Methods for Studying Tubular Transport of Organic Substances

  • E. E. Windhager
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

Advances in knowledge of the mechanisms by which renal tubules transport organic compounds can hardly be separated from the advances in methods to study renal function. Almost every new technical approach sooner or later has led to new quantitative information and often to new concepts regarding the handling of organic substances. Thus, with the introduction of clearance techniques came the quantitative description of the reabsorptive and secretory capacity of the whole kidney for a large number of organic compounds [1], as well as the conceptual development of carrier-mediated tubular transport processes [1]. Micropuncture studies [2,3,4], which became possible only by the development of chemical ultramicroanalysis, have demonstrated that different nephron segments which transport organic solutes do so not only at different rates but even in different directions across the tubular wall. The polarity of cellular transport of organic compounds was fully appreciated only after the method of tubular microperfusion in vivo and in vitro had become available, a technique which was particularly useful to arrive at kinetic characterizations of transport processes.

Keywords

Permeability Attenuation Creatinine Sodium Chloride Uranium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith HW (1951) The kidney. Medical Publications, OxfordGoogle Scholar
  2. 2.
    Windhager EE (1968) Mieropuncture techniques and nephron function. Butterworth, LondonGoogle Scholar
  3. 3.
    Gottschalk CW, Lassiter WE (1973) In: Orloff J, Berliner RW (eds) Handbook of physiology, Sect 8. American Physiological Society, Washington DC, pp 129 - 143Google Scholar
  4. 4.
    Andreucci VE (1978) Manual of renal micropuncture. Idelson, NaplesGoogle Scholar
  5. 5.
    Windhager EE, Giebisch G (1965) Electrophysiology of the nephron. Physiol Rev 45:214- 244Google Scholar
  6. 6.
    Boulpaep EI (1976) Kidney Int 9: 8–102CrossRefGoogle Scholar
  7. 7.
    Frömter E (1974) In: Thurau K (ed) MTP Int Rev Sci, Physiol Ser I, vol 6. Butterworth, University Park Press, pp 1–38Google Scholar
  8. 8.
    Kinne R (1976) In: Int Rev Physiol, Kidney and urinary tract physiology II, vol 11. University Park Press, Baltimore, pp 169–210Google Scholar
  9. 9.
    Sacktor B (1977) In: Jamison GA, Robinson DM (eds) Mammalian cell membranes, vol 4. Membranes and cellular functions. Butterworths, London, pp 221–254Google Scholar
  10. 10.
    Malvin RL, Wilde WS, Sullivan L (1958) Am J Physiol 194: 135–142PubMedGoogle Scholar
  11. 11.
    Brown JL, Samij AH, Pitts RF (1961) Am J Physiol 200: 370–372Google Scholar
  12. 12.
    Chinard FP, Enns T (1955) Am J Physiol 182: 247–249PubMedGoogle Scholar
  13. 13.
    Chinard FP (1975) In: Symposium on renal metabolism. Med Clin North Am 59:539–554PubMedGoogle Scholar
  14. 14.
    Balagura S, Pitts RF (1962) Am J Physiol 203: 11–14PubMedGoogle Scholar
  15. 15.
    Foulkes EC (1971) Biochim Biophys Acta 241: 815–882PubMedCrossRefGoogle Scholar
  16. 16.
    Maack T (1980) Am J Physiol 238: F71–F78PubMedGoogle Scholar
  17. 17.
    Hierholzer K, Lange S (1974) In: Thurau K (ed) MTP Int Rev Sci, Ser I, vol 6. Butterworths, London, University Park Press, BaltimoreGoogle Scholar
  18. 18.
    Shipp JC, Hanenson IB, Windhager EE, Schatzmann HJ, Whittembury G, Yoshimura H, Solomon AK (1958) Am J Physiol 195: 563–569PubMedGoogle Scholar
  19. 19.
    Gertz KH (1963) Arch Ges Physiol 276: 336–356Google Scholar
  20. 20.
    Gydry AZ (1972) Yale J Biol Med 45: 269–274Google Scholar
  21. 21.
    Nakajima K, Clapp JR, Robinson RR (1970) Am J Physiol 219: 345–357PubMedGoogle Scholar
  22. 22.
    Windhager EE, Whittembury G, Oken DE, Schatzmann HJ, Solomon AK (1959) Am J Physiol 197: 313–318PubMedGoogle Scholar
  23. 23.
    Kashgarian M, Stöckle H, Gottschalk CW, Ullrich KJ (1963) Arch Ges Physiol 277: 89–106CrossRefGoogle Scholar
  24. 24.
    Giebisch G, Windhager EE (1973) In: Orloff J, Berliner RW (eds) Handbook of physiology, Sect 8. American Physiological Society, Washington DC, pp 315–376Google Scholar
  25. 25.
    Gottschalk CW, Morel F, Mylle M (1965) Am J Physiol 209: 173–178PubMedGoogle Scholar
  26. 26.
    Sonnenberg H, Deetjen P (1964) Arch Ges Physiol 279: 669–674Google Scholar
  27. 27.
    Deetjen H, Silbernagl S (1972) Yale J Biol Med 45: 301–306PubMedGoogle Scholar
  28. 28.
    Frömter E, Müller CW, Knauf H (1968) Symposium der Gesellschaft für Nephrologie, Vienna, p 67 VIGoogle Scholar
  29. 29.
    Spitzer A, Windhager EE (1970) Am J Physiol 218: 1188–1193PubMedGoogle Scholar
  30. 30.
    Burg MB, Orloff J (1973) In: Orloff J, Berliner RW (eds) Handbook of physiology. American Physiological Society, Washington DC, pp 145–159Google Scholar
  31. 31.
    Cross RJ, Taggart JV (1950) Am J Physiol 161: 181–190PubMedGoogle Scholar
  32. 32.
    Segal S, Thier SO (1973) In: Orloff J, Berliner RW (eds) Handbook of physiology, Sect 8. American Physiological Society, Washington DC, pp 653–676Google Scholar
  33. 33.
    Bojesen E, Leyssac PP (1965) Acta Physiol Scand 60: 20–32CrossRefGoogle Scholar
  34. 34.
    Berger SJ, Sacktor B (1970) J Cell Biol 47: 637–645PubMedCrossRefGoogle Scholar
  35. 35.
    Aronson PS, Sacktor B (1974) Biochim Biophys Acta 356: 231–243PubMedCrossRefGoogle Scholar
  36. 36.
    Heidrich HG, Kinne R, Kinne-Saffran E, Hannig K (1972) J Cell Biol 54: 232–245PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • E. E. Windhager
    • 1
  1. 1.Department of PhysiologyCornell University Medical CollegeNew YorkUSA

Personalised recommendations