scholar 

  • Erdmann, E., Schoner, W.: Ouabain-receptor interactions in (Na + + K +)-ATPase preparations. II. Effect of cations and nucleotides on rate constants and dissociation constants. Biochim Biophys. Acta (Amst.) 330, 302–315 (1973b)

    CAS  CrossRef  Google Scholar 

  • Erdmann, E., Schoner, W.: Ouabain-receptor interactions in (Na+ + K +)-ATPase preparations. III. On the stability of the ouabain receptor against physical treatment, hydrolases, and SH reagents. Biochim. Biophys. Acta (Amst.) 330, 316–324 (1973c)

    CAS  CrossRef  Google Scholar 

  • Erdmann, E., Schoner, W.: Ouabain-receptor interactions in (Na ++K+)-ATPase preparations. IV. The molecular structure of different cardioactive steroids and other substances and their affinity to the glycoside receptor. Naunyn-Schmiedebergs Arch. Pharmacol. 283, 335–356 (1974a)

    CAS  Google Scholar 

  • Erdmann, E., Schoner, W.: Die Affinität verschieden strukturierter Herzglykoside sowie DPH und Ro 2–2985 zum Herzglykosidrezeptor. Verh. Dtsch. Ges. Kreislaufforsch. 40, 309–314 (1974b)

    CAS  Google Scholar 

  • Erdmann, E., Hasse, W.: Quantitative aspects of ouabain binding to human erythrocyte and cardiac membranes. J. Physiol. (Lond.) 251, 671–682 (1975)

    CAS  Google Scholar 

  • Erdmann, E., Presek, P., Swozil. R.: Über den Einfluß von Kalium auf die Bindung von Strophanthin an menschliche Herzmuskelzellmembranen. Klin. Wochenschr. 54, 383–387 (1976a)

    CAS  CrossRef  Google Scholar 

  • Erdmann, E, Patzelt, R., Schoner, W.: The cardiac glycoside receptor: its properties and its correlation to nucleotide binding sites, phosphointermediate, and (Na+ + K+)-ATPase activity. Rec. Adv. Stud. Cardiac Struct. Metab. 9, 329–335 (1976b)

    CAS  Google Scholar 

  • Erdmann, E., Philipp, G., Tanner, G.: Ouabain-receptor interactions in (Na++K+)-ATPase preparations. A contribution to the problem of nonlinear Scatchard plots. Biochim. Biophys. Acta (Amst.) 455, 278–296 (1976c)

    Google Scholar 

  • Erdmann, E.: Cell membrane receptors for cardiac glycosides in the heart. Membrangebundene Herzglykosidrezeptoren der Herzmuskelzelle. Basic Res. Cardiol. 72, 315–325 (1977)

    CAS  Google Scholar 

  • Erdmann, E., Krawietz, W.: Increased number of ouabain binding sites in human erythrocyte membranes in chronic hypokalaemia. Acta Biol. Med. Germ. 36, 879–883 (1977)

    CAS  Google Scholar 

  • Erdmann, E., Krawietz, W., Presek, P.: Receptor for cardiac glycosides. In: Riecker, G., Weber, A., Goodwin, J. (eds.), pp. 120–131. Myocardial failure. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  • Erdmann, E.: Vergleichende Messungen der Herzglykosid-Rezeptoraffinität und der Hemmung der (Na ++K+)-ATPase durch Digitoxin, Digoxin, Methyldigoxin, Strophanthin, Proscillaridin und Meproscillarin an isolierten menschlichen Herzmuskelzellmembranen. Arzneim. Forsch. 28, 531–535 (1978a)

    CAS  Google Scholar 

  • Erdmann, E.: Quantitative Aspekte der spezifischen Bindung von Herzglykosiden an Membranrezeptoren. Habilitationsschrift, München, 1978b

    Google Scholar 

  • Erdmann, E., Krawietz, W., Koch, M.: Cardiac glycoside receptors in disease. The number of ouabain binding sites in human erythrocytes is subject to regulation. In: Na + K+-ATPase structure, and kinetics. Skou, J.C., Nerby, J.G. (eds.), pp. 517–524. London: Academic Press 1979

    Google Scholar 

  • Erdmann, E, Werdan, K, Krawietz, W., Koch, M.: Effect of vanadate on (Na +K+)-ATPase and on ouabain binding in mammalian cardiac muscle. Naunyn-Schmiedebergs Arch. Pharmacol. 307, R37 (1979 b)

    Google Scholar 

  • Erdmann, E., Krawietz, W., Philipp, G., Hackbarth, I., Schmitz, W., Scholz, H.: Stimulatory effect of vanadate on (Na + + K +)-ATPase activity and on 3H-ouabain-binding in a cat heart cell membrane preparation. Nature 278, 459–461 (1979c)

    CAS  CrossRef  Google Scholar 

  • Erdmann, E., Philipp, G., Scholz, H.: Cardiac glycoside receptor, (Na + + K +)-ATPase activity and force of concentration in rat heart. Biochem. Pharmacol. 29, 3219–3229 (1980)

    CAS  Google Scholar 

  • Flier, J., Kahn, C.R., Roth, J.: Receptors, antireceptor antibodies, and mechanism of insulin resistance. New Engl. J. Med. 300, 413–419 (1979)

    CAS  Google Scholar 

  • Fortes, G.: Anthroylouabain: a specific fluorescent probe for the cardiac glycoside receptor of the Na-K-ATPase. Biochemistry 16, 531–540 (1977)

    PubMed  CAS  CrossRef  Google Scholar 

  • Frey, M., Pitts, B.J.R., Askari, A.: Vitamin C-effects on the Na+, K + adenosine triphosphate phosphohydrolase complexes of several tissues. Biochem. Pharmacol. 22, 9–15 (1973)

    CAS  Google Scholar 

  • Fricke, U., Hollborn, U., Klaus, W.: Inotropic action, myocardial uptake and subcellular distribution of ouabain, digoxin and digitoxin in isolated rat hearts. Naunyn-Schmiedebergs Arch. Pharmacol. 288, 195–214 (1975)

    CAS  Google Scholar 

  • Fricke, U., Klaus, W.: Evidence for two different Na+-dependent 3H-ouabain binding sites of a Na+-K+-ATPase of guinea-pig hearts. Br. J. Pharmacol. 61, 423–428 (1977)

    PubMed  CAS  Google Scholar 

  • Fricke, U.: Myocardial activity of inhibitors of the Na+-K+-ATPase: differences in the mode of action and subcellular distribution pattern of N-ethylmaleimide and ouabain. Naunyn-Schmiedebergs Arch. Pharmacol. 303, 197–204 (1978)

    CAS  Google Scholar 

  • Gardner, J.D., Conlon, Th.P.: The effects of sodium and potassium on ouabain binding by human erythrocytes. J. Gen. Physiol. 60, 609–629 (1972)

    PubMed  CAS  CrossRef  Google Scholar 

  • Gardner, J.D., Kiino, D.R.: Ouabain binding and cation transport in human erythrocytes. J. Clin. Invest. 52, 1845–1851 (1973)

    PubMed  CAS  CrossRef  Google Scholar 

  • Gardner, J.D., Kiino, D.R., Swartz, T.J., Butler, V.P. Jr.: Effects of digoxin-specific antibodies on accumulation and binding of digoxin by human erythrocytes. J. Clin. Invest. 52, 1820–1833 (1973)

    PubMed  CAS  CrossRef  Google Scholar 

  • Gardner, J.D., Frantz, C.: Effects of cations on ouabain binding by intact human erythrocytes. J. Membrane Biol. 16, 43–64 (1974)

    CAS  CrossRef  Google Scholar 

  • Ghysel-Burton, J., Godfraind, T.: Stimulation and inhibition by ouabain of the sodium pump in guinea-pig atria. Br. J. Pharmacol. 55, 249P (1975)

    Google Scholar 

  • Giotta, G.J.: Native (Na + + K)-dependent adenosine triphosphatase has two trypsin-sensitive sites. J. Biol. Chem. 250, 5159–5164 (1975)

    PubMed  CAS  Google Scholar 

  • Glynn, I.M.: The action of cardiac glycosides on ion movements. Pharmacol. Rev. 16, 381407 (1964)

    Google Scholar 

  • Glynn, I.M., Karlish, S.J.D.: The sodium pump. Annu. Rev. Physiol. 37, 13–55 (1975)

    CAS  CrossRef  Google Scholar 

  • Godfraind, T.: Cardiac glycoside receptors in the heart. Biochem. Pharmacol. 24, 823–827 (1975)

    CAS  Google Scholar 

  • Godfraind, T., Ghysel-Burton, J.: Binding sites related to ouabain-induced stimulation or inhibition of the sodium pump. Nature 265, 165–166 (1977)

    PubMed  CAS  CrossRef  Google Scholar 

  • Godfraind, T., Ghysel-Burton, J.: The action of digoxin and digoxigenin-monodigitoxoside on the sodium pump and on the contractility in isolated guinea-pig atria. Arch. Int. Pharmacodyn. Ther. 234, 340–341 (1978)

    PubMed  CAS  Google Scholar 

  • Goldstein, A., Arrow, L., Kalman, S.M.: Principles of drug action. New York, London, Sydney, Toronto: J. Wiley and Sons 1974

    Google Scholar 

  • Greeff, K., Meng, K., Schwarzmann, D.: Digitalis-ähnliche Eigenschaften des Prednisonund Prednisolonbisguanylhydrazons. Ihre Wirkung auf die Kaliumbilanz isolierter Herzpräparate und den Na/K-Transport an Erythrocyten. Naunyn-Schmiedebergs Arch. Exp. Path. Pharmak. 249, 416–424 (1964)

    CAS  Google Scholar 

  • Greeff, K., Schlieper, E.: Artspezifische Wirkungsunterschiede des k-Strophanthins und Prednisolonbisguanylhydrazons: Untersuchungen an isolierten Vorhofpräparaten und Erythrocyten des Menschen, Meerschweinchens, Kaninchens und der Ratte. Arch. Int. Pharmacodyn. 166; 350–361 (1967)

    CAS  Google Scholar 

  • Greeff, K.: Bestimmungen des Blutspiegels von Digoxin, Digitoxin und g-Strophanthin mit Hilfe radioimmunologischer Methoden. Herz. Kreisl. 6, 145–149 (1974)

    CAS  Google Scholar 

  • Greeff, K., Strobach, H., Verspohl, E.: Ergebnisse radioimmunologischer Bestimmungen von Digitoxin, Digoxin und g-Strophanthin am Menschen. In: Digitalistherapie, Beiträge zur Pharmakologie und Klinik Jahrmärker, H. (Hrsg), S. 52–61. Berlin, Heidelberg, New York: Springer 1975

    Google Scholar 

  • Milner, H.-G., Stinson, E.B., Harrison, D.C., Kalman, S.M.: Correlation of serum concentrations with heart concentrations of digoxin in human subjects. Circulation 50, 653–655 (1974)

    Google Scholar 

  • Haasis, R., Larbig, D., Stunkat, R., Bader, H., Seboldt, H.: Radioimmunologische Bestimmung der Glykosidkonzentration im menschlichen Gewebe. Klin. Wochenschr. 55, 23–30 (1977)

    CAS  CrossRef  Google Scholar 

  • Hackbarth, I., Schmitz, W., Scholz, H., Erdmann, E., Krawietz, W., Philipp, G.: Positive inotropism of vanadate in cat papillary muscle. Nature 275, 67 (1978)

    PubMed  CAS  CrossRef  Google Scholar 

  • Hagen, H.: Behandlung von Herzrhythmusstörungen mit Diphenylhydantoin. Dtsch. Med. Wochenschr. 96, 380–384 (1971)

    CAS  Google Scholar 

  • Han, C.S., Tobin, T., Brody, T.M.: Effects of alkali metal cations on phospho-enzyme levels and 3H-ouabain binding to (Na ++K+)-ATPase. Biochim. Biophys. Acta (Amst.) 429, 993–1005 (1976)

    CAS  Google Scholar 

  • Hansen, O.: The relationship between g-strophanthin binding capacity and ATPase-activity in plasma membrane fragments of ox brain. Biochim Biophys. Acta (Amst.) 233, 122–132 (1971)

    CAS  CrossRef  Google Scholar 

  • Hansen, O., Jensen, J., Nerby, J.G.: Mutual exclusion of ATP, ADP, and g-strophanthin binding to NaK-ATPase. Nature New Biol. 234, 122–124 (1971)

    PubMed  CAS  CrossRef  Google Scholar 

  • Hansen, O., Skou, J.C.: A study on the influence of the concentration of Mg’, Pi, K, Na and tris on (Mg2+ + Pi)-supported g-strophanthin binding to (Na + + K +)-activated ATPase from ox brain. Biochim. Biophys. Acta (Amst.) 311, 51–66 (1973)

    CAS  CrossRef  Google Scholar 

  • Hansen, O.: Non-uniform populations of g-strophanthin binding sites of (Na+ + K +)-activated ATPase. Apparent conversion to uniformity by K+. Biochim. Biophys. Acta (Amst.) 433, 383–392 (1976)

    CAS  CrossRef  Google Scholar 

  • Hansen, O.: The effect of sodium on inorganic phosphate-and p-nitrophenyl phosphate-facilitated ouabain binding to (Na+ + K +)-activated ATPase. Biochim. Biophys. Acta (Amst.) 511, 10–22 (1978a)

    CAS  CrossRef  Google Scholar 

  • Hansen, O.: Ouabain used as a tool for trapping and characterizing phosphorylation products of NaK–ATPase. FEBS, 11`s Meeting 1977 Copenhagen. Oxford, New York: Pergamon Press 1978 b A–4–2–602

    Google Scholar 

  • Hansen, O.: Reactive states of the Na+, K+-ATPase demonstrated by the stability of the enzyme-ouabain complex. In: Na+, K+-ATPase, structure, and kinetics. Skou, J.C., Norby, J.G. (eds.), pp. 169–180. London, New York: Academic Press 1979

    Google Scholar 

  • Harper, N.J., Simmonds, A.B.: Advances in drug research. London: New York: Academic Press 1977

    Google Scholar 

  • Harris, W.E., Swanson, P.D., Stahl, W.L.: Ouabain binding sites and the (Na +, K+)-ATPase of brain microsomal membranes. Biochim. Biophys. Acta (Amst.) 298, 680–689 (1973)

    CAS  CrossRef  Google Scholar 

  • Härtel, G., Kyllönen, K., Merikallio, E., Ojala, K., Manninen, V., Reissell, P.: Human serum and myocardium digoxin. Clin. Pharmacol. Ther. 19, 153–157 (1976)

    Google Scholar 

  • Hegyvary, C.: Covalent labeling of the digitalis-binding component of plasma membranes. Mol. Pharmacol. 11, 588–594 (1975)

    CAS  Google Scholar 

  • Heller, M., Beck, S.: Interactions of cardiac glycosides with cells and membranes. Properties and structural aspects of two receptor sites for ouabain in erythrocytes. Biochim. Biophys. Acta (Amst.) 514, 332–347 (1978)

    CAS  CrossRef  Google Scholar 

  • Hoffman, J.F.: The red cell membrane and the transport of sodium and potassium. Am. J. Med. 41, 666–680 (1966)

    PubMed  CAS  CrossRef  Google Scholar 

  • Hollemans, H.J.G., Bertina, R.M.: Scatchard plot and heterogeneity in binding affinity of labeled and unlabeled ligand. Clin. Chem. 21, 1769–1773 (1975)

    CAS  Google Scholar 

  • Hollenberg, M.D., Cuatrecasas, P.: Membrane receptors and hormone action: recent developments. Prog. Neuro-Psychopharmacol. 2, 287–302 (1978)

    CAS  CrossRef  Google Scholar 

  • Horvath, I., Kiraly, C., Szerb, J.: Action of cardiac glycosides on the polymerisation of actin. Nature 165, 792 (1949)

    CrossRef  Google Scholar 

  • Hotovy, R., König, W.: Weitere pharmakologische Studien an der Kaumuskulatur der Ratte. Arch. Exp. Path. Pharmakol. 213, 175–184 (1951)

    CAS  Google Scholar 

  • Inagaki, C., Lindenmayer, G., Schwartz, A.: Effects of sodium and potassium on binding of ouabain to the transport adenosine triphosphatase. J. Biol. Chem. 249, 5135–5140 (1974)

    PubMed  CAS  Google Scholar 

  • Jacobs, S., Chang, K.-J., Cuatrecasas, P.: Estimation of hormone receptor affinity by competitive displacement of labeled ligand: effect of concentration of receptor and of labeled ligand. Biochem. Biophys. Res. Commun. 66, 687–692 (1975)

    CAS  Google Scholar 

  • Jacobsen, A.L.: Effect of ouabain on the ATPase of cardiac myosin R at high ionic strength. Circ. Res. 22, 625–632 (1968)

    Google Scholar 

  • Jopiner, C.H., Lauf, P.K.: The correlation between ouabain binding and potassium pump inhibition in human and sheep erythrocytes. J. Physiol. (Lond.) 283, 155–175 (1978)

    Google Scholar 

  • Jorgensen, P.L.: Purification and characterization of (Na ++K+)-ATPase. IV. Estimation of the purity and of the molecular weight and polypeptide content per enzyme unit in preparations from the outer medulla of rabbit kidney. Biochim. Biophys. Acta (Amst.) 356, 53–67 (1974)

    CAS  CrossRef  Google Scholar 

  • Juliano, R.L.: The proteins of the erythrocyte membrane. Biochim. Biophys. Acta (Amst.) 300, 341–378 (1973)

    CAS  Google Scholar 

  • Kahn, J.B. Jr., Acheson, G.H.: Effects of cardiac glycosides and other lactones, and of certain other compounds, on cation transfer in human erythrocytes. J. Pharmacol. Exp. Ther. 115, 305–318 (1955)

    PubMed  CAS  Google Scholar 

  • Kaniike, K., Erdmann, E., Schoner, W.: Study on the differential modifications of (Na ++K+)-ATPase and its partial reactions by dimethylsulfoxide. Biochim Biophys. Acta (Amst.) 352, 275–286 (1974)

    CAS  CrossRef  Google Scholar 

  • Kaniike, K., Lindenmayer, G.E., Wallick, E.T., Lane, L.K., Schwartz, A.: Specific sodium-22 binding to a purified sodium + potassium adenosine triphosphatase. J. Biol. Chem. 251, 4794–4795 (1976)

    CAS  Google Scholar 

  • Katz, A.I., Lindheimer, M.D.: Renal sodium-and potassium-activated adenosine triphosphatase and sodium reabsorption in the hypothyroid rat. J. Clin. Invest. 52, 796–804 (1973)

    PubMed  CAS  CrossRef  Google Scholar 

  • Kokenge, F., Van Zwieten, P.A.: A diminished response to digoxin in isolated heart muscle as a result of fever. Klin. Wschr. 49, 1236–1237 (1971)

    CAS  CrossRef  Google Scholar 

  • Krawietz, W., Erdmann, E.: Specific and unspecific binding of 3H-dihydroalprenolol to cardiac tissue. Biochem. Pharmacol. 28, 1283–1288 (1979)

    CAS  Google Scholar 

  • Ku, D., Akera, T., Pew, C.L., Brody, T.M.: Cardiac glycosides: correlations among Na +, K+-ATPase, sodium pump and contractility in the guinea pig heart. Naunyn-Schmiedebergs Arch. Pharmacol. 285, 185–200 (1974)

    CAS  Google Scholar 

  • Ku, D., Akera, T., Tobin, T., Brody, T.M.: Effects of monovalent cations on cardiac Na +, K+-ATPase activity and on contractile force. Naunyn-Schmiedebergs Arch. Pharmacol. 290, 113–131 (1975)

    CAS  Google Scholar 

  • Ku, D., Akera, T., Brody, T.M., Weaver, L.C.: Chronic digoxin treatment on canine myo-cardial Na +, K+-ATPase. Naunyn-Schmiedebergs Arch. Pharmacol. 301, 39–47 (1977)

    CAS  Google Scholar 

  • Kyte, J.: Properties of the two polypeptides of sodium-and potassium-dependent adenosine triphosphatase. J. Biol. Chem. 247, 7642–7649 (1972a)

    CAS  Google Scholar 

  • Kyte, J.: The titration of the cardiac glycoside binding site of the (Na ++K+)-adenosine triphosphatase. J. Biol. Chem. 247, 7634–7641 (1972b)

    CAS  Google Scholar 

  • Kyte, J.: Structural studies of sodium and potassium ion-activated adenosine triphosphatase. The relationship between molecular structure and mechanism of active transport. J. Biol. Chem. 250, 7443–7449 (1975)

    PubMed  CAS  Google Scholar 

  • La Bella, F.S., Bihler, I., Kim, R.S.: Progesterone derivative binds to cardiac ouabain receptor and shows dissociation between sodium pump inhibition and increased contractile force. Nature 278, 571–573 (1979)

    CrossRef  Google Scholar 

  • Lane, L.K., Copenhaver, J.H., Lindenmayer, G.E., Schwartz, A.: Purification and characterization of and 3H-ouabain binding to the transport adenosine triphosphatase from outer medulla of canine kidney. J. Biol. Chem. 248, 7197–7200 (1973)

    PubMed  CAS  Google Scholar 

  • Lane, L.K., Anner, B.M., Wallick, E.T., Ray, M.V., Schwartz, A.: Effect of phospholipase a treatment on the partial reactions of and ouabain binding to a purified sodium and potassium activated adenosine triphosphatase. Biochem. Pharmacol. 27, 225–231 (1978)

    CAS  Google Scholar 

  • Langer, G.A.: Effects of digitalis on myocardial ionic exchange. Circulation 46, 180–187 (1972)

    PubMed  CAS  Google Scholar 

  • Lauf, P.K., Joiner, C.H.: Increased potassium transport and ouabain binding in human Rh red blood cells. Blood 48, 457–468 (1976)

    PubMed  CAS  Google Scholar 

  • Lauf, P.K., Shoemaker, D.G., Joiner, C.H.: Changes in K+ pump transport and ouabain binding sites in erythrocytes of genetically low K lambs. Biochim. Biophys. Acta (Amst.) 507, 544–548 (1978)

    CAS  CrossRef  Google Scholar 

  • Lee, K.S., Yu, D.H.: A study of the sodium-and potassium-activated adenosine trophosphatase activity of heart microsomal fraction. Biochem. Pharmacol. 12, 1254–1264 (1963)

    Google Scholar 

  • Lee, K.S., Klaus, W.: The subcellular basis for the mechanism of inotropic action of cardiac glycosides. Pharmacol. Rev. 23, 193–261 (1971)

    CAS  Google Scholar 

  • Lefkowitz, R.J.: ß-adrenergic receptors: recognition and regulation. New Engl. J. Med. 295, 323–328 (1976)

    CAS  Google Scholar 

  • Lichey, J., Havestatt, Ch., Weinmann, J., Hasford, J., Rietbrock, N.: Human myocardium and plasma digoxin concentration in patients on long-term digoxin treatment. Int. J. Clin. Pharmacol. 16, 460–462 (1978)

    CAS  Google Scholar 

  • Lin, M.H., Akera, T.: Increased (Na, K+)-ATPase concentrations in various tissues of rats caused by thyroid hormone treatment. J. Biol. Chem. 253, 723–726 (1978)

    PubMed  CAS  Google Scholar 

  • Lin, M.H., Romsos, D.R., Akera, T., Leveille, G.A.: Na +, K+-ATPase enzyme units in skeletal muscle from lean and obese mice. Biochem. Biophys. Res. Commun. 80, 398–404 (1978)

    CAS  Google Scholar 

  • Lindenmayer, G.E., Schwartz, A.: Nature of the transport adenosine triphosphatase digitalis complex. IV. Evidence that sodium-potassium competition modulates the rate of ouabain interaction with (Na++K+) adenosine triphosphatase during enzyme catalysis. J. Biol. Chem. 248, 1291–1300 (1973)

    PubMed  CAS  Google Scholar 

  • Lindenmayer, G.E., Schwartz, A., Thompson, H.K. Jr.: A kinetic description for sodium and potassium effects on (Na+ + K+)-adenosine triphosphatase: a model for a two-nonequivalent site potassium activation and an analysis of multiequivalent site models for sodium activation. J. Physiol. (Lond.) 236, 1–28 (1974)

    CAS  Google Scholar 

  • Lüllmann, H., Weber, R.: Über die Wirkung von Phenytoin auf Digitalis-bedingte Arrhythmien. Ärztl. Forsch. 22, 49–55 (1968)

    Google Scholar 

  • Lüllmann, H., Peters, T.: Cardiac glycosides and contractility. The myocardium. Adv. Cardiol. 12, 174–182 (1974)

    Google Scholar 

  • Lüllmann, H., Peters, T., Preuner, J., Rüther, T.: Influence of ouabain and dihydroouabain on the circular dichroism of cardiac plasmalemmal microsomes. Naunyn-Schmiedebergs Arch. Pharmacol. 290, 1–19 (1975)

    Google Scholar 

  • Lüllmann, H., Peters, T.: On the sarcolemmal site of action of cardiac glycosides. Recent Adv. Stud. Cardiac Struct. Metab. 9, 311–327 (1976)

    Google Scholar 

  • Lüllmann, H., Peters, T.: Action of cardiac glycosides. Prog. Pharmacol. 2, 5–57 (1979) Malcolm, A., Coltart, J.: Relation between concentrations of digoxin in the myocardium and in the plasma. Br. Heart J. 39, 935–938 (1977)

    Google Scholar 

  • Manery, J.F., Dryden, E.E., Still, J.S., Madapallimattam, G.: Enhancement (by ATP, insulin, and lack of divalent cations) of ouabain inhibition of cation transport and ouabain binding in frog skeletal muscle; effect of insulin and ouabain on sarcolemmal (Na + K)MgATPase. Can. J. Physiol. Pharmacol. 55, 21–33 (1977)

    PubMed  CAS  CrossRef  Google Scholar 

  • Matsui, H., Schwartz, A.: ATP-dependent binding of H3-digoxin to a Na+, K+-ATPase from cardiac muscle. Fed. Proc. 26, 398 (1967)

    Google Scholar 

  • Matsui, H., Schwartz, A.: Mechanism of cardiac glycoside inhibition of the (Na+ + K +)- dependent ATPase from cardiac tissue. Biochim. Biophys. Acta (Amst.) 151, 655–663 (1968)

    CAS  Google Scholar 

  • Matsui, H., Hayashi, Y., Homareda, H., Kimimura, M.: Ouabain-sensitive 42K binding to Na+, K+-ATPase purified from canine kidney outer medulla. Biochem. Biophys. Res. Commun. 75, 373–379 (1977)

    CAS  Google Scholar 

  • McCall, D.: Cation exchange and glycoside binding in cultured rat heart cells. Am. J. Physiol. 236, C87—C95 (1979)

    Google Scholar 

  • McCans, J.L., Lindenmayer, G.E., Pitts, B.J.R., Ray, M.V., Raynor, B.D., Butler, V.P., Schwartz, A.: Antigenic differences in (Na +, K+)-ATPase preparations isolated from various organs and species. J. Biol. Chem. 250, 7257–7265 (1975)

    PubMed  CAS  Google Scholar 

  • Michael, L., Schwartz, A., Wallick, E.: Nature of the transport adenosine triphosphatasedigitalis complex: XIV. Inotropy and cardiac glycoside interaction with Na+, K +-ATPase of isolated cat papillary muscles. Molec. Pharmacol. 16, 135–146 (1979)

    CAS  Google Scholar 

  • Murthy, R.V., Kidwai, A.M., Daniel, E.E.: Dissociation of contractile effect and binding and inhibition of Na +-K +-adenosine triphosphatase by cardiac glycosides in rabbit myometrium. J. Pharmacol. Exp. Ther. 188, 575–581 (1974)

    PubMed  CAS  Google Scholar 

  • Nakao, M.: Several topics concerning Na, K-ATPase. Life Sci. 15, 1849–1859 (1975)

    CrossRef  Google Scholar 

  • Nathan, D.G., Gunn, R.B.: Thalassaemia: the consequences of unbalanced hemoglobin synthesis. Am. J. Med. 41, 815–830 (1966)

    PubMed  CAS  CrossRef  Google Scholar 

  • Nola, G.T., Pope, S., Harrison, D.C.: Assessment of the synergistic relationship between serum calcium and digitalis. Am. Heart J. 79, 499–507 (1970)

    PubMed  CAS  CrossRef  Google Scholar 

  • Okarma, T.B., Tramell, P., Kalman, S.M.: The surface interaction between digoxin and cultured heart cells. J. Pharmacol. Exp. Ther. 183, 559–576 (1972)

    PubMed  CAS  Google Scholar 

  • Okita, G.T., Richardson, F., Roth-Schechter, B.F.: Dissociation of the positive inotropic action of digitalis from inhibition of sodium and potassium-activated adenosine triphosphatase. J. Pharmacol. Exp. Ther. 185, 1–11 (1973)

    PubMed  CAS  Google Scholar 

  • Okita, G.T.: Dissociation of the positive inotropic effects from the cardiotoxic effects of digitalis. Proc. West. Pharmacol. Soc. 18, 14–19 (1975)

    PubMed  CAS  Google Scholar 

  • Okita, G.T.: Dissociation of Na, K + -ATPase inhibition from digitalis inotropy. Fed. Proc. 56, 2225–2230 (1977)

    Google Scholar 

  • Olson, R.E., Ellenbogen, E., Iyengar, R.: Cardiac myosin and congestive heart failure in the dog. Circulation 24, 475–482 (1961)

    Google Scholar 

  • Patzelt-Wenczler, R., Schoner, W.: Die Herzglykosid-Bindungsstelle der (Na +, K)-ATPase nach Affinitätsmarkierung der ATP-Bindungsstelle mit (sITP). Verh. Dtsch. Ges. Kreislaufforsch. 41, 311–314 (1975)

    PubMed  CAS  Google Scholar 

  • Perrone, J.P., Blostein, R.: Asymmetric interaction of inside-out and rightside-out erythrocyte membrane vesicles with ouabain. Biochim. Biophys. Acta (Amst.) 291, 680–689 (1973)

    CAS  CrossRef  Google Scholar 

  • Perrone, J.R., Hackney, J.F., Dixon, J.F., Hokin, L.E.: Molecular properties of purified (sodium + potassium)-activated adenosine triphosphatases and their subunits from the rectal gland of Squalus acanthias and the electric organ of Electrophorus electricus. J. Biol. Chem. 250, 4178–4184 (1975)

    PubMed  CAS  Google Scholar 

  • Peters, T., Raben, R.-H., Wassermann, O.: Evidence for a dissociation between positive inotropic effect and inhibition of the (Na + + K +)-ATPase by ouabain, cassaine, and their alkylating derivatives. Eur. J. Pharmacol. 26, 166–174 (1974)

    PubMed  CAS  CrossRef  Google Scholar 

  • Pfleger, K., Kolassa, N., Heinrich, W., Schneider, M.: Pharmakokinetik und Wirkung von Digitoxin und Ouabain am isolierten Herzen von Meerschweinchen und Ratte. Arch. Int. Pharmacodyn. Ther. 216, 130–143 (1975)

    CAS  Google Scholar 

  • Philipson, K.D., Edelman, I.S.: Characteristics of thyroid-stimulated Na+-K+-ATPase of rat heart. Am. J. Physiol. 232, 202–206 (1977)

    Google Scholar 

  • Pitts, B.J.R., Schwartz, A.: Improved purification and partial characterization of (Na +, K+)-ATPase from cardiac muscle. Biochim. Biophys. Acta (Amst.) 401, 184–195 (1975)

    CAS  CrossRef  Google Scholar 

  • Pitts, B., Wallick, E.T., van Winkle, W.B., Allen, J.C., Schwartz, A.: On the lack of inotropy of cardiac glycosides on skeletal muscle: a comparison of Na +, K+-ATPase from skeletal and cardiac muscle. Arch. Biochem. Biophys. 184, 431–440 (1977)

    CAS  Google Scholar 

  • Reimann, E.M., Soloff, M.S.: The effect of radioactive contaminants on the estimation of binding parameters by Scatchard analysis. Biochim. Biophys. Acta (Amst.) 533, 130–139 (1978)

    CAS  Google Scholar 

  • Reiter, M.: Die Wertbestimmung inotrop wirkender Arzneimittel am isolierten Papillarmuskel. Arzneim. Forsch. 17, 1240–1253 (1967)

    Google Scholar 

  • Repke, K.: Metabolism of cardiac glycosides. New aspects of cardiac glycosides. III, pp. 4773. Oxford: Pergamon Press 1964

    Google Scholar 

  • Repke, K., Est, M., Portius, H.J.: Über die Ursache der Speciesunterschiede in der Digitalisempfindlichkeit. Biochem. Pharmacol. 14, 1785–1802 (1965)

    CAS  Google Scholar 

  • Repke, K., Portius, H.J.: Analysis of structure activity relationship in cardioactive action on the molecular level. Sci. Pharmaceut. 1, 39–57 (1966)

    CAS  Google Scholar 

  • Repke, K.R.H., Schön, R.: Flip-flop model of (NaK)-ATPase function. Acta Biol. Med. Germ. 31, 19–30 (1973)

    Google Scholar 

  • Roberts, G.C.K. (edit.): Drug action at the molecular level. London: Macmillan Press 1977

    Google Scholar 

  • Ruoho, A., Kyte, J.: Photoaffinity labeling of the ouabain-binding site on (Na ++K adenosinetriphosphatase. Proc. Natl. Acad. Sci. USA 71, 2352–2356 (1974)

    PubMed  CAS  CrossRef  Google Scholar 

  • Sachs, J.R.: Interaction of external K, Na, and cardioactive steroids with the Na-K pump of the human red blood cell. J. Gen. Physiol. 63, 123–143 (1974)

    PubMed  CAS  CrossRef  Google Scholar 

  • Sachs, J.R., Ellory, J.C., Kropp, D.L., Dunham, P.B., Hoffman, J.F.: Antibody-induced alterations in the kinetic characteristics of the Na: K pump in goat red blood cells. J. Gen. Physiol. 63, 389–414 (1974)

    PubMed  CAS  CrossRef  Google Scholar 

  • Scaf, A.H.J.: Cooperativity in classical receptor theory. Arch. Int. Pharmacodyn. Ther. 215, 4–12 (1975)

    CAS  Google Scholar 

  • Scatchard, G.: The attractions of proteins for small molecules and ions. N.Y. Acad. Sci. 51, 660–672 (1949)

    CAS  Google Scholar 

  • Schatzmann, H.-J.: Herzglykoside als Hemmstoffe für den aktiven Kalium-und Natrium- transport durch die Erythrocytenmembran. Heiv. Physiol. Acta 11, 346–354 (1953)

    CAS  Google Scholar 

  • Scholz, H., Hackbarth, I., Schmitz, W.: Intensität und zeitlicher Verlauf der Digitoxinwirkung im Vergleich zu anderen herzwirksamen Glykosiden am isolierten Warmblüterherzen. In: Digitoxin als Alternative in der Therapie der Herzinsuffizienz. Greeff, K., Riethbrock, N. (Hrsg.), pp. 141–147. Stuttgart, New York: Schattauer 1979

    Google Scholar 

  • Schoner, W.: Zum aktiven Na +, K+-Transport durch die Membran tierischer Zellen. Angew. Chem. 83, 947–955 (1971)

    Google Scholar 

  • Schoner, W., von Ilberg, C., Seubert, W.: On the mechanism of Na +- and K+-stimulated hydrolysis of adenosine triphosphate. 1. Purification and properties of a Nat and K+-activated ATPase from ox brain. Eur. J. Biochem. 1, 334–343 (1967)

    PubMed  CAS  CrossRef  Google Scholar 

  • Schoner, W., Pauls, H., Patzelt-Wenczler, R.: Biochemical characteristics of the sodium pump: indications for a half-of-the-sites reactivity of (Na++K+)-ATPase. In: Myocardial failure. Riecker, G., Weber, A., Goodwin, J. (eds.), pp. 104–119. Berlin, Heidelberg, New York: Springer 1977a

    Google Scholar 

  • Schoner, W., Pauls, H., Patzelt-Wenczler, R., Erdmann, E., Stahl, I.: Some structural and functional aspects of the sodium pump: interrelation between the ATP-binding site and the ouabain receptor site. In: Diuretics in research and clinics. Siegenthaler, W., Becker-hoff, R., Vetter, W. (eds.), pp. 91–101. Stuttgart: Georg Thieme 1977b

    Google Scholar 

  • Schwartz, A., Matsui, H., Laughter, A.H.: Tritiated digoxin binding to (Na++K+)-acti- vated adenosine triphosphatase: possible allosteric site. Science 159, 323–325 (1968)

    CrossRef  Google Scholar 

  • Schwartz, A., Lindenmayer, G., Allen, J.C.: The sodium-potassium adenosine triphosphatase: pharmacological, physiological, and biochemical aspects. Pharmacol. Rev. 27, 3–134 (1975)

    CAS  Google Scholar 

  • Schwartz, A.: Sodium-potassium adenosine triphosphatase — a receptor for digitalis? Biochem. Pharmacol. 25, 237–239 (1976a)

    CAS  Google Scholar 

  • Schwartz, A.: Is the cell membrane Na, K+-ATPase enzyme system the pharmacological receptor for digitalis? Circ. Res. 39, 2–7 (1976b)

    CAS  Google Scholar 

  • Sen, A.K., Post, R.L.: Stoichiometry and localization of adenosine triphosphate-dependent sodium and potassium transport in the erythrocyte. J. Biol. Chem. 239, 345–352 (1964)

    PubMed  CAS  Google Scholar 

  • Skou, J.C.: The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta (Amst.) 23, 349–401 (1957)

    Google Scholar 

  • Skou, J.C.: Enzymatic basis for active transport of Na+ and K+ across cell membranes. Physiol. Rev. 45, 596–617 (1965)

    CAS  Google Scholar 

  • Skou, J.C.: The relationship of the (Na++K+)-activated enzyme system to transport of sodium and potassium across the cell membranes. Bioenergetics 4, 1–30 (1973)

    CAS  CrossRef  Google Scholar 

  • Smythies, J.R., Bradley, R.J.: Receptors in pharmacology. New York, Basel: Marcel Dek-ker 1978

    Google Scholar 

  • Solomon, A.K.: The permeability of the human erythrocyte to sodium and potassium. J. Gen. Physiol. 36, 57–110 (1952)

    PubMed  CAS  CrossRef  Google Scholar 

  • Stahl, W.L.: Role of phospholipids in the Na +, K +-stimulated adenosine triphosphatase system of brain microsomes. Arch. Biochem. Biophys. 154, 56–67 (1973)

    CAS  Google Scholar 

  • Straub, R.W., Bolis, L.: Cell membrane receptors for drugs and hormones. New York: Raven Press 1978

    Google Scholar 

  • Sweadner, K.J.: Two molecular forms of (Na ++K+)-stimulated ATPase in brain. J. Biol. Chem. 254, 6060–6067 (1979)

    PubMed  CAS  Google Scholar 

  • Taniguchi, K., lids, S.: Two apparently different ouabain binding sites of (Na+ + K+)-ATPase. Biochim. Biophys. Acta (Amst.) 288, 98–102 (1972)

    CAS  CrossRef  Google Scholar 

  • Temma, K., Akera, T., Ku, D.D., Brody, T.M.: Sodium pump inhibition by sulfhydryl inhibitors and myocardial contractility. Naunyn-Schmiedebergs Arch. Pharmacol. 302, 63–71 (1978)

    CAS  Google Scholar 

  • Ten Eick, R.E., Bassett, A.L., Okita, G.T.: Dissociation of electrophysiological and inotropic actions of strophanthidin-3-bromoacetate: possible role of adenosine triphosphatase in the maintenance of the myocardial transmembrane Na’ and K+ gradients. J. Pharmacol. Exp. Ther. 185, 12–23 (1973)

    PubMed  Google Scholar 

  • Thompson, A.J., Hargis, J., Murphy, M.L., Doherty, J.E.: Tritiated digoxin. XX. Tissue distribution in experimental myocardial infarction. Am. Heart J. 88, 319–324 (1974)

    PubMed  CAS  CrossRef  Google Scholar 

  • Titus, E.O.: Characterization of pharmacological receptors. Naunyn-Schmiedebergs Arch. Pharmacol. 288, 269–281 (1975)

    CAS  Google Scholar 

  • Tobin, Th., Brody, T.M.: Rates of dissociation of enzyme-ouabain complexes and K0.5 values in (Na++K+)-adenosine triphosphatase from different species. Biochem. Pharmacol. 21, 1553–1560 (1972)

    CAS  Google Scholar 

  • Tobin, Th., Henderson, R., Sen, A.K.: Species and tissue differences in the rate of dissociation of ouabain from (Na ++K+-ATPase. Biochim. Biophys. Acta (Amst.) 274, 551–555 (1972)

    CAS  CrossRef  Google Scholar 

  • Tobin, Th., Akera, T., Hogg, R.E., Brody, T.M.: Ouabain binding to sodium-and potassium-dependent adenosine triphosphatase: inhibition by the ß,y-methylene analogue. Mol. Pharmacol. 6, 278–281 (1973)

    Google Scholar 

  • Tobin, Th., Akera, T., Brody, S.L., Ku, D., Brody, T.M.: Cassaine: mechanism of inhibition of Na++K+-ATPase and relationship of this inhibition to cardiotonic actions. Eur. J. Pharmacol. 32, 135–145 (1975)

    Google Scholar 

  • Tona Lutete, N., Noel, F., de Pover, A., Godfraind, T.: The inhibition of human heart (Na +K)ATPase by semisynthetic digitalis glycosides. Arch. Int. Pharmacodyn. Ther. 227, 166–167 (1977)

    CAS  Google Scholar 

  • Wallick, E., Dowd, F., Allen, J., Schwartz, A.: The nature of the transport adenosine triphosphatase-digitalis complex. VII. Characteristics of ouabagenin-Na+, K+-adenosine triphosphatase interaction. J. Pharmacol. Exp. Ther. 189, 434–444 (1974)

    PubMed  CAS  Google Scholar 

  • Wallick, E.T., Lindenmayer, G.E., Lane, L.K., Allen, J.C., Pitts, B.J.R., Schwartz, A.: Recent advances in cardiac glycoside-Na+, K+-ATPase interaction. Fed. Proc. 36, 2214–2218 (1977)

    CAS  Google Scholar 

  • Wallick, E.T., Lane, L.K., Schwartz, A.: Biochemical mechanism of the sodium pump. Ann. Rev. Physiol. 41, 397–412 (1979)

    CAS  CrossRef  Google Scholar 

  • Waser, P.G., Volkart, O.: Wirkung von Herzglykosiden auf Aktomyosin. Helv. Physiol. Acta 12, 12–22 (1954)

    CAS  Google Scholar 

  • Weder, H.G., Schildknecht, J., Lutz, R.A., Kesselring, P.: Determination of binding parameters from Scatchard plots. Eur. J. Biochem. 42, 475–481 (1974)

    PubMed  CAS  CrossRef  Google Scholar 

  • Weidemann, M.J., Erdelt, H., Klingenberg, M.: Adenine nucleotide translocation of mitochondria. Eur. J. Biochem. 16, 313–335 (1970)

    PubMed  CAS  CrossRef  Google Scholar 

  • Whittam, R., Chipperfield, A.R.: Ouabain binding to the sodium pump in plasma mem-branes isolated from ox brain. Biochim. Biophys. Acta (Amst.) 307, 563–577 (1973)

    CAS  CrossRef  Google Scholar 

  • Whittam, R., Chipperfield, A.R.: The reaction mechanism of the sodium pump. Biochim. Biophys. Acta (Amst.) 415, 149–171 (1975)

    CAS  Google Scholar 

  • Winegrad, S., Shanes, A.M.: Calcium flux and contractility in guinea pig atria. J. Gen. Physiol. 45, 371–394 (1962)

    PubMed  CAS  CrossRef  Google Scholar 

  • Wood, J.M., Schwartz, A.: Effects of ouabain on calcium-45 flux in guinea pig cardiac tissue. J. Mol. Cell. Cardiol. 10, 137–144 (1978)

    PubMed  CAS  CrossRef  Google Scholar 

  • Yamamoto, S.: Prednisolone-3,20-bis-guanylhydrazone: the mode of interaction with rat brain sodium and potassium-activated adenosine triphosphatase. Eur. J. Pharmacol. 50, 409–418 (1978)

    PubMed  CAS  CrossRef  Google Scholar 

  • Yamamoto, S., Akera, T., Brody, T.M.: Prednisolone-3,20-bis-guanylhydrazone: Na+, K+-ATPase inhibition and positive inotropic action. Eur. J. Pharmacol. 49, 121–132 (1978a)

    CAS  CrossRef  Google Scholar 

  • Yamamoto, S., Akera, T., Brody, T.M.: Prednisolone-3,20-bis-guanylhydrazone: binding in vitro to sodium-and-potassium-activated adenosine triphosphatase of guinea pig heart ventricular muscle. Eur. J. Pharmacol. 51, 63–69 (1978b)

    CAS  CrossRef  Google Scholar 

  • Yamamura, H.I., Enna, S.J., Kuhar, M.J.: Neurotransmitter-receptor-binding. New York: Raven Press 1978

    Google Scholar 

  • Yoda, A.: Structure-activity relationships of cardiotonic steroids for the inhibition of sodium-and potassium-dependent adenosine triphosphatase. 1. Dissociation rate constants of various enzyme-cardiac glycoside complexes formed in the presence of magnesium and phosphate. Mol. Pharmacol. 9, 51–60 (1973)

    CAS  Google Scholar 

  • Yoda, A., Yoda, S., Sarrif, A.M.: Structure-activity relationships of cardiotonic steroids for the inhibition of sodium-and potassium-dependent adenosine triphosphatase. 2. Association rate constants of various enzyme-cardiac glycoside complexes. Mol. Pharmacol. 9, 766–773 (1973)

    CAS  Google Scholar 

  • Yoda, S., Sarrif, A.M., Yoda, A.: Structure-activity relationships of cardiotonic steroids for the inhibition of sodium-and potassium-dependent adenosine triphosphatase. 4. Dissociation rate constants for complexes of the enzyme with cardiac oligodigitoxides. Mol. Pharmacol. 11, 647–652 (1975)

    CAS  Google Scholar 

  • Yoda, A., Yoda, S.: Structure-activity relationships of cardiotonic steroids for the inhibition of sodium-and potassium-dependent adenosine triphosphatase. 5. Dissociation rate constants of digitoxin acetates. Mol. Pharmacol. 11, 653–662 (1975)

    CAS  Google Scholar 

  • Yoda, A.: Binding of digoxigenin to sodium-and potassium-dependent adenosine triphosphatase. Mol. Pharmacol. 12, 399–408 (1976)

    CAS  Google Scholar 

  • Yoda, A., Yoda, S.: Association and dissociation rate constants of the complexes between various cardiac aglycones and sodium-and potassium-dependent adenosine triphosphatase formed in the presence of magnesium and phosphate. Mol. Pharmacol. 13, 352–361 (1977)

    CAS  Google Scholar 

  • Yoda, A., Yoda, S.: Influence of pH on the interaction of cardiotonic steroids with sodium-and potassium-dependent adenosine triphosphatase. Mol. Pharmacol. 14, 624–632 (1978)

    CAS  Google Scholar 

  • Zwaal, R.F.A.: Some aspects of structure-functions relationships in biological membranes. First European Symposium on Hormones and Cell Regulation, Dumont and Nunez (eds.), pp. 1–14. Elsevier/North-Holland: Biomedical Press 1977

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Erdmann, E. (1981). Influence of Cardiac Glycosides on their Receptor. In: Greeff, K. (eds) Cardiac Glycosides. Handbook of Experimental Pharmacology, vol 56 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68163-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68163-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68165-3

  • Online ISBN: 978-3-642-68163-9

  • eBook Packages: Springer Book Archive