Skip to main content

Asymmetry of Membrane Functions in Transporting Cells

  • Conference paper
Renal Transport of Organic Substances

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The necessity for all cells to regulate solute transfer across their limiting membranes arises from the requirements for maintaining internal composition, for extracting nutrients from the surrounding medium, and for excreting metabolic end products. In addition, as cells become organized into structures of greater complexity, they must assume progressively more specialized functions. The function to be considered here is that of transport across epithelial cell layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berner W, Kinne R (1976) Transport of PAH by plasma membrane vesicles isolated from rat kidney cortex. Pfliigers Arch 361:269–277

    Article  CAS  Google Scholar 

  2. Crane RK, Miller D, Bihler I (1961) The restrictions on possible mechanisms of intestinal active transport of sugars. In:Kleinzeller A, Kotyk A (eds) Symp membrane transport and metabolism. Academic Press, London New York, pp 439–449

    Google Scholar 

  3. Cross RJ, Taggart JV (1950) Renal tubular transport:Accumulation of p-aminohippurate by rabbit kidney slices. Am J Physiol 161:181–190

    PubMed  CAS  Google Scholar 

  4. Foulkes EC (1963) Kinetics of p-aminohippurate secretion in the rabbit. Am J Physiol 205:1019–1024

    PubMed  CAS  Google Scholar 

  5. Foulkes EC (1971) Effects of heavy metals on renal aspartate transport and the nature of solute movement in kidney cortex slices. Biochim Biophys Acta 241:815–822

    Article  PubMed  CAS  Google Scholar 

  6. Foulkes EC (1972) Cellular localization of amino acid carriers in renal tubules. Proc Soc Exp Biol Med 139:1032–1033

    PubMed  CAS  Google Scholar 

  7. Foulkes EC, Gieske TH (1973) Specificity and metal sensitivity of renal amino acid trans-port. Biochim Biophys Acta 318:439–445

    Article  CAS  Google Scholar 

  8. Foulkes EC (1975) Peritubular transport of urate in rat kidneys. Pfliigers Arch 360:1–6

    Article  CAS  Google Scholar 

  9. Foulkes EC (1977) Movement of p-aminohippurate between lumen and cells of renal tubule. Am J Physiol 232:F424–428

    PubMed  CAS  Google Scholar 

  10. Foulkes EC (1978) Renal tubular transport of cadmium metallothionein. Toxicol Appl Pharmacol 45:505–512

    Article  PubMed  CAS  Google Scholar 

  11. Foulkes EC (1980) Tubular reabsorption delays of amino acids in rabbit kidneys. Abstr 28th Int Congr Physiol Sci, Budapest

    Google Scholar 

  12. Giebisch G, Windhager EC (1973) Electrolyte transport across renal tubular membranes. In:Orloff J, Berliner RW (eds) Handbook of physiology, Sect 8, Renal physiology. Am Physiol Soc, Washington DC, pp 315–376

    Google Scholar 

  13. Gieske TH, Foulkes EC (1974) Acute effects of cadmium on proximal tubular function in rabbits. Toxicol Appl Pharmacol 27:292–299

    Article  PubMed  CAS  Google Scholar 

  14. Heidrich HG, Kinne R, Kinne-Safran E, Hannig K (1972) The polarity of the proximal tubule cell in rat kidney. J Cell Biol 54:232–245

    Article  PubMed  CAS  Google Scholar 

  15. Hopfer U, Nelson K, Perrotto J, Isselbacher KJ (1973) Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem 248:25–32

    PubMed  CAS  Google Scholar 

  16. Johnson DR, Foulkes EC (1973) Localization of urate and phosphate reabsorption in the mongrel dog kidney. Proc Soc Exp Biol Med 143:1180–1182

    PubMed  CAS  Google Scholar 

  17. Kinne R, Murer H, Kinne-Safran E, Thees M, Sachs G (1975) Sugar transport by renal plasma membrane vesicles:Characterization of the systems in the brush-border microvilli and basal lateral plasma membranes. J Membr Biol 21:375–395

    Article  CAS  Google Scholar 

  18. Mullin JM, Diamond L, Kleinzeller A (1979) Uptake of a-methyl-D-glucoside and 3-O- methy 1-D-glucose by an established pig renal epithelial cell line. Fed Proc 38:1058

    Google Scholar 

  19. Samarzija T, Frömter E (1976) Renal transport of glutamate and aspartate. Evidence for Na-dependent uptake from the peritubular surface into proximal tubular cells. Pflugers Arch 365:R15

    Article  Google Scholar 

  20. Schmidt U, Dubach VC (1971) Na, K-stimulated adenosinetriphosphatase:Intracellular localization within the proximal tubule of the rat nephron. Pflugers Arch 330:265–270

    Article  PubMed  CAS  Google Scholar 

  21. Silbernagl S, Foulkes EC, Deetjen P (1975) Renal transport of amino acids. Rev Physiol Biochem Pharmacol 74:105–167

    PubMed  CAS  Google Scholar 

  22. Silverman M, Aganon MA, Chinard F (1970a) Specificity of monosaccharide transport in dog kidney. Am J Physiol 218:743–750

    PubMed  CAS  Google Scholar 

  23. Silverman M, Aganon MA, Chinard F (1970b) D-glucose interactions with renal tubule cell surfaces. Am J Physiol 218:735–742

    PubMed  CAS  Google Scholar 

  24. Silverman M, Huang L (1976) Mechanism of maleic acid-induced glucosuria in dog kidney. Am J Physiol 231:1024–1032

    PubMed  CAS  Google Scholar 

  25. Tune BM, Burg MB (1971) Glucose transport by proximal renal tubules. Am J Physiol 221:580–585

    PubMed  CAS  Google Scholar 

  26. Ullrich KJ (1976) Renal tubular mechanisms of organic solute transport. Kidney Int 9:134– 148

    Google Scholar 

  27. Ussing HH (1949) Transport of ions across membranes. Physiol Rev 29:127–155

    PubMed  CAS  Google Scholar 

  28. Ussing HH, Zerahn K (1951) Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Seand 23:110–127

    Article  CAS  Google Scholar 

  29. Ussing HH (1965) Harvey Lect 59:1–30

    PubMed  CAS  Google Scholar 

  30. Welling LW, Welling DJ (1975) Surface area of the brush border and lateral cell walls in the rabbit proximal nephron. Kidney Int 8:343–348

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Foulkes, E.C. (1981). Asymmetry of Membrane Functions in Transporting Cells. In: Greger, R., Lang, F., Silbernagl, S. (eds) Renal Transport of Organic Substances. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68147-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68147-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68149-3

  • Online ISBN: 978-3-642-68147-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics