Skip to main content

Morphologic Analysis of Tubular Transport

  • Conference paper
Renal Transport of Organic Substances

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Transporting epithelia are layers of cells which separate compartments with different composition. Any epithelium therefore represents a barrier, which on the one hand prevents equilibration and on the other hand provides the transportation of substances from one side to the other and thus permanently contributes to the maintenance in composition differences between the compartments being separated. The transporting epithelium of the kidneys’ functional units, the nephrons, is single-layered and composed of polarized cells (Fig. 1). The apical or luminal pole directly contacts the urinary space, whereas the basal pole faces the interstitial fluid and is further attached to the basement membrane which stabilizes this tubular type of epithelium. If one traces a nephron from its beginning at the renal corpuscle down to the renal papilla, it must be recognized that the epithelium changes its assembly quite drastically. Therefore, we may divide the nephron in a sequence of segments each assembled by different cell types. From studies performed over the last decade we know that these various types of epithelium are confined to sometimes very differentiated transport mechanisms. By this reason we must pose the question: What does cellular or epithelial morphology tell us about transport performance? In fact we must confess that there are only a very few clearcut morphologic correlates to transport and only our experience, also obtained from studies on other transporting epithelia, leads to this correlation. The most prominent correlate is an enlarged cell surface at the basal part produced by folds or interdigitations of cells and a surface enriched in glycoproteins — a glycocalyx — at the apical side.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carone FA, Peterson DR, Oparil S, Pullman ThN (1979) Renal tubular transport and catabo- lism of proteins and peptides. Kidney Int 16:271–278

    Article  PubMed  CAS  Google Scholar 

  2. Claude Ph, Goodenough DA (1973) Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J Cell Biol 58:390–400

    Article  PubMed  CAS  Google Scholar 

  3. Cope FW (1969) Nuclear magnetic resonance evidence using D20 for structured water in muscle and brain. Biophys J 9:303–310

    Article  PubMed  CAS  Google Scholar 

  4. Doucet A, Katz AI (1980) (Na+-K+)-ATPase along the mammalian nephron. Int J Biochem 12:47–51

    Article  PubMed  CAS  Google Scholar 

  5. Ernst SA (1975) Transport ATPase cytochemistry:Ultrastructural localisation of potassium dependent and potassium independent phosphatase activités in rat kidney cortex. J Cell Biol 66:586–608

    Article  PubMed  CAS  Google Scholar 

  6. Frömter E (1977) Magnitude and significance of the para cellular shunt path in rat kidney proximal tubule. In:Kramer M, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam, pp 166–178

    Google Scholar 

  7. Jørgensen PS (1974) Purification and characterisation of (Na+-K+)-ATPase. III. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by sodium dodecylsulphate. Biochem Biophys Acta 356:36 — 52

    Article  PubMed  Google Scholar 

  8. Kachadorian WA, Wade JB, Viterwyk CC, Di Scala VA (1977) Membrane structural and functional responses to vasopressin in toad bladder. J Membr Biol 30:381–401

    PubMed  CAS  Google Scholar 

  9. Kinne R (1979) Metabolic correlates of tubular transport. In:Giebisch G, Tosteson HH (eds) Membrane transport in biology, vol IVB:Transport organs. Springer, Berlin Heidelberg New York

    Google Scholar 

  10. Koefoed-Johnson V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–312

    Article  Google Scholar 

  11. Koepsell H (1979) Conformational changes of membrane bound (Na+-K+)-ATPase as revealed by trypsin digestion. J Membr Biol 48:69–94

    Article  PubMed  CAS  Google Scholar 

  12. Kyte J (1976) Immunoferritin determination of the distribution of (Na+-K+)-ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment. J Cell Biol 68:304–318

    Article  PubMed  CAS  Google Scholar 

  13. Manitius A, Bensch K, Epstein FH (1968) (Na+-K+)-activated ATPase in kidney cell membranes of normal and methylprednisolone-treated rats. Biochim Biophys Acta 150:563–571

    Article  PubMed  CAS  Google Scholar 

  14. Meister A, Tate SS, Ross LL (1976) Membrane-bound γ-glutamyl transpeptidase. Enzym Biol Membr 3:315–347

    CAS  Google Scholar 

  15. Ottosen PD, Bode F, Madsen KM, Maunsbach AB (1979) Renal handling of lysozyme in the rat. Kidney Int 15:146–154

    Article  Google Scholar 

  16. Pfaller W, Fischer WM, Strieder N, Wurnig H, Deetjen P (1974) Morphologic changes of cortical nephron cells in potassium adapted rats. Lab Invest 31:678–684

    PubMed  CAS  Google Scholar 

  17. Pfaller W, Silbernagl S, Mairbäurl H (1975) Which tubular membrane limits arginine reab- sorption in the rat kidney? Pflügers Arch Eur J Physiol, Suppl 359:R121

    Google Scholar 

  18. Pfaller W, Silbernagl S (1975) Cellular localization of 1-arginine reabsorption in proximal tubules of rat kidney cortex. Pflügers Arch Eur J Physiol 360:189–192

    Article  CAS  Google Scholar 

  19. Pfaller W, Rittinger M (1980) Quantitative morphology of the rat kidney. Int J Biochem 12:17–22

    Article  PubMed  CAS  Google Scholar 

  20. Pfaller W, Trifillis A, Smith MW, Kahng MW, Trump BF (1981) Pathogenesis of HgCl2 induced acute renal failure:A combined morphometric and biochemical analysis. Lab Invest (submitted)

    Google Scholar 

  21. Pfaller W, Rittinger M, Fischer WM (1979) A concept for stereological investigation of the rat kidney. Microse Acta 82:137 - 145

    CAS  Google Scholar 

  22. Rostgaard J, Kristensen BI, Nielsen LE (1972) Electron microscopy of filaments in the basal part of rat kidney tubule cells, and their in situ interaction with heavy meromyosin. Z Zell- forsch 152:497 - 810

    Article  Google Scholar 

  23. Schmidt U, Guder W (1976) Sites of enzyme activity along the nephron. Kidney Int 9:233 - 242

    Article  PubMed  CAS  Google Scholar 

  24. Schmitt WW, Zingsheim HP, Bachmann L (1970) Investigation of molecular and micellar solutions by freeze etching. In:Favard P (ed) Proc 7th Int Conf Electr Micro sc, Grenoble. Soc Fr Micr Electr, Paris, pp 455 - 456

    Google Scholar 

  25. Silbernagl S, Pfaller W, Heinle H, Wendel A (1978) Topology and function of renal 7-gluta- myl-transpeptidase. In:Sies and Wendel (eds) Proc Life Sei. Functions of glutathione in liver and kidney. Springer, Berlin Heidelberg New York, pp 60 - 69

    Google Scholar 

  26. Tisher CC, Yarger WE (1973) Lanthanum permeability of the tight junction (zonula occlu- dens) in the renal tubule of the rat. Kidney Int 3:238–250

    Article  PubMed  CAS  Google Scholar 

  27. Tisher CC, Yarger WE (1975) Lanthanum permeability along the collecting duct of the rat. Kidney Int 7:35–43

    Article  PubMed  CAS  Google Scholar 

  28. Thurau K, Dorge A, Mason J, Beck F, Rick R (1979) Intracellular elemental concentrations in renal tubular cells. An electron microprobe analysis. Klin Wochenschr 19:903–1000

    Google Scholar 

  29. Wade JB, O’Neil R, Pryor JL, Boulpaep EL (1979) Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J Cell Biol 81:439–445

    Article  PubMed  CAS  Google Scholar 

  30. Weibel ER (1969) Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol 26:235–299

    Article  PubMed  CAS  Google Scholar 

  31. Welling DJ, Welling LW, Hill J J (1978) Phenomenological model relating cell shape to water reabsorption in proximal nephron. Am J Physiol 234:308–317

    Google Scholar 

  32. Wright FS, Strieder N, Fowler NB, Giebisch G (1971) Potassium secretion by distal tubule after potassium adaptation. Am J Physiol 221:437–445

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pfaller, W. (1981). Morphologic Analysis of Tubular Transport. In: Greger, R., Lang, F., Silbernagl, S. (eds) Renal Transport of Organic Substances. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68147-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68147-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68149-3

  • Online ISBN: 978-3-642-68147-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics