Skip to main content

Productivity of Temperate, Deciduous and Evergreen Forests

  • Chapter
Physiological Plant Ecology IV

Part of the book series: Encyclopedia of Plant Physiology ((920,volume 12 / D))

Abstract

For the purposes of this discussion, temperate forest is regarded as occurring in broad latitudinal bands between the taiga towards the poles and the mediterranean flora towards the equator. Within these bands temperate forest occurs at moderate elevations below the altitudinal extremes of climate and associated alpine vegetation and away from the continental extremes of temperature and dryness. Temperatures are moderate, usually not falling below about -15 °C in winter, and the soil freezes for less than 3 months. In summer temperatures rarely exceed 35 °C, precipitation exceeds ca. 400 mm and is fairly uniformly distributed through the year so that a dry season lasts for less than ca. 3 months. A more exact definition can be found in Walter (1970).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber JD (1979) Foliage-height profiles and succession in northern hardwood forests. Ecology 60:18–23

    Google Scholar 

  • Ågren GI, Axelsson B (1980) PT — a tree growth model. In: Persson T (ed) Structure and function of northern coniferous forests — an ecosystem study. Ecol Bull (Stockholm) 32:525–536

    Google Scholar 

  • Ågren GI, Axelsson B, Flower-Ellis JGK, Linder S, Persson H, Staaf H, Troeng E (1980) Annual carbon budget for a young Scots pine. In: Persson T (ed) Structure and function of northern coniferous forests — an ecosystem study. Ecol Bull (Stockholm) 32:307–313

    Google Scholar 

  • Albrektson A (1980) Relations between tree biomass fractions and conventional silvicultural measurements. In: Persson T (ed) Structure and function of northern coniferous forests — an ecosystem study. Ecol Bull (Stockholm) 32:315–327

    Google Scholar 

  • Albrektson A, Aronsson A, Tamm CO (1977) The effect of forest fertilisation on primary production and nutrient cycling in forest ecosystems. Silva Fenn 11:233–239

    Google Scholar 

  • Anderson HW, Zsuffa L (1975) Yield and wood quality of hybrid cottonwood grown in a two-year rotation. Ont Div For Min Nat Res Rep 101:1–35

    Google Scholar 

  • Anderson MC (1964 a) Light relations of terrestrial plant communities and their measurement. Biol Rev 39:425–486

    Google Scholar 

  • Anderson MC (1964 b) Studies of the woodland light climate II. Seasonal variation in the light climate. J Ecol 52:643–663

    Google Scholar 

  • Anderson MC (1981) The geometry of leaf distribution in some south-eastern Australian forests. Agric Meteorol 25:195–205

    Google Scholar 

  • Aouni El MH, Mousseau M (1974) Relation d’échange de CO2 chez les aiguilles du pin noir d’Autriche (Pinus nigra Arn.) avec l’age, la teneur en chlorophylle et réassimilation. Photosynthetica 8:78–86

    Google Scholar 

  • Ashton DH (1976 a) Phosphorous in forest ecosystems at Beenak, Victoria. J Ecol 64:171–186

    CAS  Google Scholar 

  • Ashton DH (1976b) The development of even-aged stands of Eucalyptus regnons F. Muell in central Victoria. Aust J Bot 24:397–414

    Google Scholar 

  • Atkinson D (1980) The distribution and effectiveness of the roots of tree crops. Hortic Rev 2:424–490

    Google Scholar 

  • Attiwill PM (1979) Nutrient cycling in a Eucalyptus obliqua (L’Herit.) forest. III Growth, biomass and net primary production. Aust J Bot 27:439–458

    Google Scholar 

  • Attiwill PM, Guthrie HB, Leuning R (1978) Nutrient cycling in a Eucalyptus obliqua (L’Herit.) forest. I Litter production and nutrient return. Aust J Bot 26:79–91

    CAS  Google Scholar 

  • Barnes A, Hole CC (1978) A theoretical basis of growth and maintenance respiration. Ann Bot (London) 42:1217–1221

    Google Scholar 

  • Beadle CL, Neilson RE, Jarvis PG, Talbot H (1981) Photosynthesis as related to xylem water potential and carbon dioxide concentration in Sitka spruce. Physiol Plant 52:391–400

    Google Scholar 

  • Beadle CL, Talbot H, Jarvis PG (1982) Canopy structure and leaf area index in a mature Scots pine forest. Forestry 55:2–20

    Google Scholar 

  • Bennett KJ, Rook DA (1978) Stomatal and mesophyll resistance in two clones of Pinus radiata D. Don known to differ in transpiration and survival rate. Aust J Plant Physiol 5:201–230

    Google Scholar 

  • Berry JA, Downton WJS (1982) Environmental regulation of photosynthesis. In: Govindjee (ed) Photosynthesis II. Carbon metabolism and plant productivity. Academic Press, London New York, pp 263–343

    Google Scholar 

  • Black JN (1956) The distribution of solar radiation over the earth’s surface. Arch Meteorol Geophys Bioklimatol Ser B7:165–189

    Google Scholar 

  • Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377

    CAS  Google Scholar 

  • Boysen-Jensen P (1932) Die Stoffproduktion der Pflanzen. Fischer, Jena

    Google Scholar 

  • Bradbury IK, Malcolm DC (1978) Dry matter accumulation by Picea sitchensis seedlings during winter. Can J For Res 8:207–213

    Google Scholar 

  • Bray JR, Gorham E (1964) Litter production in forests of the world. Adv Ecol Res 2:101–157

    Google Scholar 

  • Brix H (1968) Influence of light intensity at different temperatures on rate of respiration of Douglas-fir seedlings. Plant Physiol 43:389–393

    PubMed  CAS  Google Scholar 

  • Büsgen M, Münch E (1931) The structure and life of forest trees. Translated by T. Thomson. Chapman and Hall Ltd., London

    Google Scholar 

  • Butler DR, Landsberg JJ (1981) Respiration rates of apple trees, estimated by CO2-efflux measurements. Plant Cell Environ 4:153–159

    Google Scholar 

  • Caemmerer von S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Google Scholar 

  • Carbon BA, Bartle GA, Murray AM (1979) Leaf area index of some eucalypt forests in south-west Australia. Aust For Res 9:323–326

    Google Scholar 

  • Christensen O (1977) Estimation of standing crop and turnover of dead wood in a Danish oak forest. Oikos 28:177–186

    Google Scholar 

  • Cooper JP (1975) Control of photosynthetic production in terrestrial systems. In: Cooper JP (ed) Photosynthesis and productivity in different environments. CUP, London, pp 593–621

    Google Scholar 

  • Crist JB, Dawson DH (1975) Anatomy and dry weight yields of two Populus clones grown under intensive culture. USDA For Serv Res Pap NC-224:1–15

    Google Scholar 

  • Deans JD (1979) Fluctuations of the soil environment and fine root growth in a young Sitka spruce plantation. Plant Soil 52:195–208

    Google Scholar 

  • Dougherty PM, Teskey RO, Phelps JE, Hinckley TM (1979) Net photosynthesis and early growth trends of a dominant white oak (Quercus alba L.). Plant Physiol 64:930–935

    PubMed  CAS  Google Scholar 

  • Dykstra GF (1974) Photosynthesis and carbon dioxide transfer resistance of lodgepole pine seedlings in relation to irradiance, temperature and water potential. Can J For Res 4:201–206

    Google Scholar 

  • Ehleringer JR, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants. Dependence on temperature, CO2 and O2 concentration. Plant Physiol 59:86–90

    PubMed  CAS  Google Scholar 

  • Emmingham WH, Waring RH (1977) An index of photosynthesis for comparing forest sites in western Oregon. Can J For Res 7:165–174

    Google Scholar 

  • Fischer RA (1983) Growth and yield of wheat. In: Potential productivity of field crops under different environments. Int Rice Res Inst, Manila (in press)

    Google Scholar 

  • Flower-Ellis JGK, Persson H (1980) Investigation of structural properties and dynamics of Scots pine stands. In: Persson T (ed) Structure and function of northern coniferous forests-an ecosystem study. Ecol Bull (Stockholm) 32:125–138

    Google Scholar 

  • Foote KC, Schaedle M (1976) Diurnal and seasonal patterns of photosynthesis and respiration by stems of Populus tremuloides Michx. Plant Physiol 58:651–655

    PubMed  CAS  Google Scholar 

  • Ford ED (1975) Competition and stand structure in some even-aged plant monocultures. J Ecol 63:311–333

    Google Scholar 

  • Ford ED (1982) High productivity by a pole stage Sitka spruce stand and its relation to canopy structure. Forestry 55:1–17

    Google Scholar 

  • Ford ED, Deans JD (1977) Growth of a Sitka spruce plantation: spatial distribution and seasonal fluctuations of lengths, weights and carbohydrate concentrations of fine roots. Plant Soil 47:463–485

    Google Scholar 

  • Ford ED, Newbould PJ (1971) The leaf canopy of coppiced deciduous woodland. I Development and structure. J Ecol 59:843–862

    Google Scholar 

  • Franklin RT (1970) Insect influences of the forest canopy. In: Reichle DE (ed) Analysis of temperate forest ecosystems. Ecol Stud Vol I. Springer, Berlin Heidelberg New York, pp 86–99

    Google Scholar 

  • Fuchs M, Schulze ED, Fuchs MI (1977) Spacial distribution of photosynthetic capacity and performance in a mountain spruce forest in northern Germany II. Climatic control of carbon dioxide uptake. Oecologia 29:329–340

    Google Scholar 

  • Fujimori J, Kawanabe S, Saito H, Grier CC, Shidei T (1976) Biomass and primary production in forests of three major vegetation zones of the northwestern United States. J Jpn For Soc 58:360–373

    Google Scholar 

  • Fujimori T (1971) Primary productivity of a young Tsuga heterophylla stand and some speculations about biomass of forest communities on the Oregon coast. USDA For Serv Res Pap PNW-123:1–11

    Google Scholar 

  • Fujimori T (1977) Stem biomass and structure of a mature Sequoia sempervirens stand on the Pacific coast of northern California. J Jpn For Soc 59:435–441

    Google Scholar 

  • Gallagher JN, Biscoe PV (1978) Radiation absorption, growth and yield of cereals. J Agric Sci 91:47–60

    Google Scholar 

  • Gholz HL, Fitz FK, Waring RH (1976) Leaf area difference associated with old-growth forest communities in the western Oregon Cascades. Can J For Res 6:49–57

    Google Scholar 

  • Gordon JC (1975) The productive potential of woody plants. Iowa State J Res 49:267–274

    Google Scholar 

  • Grace J (1980) Some effects of wind on plants. In: Grace J, Ford ED, Jarvis PG (eds) Plants and their atmospheric environment. Blackwell, Oxford, pp 31–56

    Google Scholar 

  • Grier CC, Logan RS (1977) Old-growth Pseudotsuga menziesii communities of a western Oregon watershed: biomass distribution and production budgets. Ecol Monogr 47:373–400

    Google Scholar 

  • Grier CC, Running SW (1977) Leaf area of mature north-western coniferous forests: relation to a site water balance. Ecology 58:893–899

    Google Scholar 

  • Grier CC, Vogt KH, Keyes MR, Edmonds RL (1981) Biomass distribution and above-and below-ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades. Can J For Res 11:155–166

    Google Scholar 

  • Hagem O (1962) Additional observations on the rate of dry matter increase of coniferous seedlings in winter. Investigations in an oceanic climate. Medd Vestl Forstl Forsoeksstn 37:1–253

    Google Scholar 

  • Hanley DP (1976) Tree biomass and productivity estimated for three habitat types of northern Idaho. Univ Idaho Coll For Wildl Range Sci Bull 14:1–5

    Google Scholar 

  • Harris WF, Kinerson RS, Edwards NT (1977) Comparison of belowground biomass of natural deciduous forest and loblolly pine plantations. Pedobiologia 17:369–381

    Google Scholar 

  • Hathaway RL (1980) Effect of planting density and harvesting cycle on biomass production of willows. Min Works Devel NZ Aokautere Sci Cent Rep 16:1–6

    Google Scholar 

  • Havranek WM (1981) Stammatmung, Dickenwachstum und Photosynthese einer Zirbe (Pinus cembra L.) an der Waldgrenze. In: Dickenwachstum der Bäume, Mitteil Forst. Bundesversuchsanstalt, Wien 142:443–468

    Google Scholar 

  • Head GC (1973) Shedding of roots. In: Kozlowski TT (ed) Shedding of plant parts. Academic Press, London New York, pp 237–293

    Google Scholar 

  • Helms JA (1970) Summer net photosynthesis of ponderosa pine in its natural environment. Photosynthetica 4:243–253

    Google Scholar 

  • Hinckley TM, Dougherty PM, Lassoie JP, Roberts JE, Teskey RO (1979) A severe drought: impact on tree growth, phenology, net photosynthetic rate and water relations. Am Midl Nat 102:307–316

    Google Scholar 

  • Hinckley TM, Teskey RO, Duhme F, Richter H (1981) Temperate hardwood forests. In: Kozlowski TT (ed) Water deficits and plant growth, vol VI. Academic Press, London New York, pp 153–208

    Google Scholar 

  • Hole CC, Barnes A (1980) Maintenance and growth components of carbon dioxide efflux from growing pea fruits. Ann Bot 45:295–307

    CAS  Google Scholar 

  • Horie T (1977) Simulation of sunflower growth I. Formulation and parametrisation of dry matter production, leaf photosynthesis, respiration and partitioning of photosynthates. Bull Natl Inst Agric Sci Ser A 24:45–70

    Google Scholar 

  • Houssard C, Escarre J (1981) Mesures de la quantité relative de feuillage par strates dans des taillis de chêne pubescent. Ann Sci For 38:449–468

    Google Scholar 

  • Hsiao TC, Acevedo E, Fereres E, Henderson DW (1976) Stress metabolism — water stress, growth, and osmotic adjustment. Philos Trans R Soc London Ser B 273:479–500

    Google Scholar 

  • Hutchison BA, Matt DR (1976) Beam enrichment of diffuse radiation in a deciduous forest. Agrie Meteorol 17:93–110

    Google Scholar 

  • Hutchison BA, Matt DR (1977) The distribution of solar radiation within a deciduous forest. Ecol Monogr 47:185–207

    Google Scholar 

  • Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc London Ser B 273:593–610

    CAS  Google Scholar 

  • Jarvis PG (1980) Stomatal conductance, gaseous exchange and transpiration. In: Grace J, Ford ED, Jarvis PG (eds) Plants and their atmospheric environment. Blackwell, Oxford, pp 175–204

    Google Scholar 

  • Jarvis PG (1981) Production efficiency of coniferous forest in the U.K. In: Johnson CB (ed) Physiological processes limiting plant productivity. Butterworth, London, pp 81–107

    Google Scholar 

  • Jarvis PG, James GB, Landsberg JJ (1976) Coniferous forest. In: Monteith JL (ed) Vegetation and the atmosphere 2, Case studies. Academic Press, London New York, pp 171–240

    Google Scholar 

  • Johansson N (1933) The relation between the tree-stem’s respiration and its growth. Sven Skogsvardsfoer Tidskr 10:53–134 (in Swedish with English summary)

    Google Scholar 

  • Kestemont P (1977) Biomasse et productivité primaire de la douglasière de Mirwart. (Plantation de Pseudotsuga menziesii). In: Duvigneaud P, Kestemont P (eds) Productivité biologique en Belgique. Duculot, Paris, pp 177–189

    Google Scholar 

  • Kestemont P, Duvigneaud P, Paulet E (1977) Biomasse et productivité primaire d’une pessière à Mirwart. (Plantation de Picea abies). In: Duvigneaud P, Kestemont P (eds) Productivité biologique en Belgique. Duculot, Paris, pp 161–176

    Google Scholar 

  • Keyes MR, Grier CC (1981) Above-and below-ground net production in 40-year-old Douglas fir stands on low and high productivity sites. Can J For Res 11:599–605

    Google Scholar 

  • Kinerson RS (1975) Relationship between plant surface area and respiration in loblolly pine. J Appl Ecol 12:965–971

    Google Scholar 

  • Kinerson RS (1979) Studies of photosynthesis and diffusion resistance in paper birch (Betula papyrifera Marsh.) with synthesis through computer simulation. Oecologia (Berlin) 39:37–49

    Google Scholar 

  • Kinerson RS, Higginbotham KO, Chapman RC (1974) The dynamics of foliage distribution within a forest canopy. J Appl Ecol 11:347–353

    Google Scholar 

  • Kinerson RS, Ralston CW, Wells CG (1977) Carbon cycling in a loblolly pine plantation. Oecologia 29:1–10

    Google Scholar 

  • Kira T (1975) Primary production of forests. In: Cooper JP (ed) Photosynthesis and productivity in different environments. CUP, London

    Google Scholar 

  • Kira T (1977) Production rates. In: Shidei T, Kira T (eds) Primary productivity of Japanese forests. JIBP Synth, Tokyo 16:101–114

    Google Scholar 

  • Kira T, Shidei T (1967) Primary production and turnover of organic matter in different forest ecosystems of the western Pacific. Jpn J Ecol 17:70–87

    Google Scholar 

  • Kira T, Yabuki K (1978) Primary production rates in the minamata forest. In: Kira T, Ono Y, Hosokawa T (eds) Biological production in a warm-temperate evergreen oak forest of Japan. JIBP Synth, Tokyo 18:131–139

    Google Scholar 

  • Kira T, Shinozaki K, Hozumi K (1969) Structure of forest canopies as related to their primary productivity. Plant Cell Physiol 10:129–142

    Google Scholar 

  • Kramer PJ, Kozlowski TT (1979) Physiology of woody plants, 2nd edn. Academic Press, London New York

    Google Scholar 

  • Kriedemann PE, Barrs HD (1981) Citrus orchards. In: Kozlowski TT (ed) Water deficits and plant growth Vol VI. Academic Press, London New York, pp 325–417

    Google Scholar 

  • Künstle E, Mitscherlich G (1975) Photosynthese, Transpiration und Atmung in einem Mischbestand im Schwarzwald. I. Photosynthese. Allg Forst Jagdztg 146:45–62

    Google Scholar 

  • Kuruoiwa S (1970) Total photosynthesis of foliage in relation to inclination of leaves. In: Setlik I (ed) Prediction and measurement of photosynthetic productivity. Proc Trebon Symp. PUDOC, Wageningen, pp 79–89

    Google Scholar 

  • Kusumoto T (1978) Photosynthesis and respiration of leaves of main component species. In: Kira T, Ono Y, Hosokawa T (eds) Biological production in a warm-temperate evergreen oak forest of Japan. JIBP Synth, Tokyo 18:88–98

    Google Scholar 

  • Landsberg JJ, Jones HG (1981) Apple orchards. In: Kozlowski TT (ed) Water deficits and plant growth Vol VI. Academic Press, London New York, pp 419–469

    Google Scholar 

  • Larcher W (1969) The effect of environmental and physiological variables on the carbon dioxide gas exchange of trees. Photosynthetica 3:167–198

    CAS  Google Scholar 

  • Larcher W (1980) Physiological plant ecology, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ledig FT, Drew AP and Clark JG (1976) Maintenance and constructive respiration, photosynthesis and net assimilation rate in seedlings of pitch pine (Pinus rigida Mill.). Ann Bot 40:289–300

    CAS  Google Scholar 

  • Legg BJ, Day W, Lawlor DW, Parkinson KJ (1979) The effects of drought on barley growth: models and measurements showing the relative importance of leaf area and photosynthetic rate. J Agric Sci 92:703–716

    Google Scholar 

  • Leverenz JW (1981) Photosynthesis and transpiration in large forest-grown Douglas-fir: diurnal variation. Can J Bot 59:349–356

    Google Scholar 

  • Leverenz JW, Jarvis PG (1979) Photosynthesis in Sitka spruce VIII. The effects of light flux density and direction on the rate of net photosynthesis and the stomatal conductance of needles. J Appl Ecol 16:919–932

    CAS  Google Scholar 

  • Leverenz JW, Jarvis PG (1980) Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.) IX. The relative contribution made by needles at various positions on the shoot. J Appl Ecol 17:59–68

    Google Scholar 

  • Lieth H (1970) Phenology in productivity studies. In: Reichle DE (ed) Analysis of temperate forest ecosystems. Ecol Stud, vol I. Springer, Berlin Heidelberg New York, pp 29–46

    Google Scholar 

  • Linder S (1979) Photosynthesis and respiration in conifers: a classified reference list 1891–1977. Stud For Suec 149:1–71

    Google Scholar 

  • Linder S, Lohammar T (1981) Amount and quality of information on CO2-exchange required for estimating annual carbon balance of coniferous trees. In: Linder S (ed) Understanding and predicting tree growth. Stud For Suec 160:73–87

    Google Scholar 

  • Linder S, Rook DA (1983) Effects of mineral nutrition on carbon dioxide exchange and partitioning of carbon in trees. In: Bowen GD, Nambier EKS (eds) Nutrition of forest trees in plantations. Academic Press (in press)

    Google Scholar 

  • Linder S, Troeng E (1980) Photosynthesis and transpiration of 20-yr-old Scots pine. In: Persson T (ed) Structure and function of northern coniferous forests — an ecosystem study. Ecol Bull 32:165–181

    Google Scholar 

  • Linder S, Troeng E (1981) The seasonal variation in stem and coarse root respiration of a 20-yr-old Scots pine (Pinus sylvestris L.) In: Tranquillini W (ed) Radial growth in trees. Mitt Forstl Bundes-Versuchsanst Wien 142:125–139

    Google Scholar 

  • Little CMA, Loach K (1975) Effect of gibberellic acid on growth and photosynthesis in Abies balsamea. Can J Bot 53:1805–1810

    CAS  Google Scholar 

  • Long JN, Turner J (1975) Aboveground biomass of understory and overstory in an age sequence of four Douglas-fir stands. J Appl Ecol 12:179–188

    Google Scholar 

  • Loomis RS, Rabbinge R, Ng E (1979) Explanatory models in crop physiology. Annu Rev Plant Physiol 30:339–367

    Google Scholar 

  • Ludlow MM, Jarvis PG (1971) Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.). I. General characteristics. J Appl Ecol 8:925–953

    Google Scholar 

  • Lyr H, Hoffmann G (1967) Growth rates and growth periodicity of tree roots. Int Rev For Res 2:181–236

    Google Scholar 

  • Madgwick HAI (1981) Above-ground dry-matter content of a young close-spaced Pinus radiata stand. N Z J For Sci 11:203–209

    Google Scholar 

  • Madgwick HAI, Jackson DS, Knight PJ (1977) Above-ground dry matter, energy and nutrient contents of trees in an age series of Pinus radiata plantations. N Z J For Sci 7:445–468

    CAS  Google Scholar 

  • Madgwick HAI, Beets P, Gallagher S (1981) Dry matter accumulation, nutrient and energy content of the above-ground portions of 4-yr-old stands of Eucalyptus nitens and E. fastigata. N Z J For Sci 11:53–59

    Google Scholar 

  • Marks PL (1974) The role of pin cherry (Prunus pennsylvanica L.) in the maintenance of stability in northern hardwood ecosystems. Ecol Monogr 44:73–88

    Google Scholar 

  • Marks PL, Borman FH (1972) Revegetation following forest cutting: mechanisms for return to steady-state nutrient cycling. Science 172:914–915

    Google Scholar 

  • Marshall B, Biscoe PV (1980) A model for C3 leaves describing the dependence of net photosynthesis on irradiance I. Derivation. J Exp Bot 31:29–39

    CAS  Google Scholar 

  • McCree KJ (1970) An equation for the rate of respiration of white clover plants grown under controlled conditions. In: Setlik I (ed) Production and measurement of photo-synthetic productivity. Proc Trebon Symp. PUDOC, Wageningen, pp 221–229

    Google Scholar 

  • McCree KJ (1974) Equations for the rate of dark respiration of white clover and grain sorghum, as functions of dry weight, photosynthetic rate and temperature. Crop Sci 14:509–514

    Google Scholar 

  • McCree KJ, Silsbury JM (1978) Growth and maintenance requirements for subterranean clover. Crop Sci 25:53–58

    Google Scholar 

  • McLaughlin SB, Shriner DS (1980) Allocation of resources to defense and repair. In: Horsfall JG, Cowling EB (eds) Plant disease Vol V. Academic Press, London New York, pp 407–431

    Google Scholar 

  • Miller HG, Miller JD (1976) Effect of nitrogen supply on net primary production in Corsican pine. J Appl Ecol 13:249–256

    CAS  Google Scholar 

  • Miller HG, Cooper JM, Miller JD (1976) Effect of nitrogen supply on nutrients in litter fall and crown leaching in a stand of Corsican pine. J Appl Ecol 13:233–248

    CAS  Google Scholar 

  • Miller PC (1967) Leaf temperatures, leaf orientation and energy exchange in quaking aspen (Populus tremuloides) and Gambell’s oak (Quercus gambellii) in central Colorado. Oecol Plant 2:241–270

    Google Scholar 

  • Minderman G (1967) The production of organic matter and the utilisation of solar energy by a forest plantation of Pinus nigra var. austriaca. Pedobiologia 7:11–22

    Google Scholar 

  • Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–766

    Google Scholar 

  • Monteith JL (1977) Climate and efficiency of crop production in Britain. Philos Trans R Soc London Ser B 281:277–294

    Google Scholar 

  • Monteith JL (1981) Does light limit crop production? In: Johnson CB (ed) Physiological processes limiting plant productivity. Butterworth, London, pp 23–38

    Google Scholar 

  • Mukammal EI (1971) Some aspects of radiant energy in a red pine forest. Arch Met Geophys Bioklimatol Ser B 19:29–52

    Google Scholar 

  • Müller D, Nielsen J (1965) Production brutes pertes par respiration et production nette dans la forêt ombrophile tropicale. Forstl Forsogsvaes Dan 29:69–160

    Google Scholar 

  • Negisi K (1975) Diurnal fluctuations of CO2 release from the stem bark of standing young Pinus densiflora trees. J Jpn For Soc 57:375–383

    Google Scholar 

  • Negisi K (1977) Respiration in forest trees. In: Shidei T, Kira T (eds) Primary productivity of Japanese forest. JIBP Synth, Tokyo 16:86–99

    Google Scholar 

  • Negisi K (1978) Daytime depression in bark respiration and radial shrinkage in stem of a standing young Pinus densiflora tree. J Jpn For Soc 60:380–382

    Google Scholar 

  • Neilson RE, Ludlow MM, Jarvis PG (1972) Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.) II. Response to temperature. J Appl Ecol 9:721–745

    Google Scholar 

  • Newbould PJ (1967) Methods for estimating the primary production of forests. Blackwell, Oxford

    Google Scholar 

  • Nishioka M, Kirita H (1978) Litterfall. In: Kira T, Ono Y, Hosokawa T (eds) Biological production in a warm-temperate evergreen oak forest of Japan. JIBP Synth, Tokyo 18:231–238

    Google Scholar 

  • Norman JM (1975) Radiative transfer in vegetation. In: De Vries DA, Afgan NH (eds) Heat and mass transfer in the biosphere 1 Transfer processes in plant environment. Scripta Book, Washington, DC, pp 187–205

    Google Scholar 

  • Norman JM (1978) Modelling the complete crop canopy. In: Barfield BJ, Gerber JF (eds) Modification of the aerial environment of plants. Am Soc Agric Eng, St Joseph, Michigan, pp 249–277

    Google Scholar 

  • Norman JM (1980) Interfacing leaf and canopy light interception models. In: Hesketh JD, Jones JW (eds) Predicting photosynthesis for ecosystem models II. CRC, Boca Raton, pp 49–67

    Google Scholar 

  • Norman JM (1981) Simulation of microclimates. In: Hatfield J (ed) Application of biometeorology to integrated pest management. Academic Press, London New York, pp 65–99

    Google Scholar 

  • Norman JM, Jarvis PG (1974) Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.) III. Measurement of canopy structure and interception of radiation. J Appl Ecol 11:375–398

    Google Scholar 

  • Norman JM, Jarvis PG (1975) Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.) V. Radiation penetration theory and a test case. J Appl Ecol 12:839–878

    Google Scholar 

  • Norman JM, Welles J (1983) Radiative transfer in an array of canopies. Agron J (in press)

    Google Scholar 

  • Norman JM, Miller EE, Tanner CB (1971) Light intensity and sunfleck size distributions in plant canopies. Agron J 63:743–748

    Google Scholar 

  • Norman JM, Perry SG, Fraser AB, Mach W (1979) In: 14th conference on agriculture and forest meteorology. Am Meteorol Soc, Boston, Mass, pp 184–185

    Google Scholar 

  • Ovington JD (1956) The form, weights and productivity of tree species in close stands. New Phytol 55:289–304

    Google Scholar 

  • Ovington JD (1957) Dry matter production in Pinus sylvestris. Ann Bot (London) 21:257–314

    Google Scholar 

  • Ovington JD (1962) Quantitative ecology and the woodland ecosystem concept. In: Cragg JB (ed) Adv Ecol Res 1:103–192

    Google Scholar 

  • Parker J (1978) Seasonal variation in photosynthesis in black oak twigs. Photosynthetica 12:423–427

    Google Scholar 

  • Parry WH (1969) A study of the relationship between defoliation of Sitka spruce and population levels of Elatobium abietinum (Walker). Forestry 42:69–82

    Google Scholar 

  • FWT (1975 a) The cost of maintenance processes in plant cells. Ann Bot 39:77–92

    CAS  Google Scholar 

  • Penning de Vries FWT (1975b) Use of assimilates in higher plants. In: Cooper JP (ed) Photosynthesis and productivity in different environments. CUP, London, pp 459–507

    Google Scholar 

  • Penning de Vries FWT, Brunsting AHM, Laar van AH (1974) Products requirements and efficiency of biosynthesis, a quantitative approach. J Theor Biol 45:339–377

    PubMed  CAS  Google Scholar 

  • Penning de Vries FWT, Witlage JM, Kremer D (1979) Rates of respiration and of increase in structural dry matter in young wheat, ryegrass and maize plants in relation to temperature, to water stress and to sugar content. Ann Bot 44:595–609

    Google Scholar 

  • Persson H (1978) Root dynamics in a young Scots pine stand in central Sweden. Oikos 30:508–519

    Google Scholar 

  • Persson H (1979) Fine root production, mortality and decomposition in forest ecosystems. Vegetatio 41:101–109

    Google Scholar 

  • Persson H (1980) Death and replacement of fine roots in a mature Scots pine stand. In: Persson T (ed) Structure and function of northern coniferous forests — an ecosystem study. Ecol Bull (Stockholm) 32:251–260

    Google Scholar 

  • Rafes PM (1970) Estimation of the effects of phytophagous insects on forest production. In: Reichle DE (ed) Analysis of temperate forest ecosystems. Ecol Stud Vol 1. Springer, Berlin Heidelberg New York, pp 100–106

    Google Scholar 

  • Rauner JL (1976) Deciduous forests. In: Monteith JL (ed) Vegetation and the atmosphere Vol II. Case studies. Academic Press, London New York, pp 241–264

    Google Scholar 

  • Reed KL, Hamerly ER, Dinger BE, Jarvis PG (1976) An analytical model for field measurements of photosynthesis. J Appl Ecol 13:925–942

    Google Scholar 

  • Rook DA, Corson MJ (1978) Temperature and irradiance and the total daily photosynthetic production of a Pinus radiata tree. Oecologia 36:371–382

    Google Scholar 

  • Saito H (1977) Litterfall. In: Shidei T, Kira T (eds) Primary productivity of Japanese forests. JIBP Synth, Tokyo 16:65–75

    Google Scholar 

  • Sanantonio D (1979) Seasonal dynamics of fine roots in mature stands of Douglas fir of different water regimes — a preliminary report. In: Riedacker A, Gagnaire-Michard J (eds) Physiologie des racines et symbioses. C R Reunions Groupe d’Etude Racines, Nancy, pp 190–203

    Google Scholar 

  • Sanantonio D, Hermann RK, Overton WS (1977) Root biomass studies in forest ecosystems. Pedobiologia 17:1–31

    Google Scholar 

  • Satoo T (1970) A synthesis of studies by the harvest method: primary production relations in the temperate deciduous forests of Japan. In: Reichle DE (ed) Analysis of temperate forest ecosystems. Ecol Stud Vol I. Springer, Berlin Heidelberg New York, pp 55–72

    Google Scholar 

  • Schönau APG, Pennefather M (1975) A first account of profits at harvesting as a result of fertilising Eucalyptus grandis at time of planting in Southern Africa. S Afr For J 94:29–35

    Google Scholar 

  • Schulze E-D (1970) Der CO2-Gaswechsel der Buche (Fagus silvatica L.) in Abhängigkeit von den Klimafaktoren im Freiland. Flora 159:177–232

    Google Scholar 

  • Schulze E-D (1981) Carbon gain and wood production in trees of deciduous beech (Fagus sylvatica) and trees of evergreen spruce (Picea excelsa). In: Tranquillini W (ed) Radial growth in trees. Mitt Forstl Bundes-Versuchsanst Wien 142:105–123

    Google Scholar 

  • Schulze E-D, Mooney MA, Dunn EL (1967) Wintertime photosynthesis of bristlecone pine (Pinus aristata) in the White Mountains of California. Ecology 48:1044–1047

    Google Scholar 

  • Schulze E-D, Fuchs MI, Fuchs M (1977 a) Spacial distribution of photo synthetic capacity and performance in a mountain spruce forest of northern Germany I. Biomass distribution and daily CO2 uptake in different crown layers. Oecologia 29:43–61

    Google Scholar 

  • Schulze E-D, Fuchs M, Fuchs MI (1977 b) Spacial distribution of photosynthetic capacity and performance in a mountain spruce forest of northern Germany III. The significance of the evergreen habit. Oecologia 30:239–248

    Google Scholar 

  • Sesták Z, Jarvis PG and Catsky J (1971) Criteria for the selection of suitable methods. In: Sesták Z, Catsky J, Jarvis PG (eds) Plant photosynthetic production: Manual of methods. Junk, The Hague

    Google Scholar 

  • Shepard RK (1975) Radial distribution of corticular photosynthate in stems of big tooth and trembling aspen. For Sci 21:370–372

    Google Scholar 

  • Shinozaki K, Kira T (1977) Canopy structure and light utilization. In: Shidei T, Kira T (eds) Primary productivity of Japanese forests. JIBP Synth, Tokyo 16:75–86

    Google Scholar 

  • Silsbury JH (1979) Growth, maintenance and nitrogen fixation of nodulated plants of subterranean clover (Trifolium subterraneum L.) Aust J Plant Physiol 6:165–176

    CAS  Google Scholar 

  • Slatyer RO, Ferrar PJ (1977) Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. ex Spreng. II Effects of growth temperature under controlled conditions. Aust J Plant Physiol 4:289–299

    CAS  Google Scholar 

  • Sollins P (1982) Input and decay of coarse woody debris in coniferous forest stands in western Oregon and Washington. Can J For Res 12:18–28

    Google Scholar 

  • Stephens GR (1969) Productivity of red pine I. Foliage distribution in tree crown and stand canopy. Agric Meteorol 6:275–282

    Google Scholar 

  • Switzer GL, Nelson LE, Smith WH (1966) The characterisation of dry matter and nitrogen accumulation by loblolly pine (Pinus taeda L.). Soil Sci Soc Am Proc 30:114–119

    CAS  Google Scholar 

  • Szeicz G (1974) Solar radiation for plant growth. J Appl Ecol 11:617–636

    Google Scholar 

  • Tadaki Y (1966) Some discussions on the leaf biomass of forest stands and trees. Bull Gov For Exp Stn Tokyo 184:1–35

    Google Scholar 

  • Tadaki Y (1977) Leaf biomass. In: Shidei T, Kira T (eds) Productivity of terrestrial communities. JIBP Synth Tokyo 16:39–44

    Google Scholar 

  • Tamm CO (1979) Nutrient cycling and productivity of forest ecosystems. In: Leaf AL (ed) Impact of intensive harvesting on forest nutrient cycling. State Univ New York, Coll Environ Sci For. Syracuse, New York, pp 2–21

    Google Scholar 

  • Thornley JHM (1976) Mathematical models in plant physiology. Academic Press, London New York

    Google Scholar 

  • Thornley JHM (1977) Growth, maintenance and respiration: a reinterpretation. Ann Bot 41:1191–1203

    Google Scholar 

  • Thorpe MR, Saugier B, Auger S, Berger A, Methy M (1978) Photosynthesis and transpiration of an isolated tree: model and validation. Plant Cell Environ 1:269–277

    Google Scholar 

  • Thorpe MR, Warrit B, Landsberg JJ (1980) Responses of apple leaf stomata: a model for single leaves and a whole tree. Plant Cell Environ 3:23–27

    Google Scholar 

  • Tranquillini W (1959) Die Stoffproduktion der Zirbe (Pinus cembra L.) an der Waldgrenze während eines Jahres. Planta 54:107–151

    CAS  Google Scholar 

  • Tranquillini W, Schütz W (1970) Über die Rindenatmung einiger Bäume an der Waldgrenze. Zentralbl Ges Forstwes 87:42–60

    Google Scholar 

  • Troeng E, Linder S (1982a) Gas exchange of a 20-yr-old stand of Scots pine I. Net photosynthesis of current and one-yr-old shoots between and within seasons. Physiol Plant 54:7–14

    CAS  Google Scholar 

  • Troeng E, Linder S (1982 b) Gas-exchange in a twenty-yr-old stand of Scots pine II. Variation in net photosynthesis and transpiration within and between trees. Physiol Plant 54:15–23

    CAS  Google Scholar 

  • Tsel’niker YL (1979) Resistances to CO2 uptake at light saturation in forest tree seedlings at different adaptation to shade. Photosynthetica 13:124–129

    Google Scholar 

  • Ungs MJ (1981) Distribution of light within the crown of an open-grown Douglas-fir. PhD Thesis, Oregon State Univ, Corvallis, Oregon

    Google Scholar 

  • Varley GC (1970) The concept of energy flow applied to a woodland community. In: Watson A (ed) Animal populations in relation to their food resources. Blackwell, Oxford

    Google Scholar 

  • Varley GC, Gradwell GR, Hassell MP (1973) Insect population ecology, an analytical approach. Blackwell, Oxford

    Google Scholar 

  • Vyskot M (1979) Biomass of the tree layer of a spruce forest in the Bohemian uplands. In: Stability of spruce forest ecosystems MAB. UNESCO, Brno, pp 135–167

    Google Scholar 

  • Waggoner PE, Turner NC (1971) Transpiration and its control by stomata in a pine forest. Bull Conn Agric Exp Stn 726:1–87

    Google Scholar 

  • Walter H (1970) Vegetationszonen und Klima. Ulmer, Stuttgart

    Google Scholar 

  • Waring RH, Franklin JF (1979) Evergreen coniferous forests of the Pacific northwest. Science 204:1380–1386

    PubMed  CAS  Google Scholar 

  • Waring RH, Emmingham WH, Gholz HL, Grier CC (1978) Variation in maximum leaf area of coniferous forests in Oregon and its ecological significance. For Sci 24:131–140

    Google Scholar 

  • Watson RL, Landsberg JJ, Thorpe MR (1978) Photosynthetic characteristics of the leaves of “Golden Delicious” apple trees. Plant Cell Environ 1:51–58

    CAS  Google Scholar 

  • Watts WR, Neilson RE, Jarvis PG (1976) Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.) VII. Measurement of stomatal conductance and 14CO2 uptake in forest canopy. J Appl Ecol 13:623–638

    Google Scholar 

  • Westman WE, Whittaker RH (1975) The pygmy forest region of northern California: studies on biomass and primary productivity. J Ecol 63:493–520

    Google Scholar 

  • Whitehead D, Jarvis PG (1981) Coniferous forests and plantations. In: Kozlowski TT (ed) Water deficits and plant growth, VI. Academic Press, London New York, pp 49–152

    Google Scholar 

  • Whittaker RH (1966) Forest dimensions and production in the Great Smokey Mountains. Ecology 47:103–121

    Google Scholar 

  • Whittaker RM, Woodwell GM (1967) Surface area relations of woody plants and forest communities. Am J Bot 54:931–939

    Google Scholar 

  • Wiebe H (1975) Photosynthesis in wood. Physiol Plant 33:245–246

    Google Scholar 

  • Wit CT de (1965) Photosynthesis of leaf canopies. Wageningen Inst Biochem Chem Res Field Crops Herbage, Agrie Res Rep 663

    Google Scholar 

  • Woodman JN (1971) Variation of net photosynthesis within the crown of a large forest-grown conifer. Photosynthetica 5:50–54

    Google Scholar 

  • Woodwell GM, Botkin DB (1970) Metabolism of terrestrial ecosystems: the Brookhaven approach. In: Reichle DE (ed) Analysis of temperate forest ecosystems. Ecol Stud Vol 1. Springer, Berlin Heidelberg New York, pp 73–85

    Google Scholar 

  • Woolley JT (1971) Reflectance and transmittance of light by leaves. Plant Physiol 47:656–662

    PubMed  CAS  Google Scholar 

  • Yoda K (1978) Estimation of community respiration. In: Kira T, Ono Y, Hosokawa T (eds) Biological production in a warm-temperate evergreen oak forest of Japan. JIBP Synth, Tokyo 18:112–131

    Google Scholar 

  • Yoda K, Shinozaki K, Ogawa H, Hozumi K, Kira T (1965) Estimation of the total amount of respiration in woody organs of tree and forest communities. J Biol Osaka City Univ 16:15–26

    Google Scholar 

  • Ziegler H (1957) Über den Gaswechsel verholzter Achsen. Flora 144:229–250

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Jarvis, P.G., Leverenz, J.W. (1983). Productivity of Temperate, Deciduous and Evergreen Forests. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (eds) Physiological Plant Ecology IV. Encyclopedia of Plant Physiology, vol 12 / D. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68156-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68156-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68158-5

  • Online ISBN: 978-3-642-68156-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics