Skip to main content

Characteristics of p-Aminohippurate Transport in the Mammalian Kidney

  • Conference paper
Renal Transport of Organic Substances

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Evidence for the secretion of weak organic acids was first obtained for the indicator dye, phenol red, by Marshall and Vickers in 1923 [104]. They observed that when administered parenterally, phenol red is rapidly and quantitatively excreted in the urine. Since some 60% of this substance is bound to plasma albumin and, hence, cannot be filtered through the glomerular capillaries, the authors concluded that the high rate of excretion of phenol red must be due to mechanisms other than glomerular filtration. The authors noticed further that when the plasma concentration of phenol red was raised, the rate of excretion tended to level off. So they guessed that there must be a tubular secretion mechanism which becomes saturated at moderate plasma concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anagnostopoulos T (1977) Electrophysiological study of the antiluminal membrane in the proximal tubule of Necturus. J Physiol (London) 267: 89–111

    CAS  Google Scholar 

  2. Anagnostopoulos T, Pianelles G (1979) Organic anion permeation at the proximal tubule of Necturus. Pfliigers Arch 381: 231–239

    CAS  Google Scholar 

  3. Aubert L, Motais R (1975) Molecular features of organic anion permeability in ox red blood cells. J Physiol (London) 246: 159–179

    CAS  Google Scholar 

  4. Baines AD, Gottschalk CW, Lassiter WE (1968) Microinjection study of p-aminohippurate excretion by rat kidneys. Am J Physiol 214: 703–709

    PubMed  CAS  Google Scholar 

  5. Barác-Nieto M, Cohen J J (1968) Nonesterified fatty add uptake by the dog kidney: effect of probenecid and chlorothiazide. Am J Physiol 215: 98–107

    PubMed  Google Scholar 

  6. Barác-Nieto M (1971) Renal uptake of para-aminohippuric acid. In vitro effects of palmitate and 1-caritine. Biochim Biophys Acta 233: 446–452

    Google Scholar 

  7. Barany EH (1972) Inhibition by hippurate and probenecid of in vitro uptake of iodipamide and o-iodohippurate. A composite uptake system for iodipamide in choroid plexus, kidney cortex and anterior uvea of several species. Acta Physiol Scand 86: 12–27

    PubMed  CAS  Google Scholar 

  8. Barany EH (1973) The liver like anion transport system in rabbit kidney, uvea and choroid plexus. I. Selectivity of some inhibitors, direction of transport, possible physiological sub-strates. Acta Physiol Scand 88: 412–429

    PubMed  CAS  Google Scholar 

  9. Barany EH (1973) The liver like anion transport system in rabbit kidney, uvea and choroid plexus. H. Efficiency of acidic drugs and other inhibitors. Acta Physiol Scand 88: 491–504

    PubMed  CAS  Google Scholar 

  10. Barany EH (1974) Selectivity of probenecid congeners for different organic acid transport systems in rabbit renal cortex. Acta Pharmacol Toxicol 35: 309–316

    CAS  Google Scholar 

  11. Bass NH, Lundborg P (1973) Postnatal-development of mechanisms for elimination of organic acids from brain and cerebrospinal fluid system of rat. Rapid efflux of 3H-para-amino-hippuric acid following intrathecal infusion. Brain Res 56: 285–298

    PubMed  CAS  Google Scholar 

  12. Becker B (1961) The transport of organic anions by the rabbit eye. I. In vitro iodopyracet accumulation by ciliary body iris preparation. Am J Ophthalmol 50: 862–867

    Google Scholar 

  13. Berndt WO (1967) Probenecid binding by cortical slices and homogenates. Proc Soc Exp Biol Med 126: 123–126

    PubMed  CAS  Google Scholar 

  14. Berner W, Kinne R (1976) Transport of p-aminohippuric acid by plasma membrane vesicles isolated from rat kidney cortex. Pfliigers Arch 361: 269–277

    CAS  Google Scholar 

  15. Bito LZ (1976) Inhibition of renal prostaglandine metabolism and excretion by probenecid, bromeresol green and indomethacin. Prostaglandins 12: 639–649

    PubMed  CAS  Google Scholar 

  16. Bito LZ, Davson H, Salvador EV (1976) Inhibition of in vitro concentrative prostaglandin accumulation by prostaglandins, prostaglandin analogues and by some inhibitors of organic anion transport. J Physiol (London) 256: 257–271

    CAS  Google Scholar 

  17. Bito LZ, Baroody RA (1978) Comparison of renal prostaglandin and p-aminohippuric acid transport processes. Am J Physiol 234: F80–F88

    PubMed  CAS  Google Scholar 

  18. Bowman HM, Hirsch GH, Hook IB (1973) Effect of medium pH on p-aminohippurate accumulation by slices of rat renal cortex. Experientia 29: 955–956

    PubMed  CAS  Google Scholar 

  19. Bratton C, Marshall EK (1939) A new coupling component for sulfanilamide determination. J Biol Chem 128: 537–550

    CAS  Google Scholar 

  20. Bueht H (1949) On the tubular excretion of thiosulfate and creatine under the influence of carinamide. Scand J Clin Lab Invest 1: 270–276

    Google Scholar 

  21. Buffa P, Peters RA (1949) Formation of citrate in vivo induced by fluoroacetate poisoning. Nature (London) 163: 914

    CAS  Google Scholar 

  22. Burg MB, Orloff J (1969) p-aminohippurate uptake and exchange by separated renal tubules. Am J Physiol 217: 1064–1068

    Google Scholar 

  23. Cabantchik ZT, Rothstein A (1972) The nature of the membrane sites controlling the anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J Membr Biol 10: 311–330

    PubMed  CAS  Google Scholar 

  24. Carrasquer G, Wilczewski TW (1971) Effect of ureteral stop flow on PAH in lumen and cortex homogenate in the rat kidney. Proc Soc Exp Biol Med 137: 284–291

    PubMed  CAS  Google Scholar 

  25. Chung ST, Park YS, Hong SK (1970) Effects of cations on transport of weak acids in rabbit kidney slices. Am J Physiol 219: 30–33

    PubMed  CAS  Google Scholar 

  26. Cohen J J, Randall EW (1964) Alkalosis and renal p-aminohippurate transport in dog: relation to lactate uptake. Am J Physiol 206: 383–390

    PubMed  CAS  Google Scholar 

  27. Cook DL, Lawler CA, Calvin LD, Green DM (1952) Mechanism of bile formation. Am J Physiol 171: 62–74

    PubMed  CAS  Google Scholar 

  28. Copenhaver JH, Forster RP (1958) Displacement characteristics of intracellularly accumulated p-aminohippurate in a mammalian renal transport system in vitro. Am J Physiol 195: 327–330

    PubMed  CAS  Google Scholar 

  29. Copenhaver JH, Davis JR (1965) Effect of hydrogen concentration on transport characteristics of p-aminohippurate by rabbit kidney slices. Proc Soc Exp Biol Med 119: 611–614

    PubMed  CAS  Google Scholar 

  30. Cortney MA, Mylle M, Lassiter WE, Gottschalk CW (1965) Renal tubular transport of water, solute and PAH in rats loaded with saline. Am J Physiol 209: 1199–1205

    PubMed  CAS  Google Scholar 

  31. Coulson R, Bowman RH (1974) Excretion and degradation of exogenous adenosine 3’,5’- monophosphate by isolated perfused rat kidney. Life Sci 14: 545–556

    PubMed  CAS  Google Scholar 

  32. Cousin JL, Motais R, Sola H (1975) Transmembrane exchange of chloride with bicarbonate in mammlian red blood cells: evidence for a sulphonamide sensitive “carrier”. J Physiol (London) 253: 385–399

    CAS  Google Scholar 

  33. Cross RJ, Taggart JV (1950) Renal tubular transport: accumulation of PAH by rabbit kidney slices. Am J Physiol 161: 181–191

    PubMed  CAS  Google Scholar 

  34. Dantzler WH (1969) Effects of K+, Na+ and ouabain on urate and PAH uptake by snake and chicken kidney slices. Am J Physiol 217: 1510–1519

    PubMed  CAS  Google Scholar 

  35. Dantzler WH (1974) K+-effects on PAH transport and membrane permeabilities in isolated snake renal tubules. Am J Physiol 227: 1361–1370

    PubMed  CAS  Google Scholar 

  36. Dantzler WH, Bentley SK (1975) High K+-effects on PAH transport and permeabilities in isolated snake renal tubules. Am J Physiol 229: 191–199

    PubMed  CAS  Google Scholar 

  37. Dantzler WH, Bentley SK (1976) Low Na+-effects on PAH transport and permeabilities in isolated snake renal tubules. Am J Physiol 230: 256–262

    PubMed  CAS  Google Scholar 

  38. Dantzler WH, Bentley SK (1980) Bath and lumen effects of SITS on PAH transport by isolated perfused renal tubules. Am J Physiol 238: F16–F25

    PubMed  CAS  Google Scholar 

  39. Davson H, Pollay M (1963) Influence of various drugs on the transport of 1311 and PAH across the cerebrospinal fluid blood barrier. J Physiol (London) 167: 239–246

    CAS  Google Scholar 

  40. Deetjen P, Sonnenberg H (1965) Der tubuläre Transport von p-Aminohippursäure. Pflügers Arch 285: 35–44

    CAS  Google Scholar 

  41. Despopoulos A (1956) In vitro effects of acetate ion on renal metabolism of p-aminohippurate. Am J Physiol 184: 393–399

    Google Scholar 

  42. Despopoulos A (1965) A definition of substrate specifity in renal transport of organic anions. J Theoret Biol 8: 163–192

    CAS  Google Scholar 

  43. Duggan DE (1966) The accumulation of chlorothiazide and related saluretic agents by iso-lated renal tubules. J Pharmacol Exp Ther 152: 122–129

    PubMed  CAS  Google Scholar 

  44. Duggan DE, Hocke KF, White SD, Noll RM, Stevenson CR (1977) The effects of probenecid upon the individual components of indomethacin elimination. J Pharmacol Exp Ther 201: 463–511

    PubMed  CAS  Google Scholar 

  45. Ecker JL, Hook JB (1974) Analysis of factors influencing in vitro developmental pattern of para-aminohippurate transport by rabbit kidney. Biochim Biophys Acta 339: 210–217

    CAS  Google Scholar 

  46. Ecker JL, Hook JB (1974) Accumulation of para-aminohippuric acid by separated renal tubules from newborn and adult rabbits. J Pharmacol Exp Ther 190: 352–357

    PubMed  CAS  Google Scholar 

  47. Ehrenspeck G, Brodsky WA (1976) Effect of 4-acetamido-4’-isothiocyano-2,2’-disulfonie stilbene on ion transport in turtle bladders, Biochim Biophys Acta 419: 555–558

    PubMed  CAS  Google Scholar 

  48. Essig A, Taggart JY (1960) Competitive inhibition of renal transport of p-aminohippurate by other monosubstituted hippurates. Am J Physiol 199: 509–512

    PubMed  CAS  Google Scholar 

  49. Essig A (1961) Competitive inhibition of renal transport of p-aminohippurate by analogous of chlorothiazides. Am J Physiol 201: 303–308

    PubMed  CAS  Google Scholar 

  50. Eveloff J, Morishige WK, Hong SK (1976) The binding of phenol red to rabbit renal cortex. Biochim Biophys Acta 448: 167–180

    PubMed  CAS  Google Scholar 

  51. Eveloff J, Kinne R, Kinter WB (1979) p-Aminohippurate acid transport into brush border vesicles isolated from flounder kidney. Am J Physiol 237: F291–F298

    Google Scholar 

  52. Farah A, Frazer M, Stoffel M (1963) Studies on the run out of p-aminohippuric acid from renal slices. J Pharmacol Exp Ther 139: 120–128

    PubMed  CAS  Google Scholar 

  53. Fishman RA (1964) Active transport and the blood brain barrier to penicillin and related organic acids. Trans Am Neurol Assoc 89: 51–55

    PubMed  CAS  Google Scholar 

  54. Forster RP, Sperber I, Taggart JV (1954) Transport of phenolsulphonphthalein dyes in isolated tubules of the flounder and in kidney slices of the dog fish. Competitive phenomena. J Cell Comp Physiol 44: 315–318

    CAS  Google Scholar 

  55. Forster RP, Hong SK (1958) In vitro transport of dyes by isolated renal tubules of the flounder as disclosed by direct visualization. Intracellular accumulation and transcellular movement. J Cell Comp Physiol 51: 259–272

    CAS  Google Scholar 

  56. Forster RP (1967) Renal transport mechanisms. Fed Proc 26: 1008–1019

    PubMed  CAS  Google Scholar 

  57. Foulkes EC, Miller BJ (1959) Transport of p-aminohippurate from cell to lumen in kidney tubule. Am J Physiol 196: 83–85

    PubMed  CAS  Google Scholar 

  58. Foulkes EC, Miller BF (1959) Steps in PAH transport by kidney slices. Am J Physiol 196: 86–92

    PubMed  CAS  Google Scholar 

  59. Foulkes EC, Miller BF (1961) The role of potassium in the renal transport of p-aminohippurate. In: Kleinzeller A, Kotyk A (eds) Membrane transport and metabolism. Academic Press, London New York, pp 559–565

    Google Scholar 

  60. Foulkes EC (1977) Movement of p-aminohippurate between lumen and cells of renal tubule. Am J Physiol 232: F424–F428

    PubMed  CAS  Google Scholar 

  61. Frömter E (1979) Untersuchungen zum Wirkungsmechanismus von Acetazolamide and SITS auf den Bicarbonattransport im proximalen Tubulus der Niere. In: Krück K (ed) Diuretica Symposion. Diucomb Veranstaltungs-Service, Düsseldorf

    Google Scholar 

  62. Gatley S, Shervatt HSA (1977) The synthesis of hippurate from benzoate and glycine by rat liver mitochondria. Submitochondrial localisation and kinetics. Biochem J 166: 39–47

    PubMed  CAS  Google Scholar 

  63. Gerencser GA, Park YS, Hong SK (1973) Sodium influence upon transport kinetics of p-aminohippurate in rabbit kidney slices. Proc Soc Exp Biol Med 144: 440–444

    PubMed  CAS  Google Scholar 

  64. Gerencser GA, Hong SK (1975) Roles of sodium and potassium ions on p-aminohippurate transport in rabbit kidney slices. Biochim Biophys Acta 406: 108–119

    PubMed  CAS  Google Scholar 

  65. Gerencser GA, Chaizetzeree C, Hong SK (1977) Acetate influence upon the transport kinetics of p-aminohippurate at 37 C in rabbit kidney slices. Proc Soc Exp Biol Med 154: 397–400

    PubMed  CAS  Google Scholar 

  66. Gertz KH (1963) Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch 276: 336–356

    CAS  Google Scholar 

  67. Girndt J, Malyusz M, Rumpf KW, Neubaur J, Scheller F (1974) Metabolism of p-aminohippurate and its relevance in man. Nephron 13: 138–144

    PubMed  CAS  Google Scholar 

  68. Giorgi G, Segre G (1969) Effect of various drugs on the intestinal absorption of PAH in rabbits. Eur J Pharmacol 6: 183–193

    PubMed  CAS  Google Scholar 

  69. Greger R, Lang F, Puls F, Deetjen P (1976) Urate interaction with plasma proteins and erythrocytes. Pflügers Arch 352: 121–133

    Google Scholar 

  70. Greger R, Lang F, Oberleithner H, Deetjen P (1978) Handling of oxalate by the rat kidney. Pflügers Arch 374: 243–248

    PubMed  CAS  Google Scholar 

  71. Grantham JJ, Irwin RL (1973) Fluid secretion in isolated proximal straight renal tubules. J Clin Invest 52: 2441–2450

    PubMed  CAS  Google Scholar 

  72. Grantham J J, Qualizza PB, Irwin RL (1974) Net fluid secretion in proximal straight renal tubules in vitro: role of PAH. Am J Physiol 226: 191–197

    PubMed  CAS  Google Scholar 

  73. Grantham J J (1976) Fluid secretion in the nephron. Relation to renal failure. Physiol Rev 56: 248–258

    PubMed  CAS  Google Scholar 

  74. Häberle DA (1975) Influence of glomerular filtration rate on the rate of para-aminohippurate secretion by the rat kidney. Micropuncture and clearance studies. Kidney Int 7: 385–396

    PubMed  Google Scholar 

  75. Häberle DA, Ruhland G, Lausser A, Moore L, Neiss A (1978) Influence of glomerular filtration rate on renal PAH secretion rate in the rat kidney. Dependency of PAH extraction on renal filtration fraction. Pflügers Arch 375: 131–139

    PubMed  Google Scholar 

  76. Haberle DA, Deetjen P, Wunderlich P: unpublished

    Google Scholar 

  77. Haberle DA, Hennings H, Rembold H: unpublished

    Google Scholar 

  78. Hewitt WR, Clark RL, Hook JB (1976) Investigations on metabolic modulation of p-amino- hippurate accumulation by rabbit renal cortical slices. J Pharmacol Exp Ther 199: 498–509

    PubMed  CAS  Google Scholar 

  79. Hirsch GH, Hook JB (1970) Maturation of renal organic acid transport. Substrate stimulation by penicillin and p-aminohippurate (PAH). J Pharmacol Exp Ther 171: 103–108

    PubMed  CAS  Google Scholar 

  80. Hirsch GH, Pakuts A (1974) Development of p-aminohippurate transport and oxygen-consumption in rabbit kidneys. Biochem Pharmacol 23: 2323–2325

    PubMed  CAS  Google Scholar 

  81. Holloway LS, Cassin S (1972) In vitro uptake of PAH-3H by choroid plexus from dogs of various ages. Am J Physiol 223: 507–509

    PubMed  CAS  Google Scholar 

  82. Holohan PD, Pessah NI, Ross CR (1975) Binding of N 1-methylnicotinamide and para-amino- hippuric acid to a particular fraction from the dog kidney. J Pharmacol Exp Ther 195: 22–33

    CAS  Google Scholar 

  83. Holohan PD, Pessah NI, Ross CR (1979) Reconstitution of N 1-methylnicotinamide and p-aminohippuricacid transport in phospholipid vesicles with a protein fraction isolated from dog kidney membranes. Mol Pharmacol 16: 343–356

    CAS  Google Scholar 

  84. Hong SK, Park YS (1971) Transport of bromcresol green in the rabbit kidney slice. Am J Physiol 221: 1779–1784

    PubMed  CAS  Google Scholar 

  85. Hong SK, Goldringer JM, Song YK, Koshier FJ, Lee SH (1978) Effect of SITS on organic anion transport in the rabbit kidney cortical slices, Am J Physiol 234: F302–F307

    PubMed  CAS  Google Scholar 

  86. Hook JB, Williamson HE, Hirsch GH (1970) Functional maturation of renal PAH transport in the dog. Can J Physiol Pharmacol 48: 169–175

    PubMed  CAS  Google Scholar 

  87. Hoshi T, Sudo K, Suzuki Y (1976) Characteristics of changes in the intracellular potential associated with transport of neutral, dibasic and acidic amino acids in Triturus proximal tubule. Biochim Biophys Acta 448: 492–504

    PubMed  CAS  Google Scholar 

  88. Irish JM, Dantzler WH (1976) PAH transport and fluid reabsorption by isolated perfused frog proximal tubules. Am J Physiol 230: 1509–1516

    PubMed  Google Scholar 

  89. Irish JM (1979) Secretion of prostaglandin E2 by rabbit proximal tubules. Am J Physiol 237: F268–F273

    PubMed  CAS  Google Scholar 

  90. Kikuta Y, Hayashi H, Saito Y (1979) Effects of changes in sodium electrochemical potential gradient on p-aminohippurate transport in newt kidney. Biochim Biophys Acta 556: 354–365

    PubMed  CAS  Google Scholar 

  91. Kim J, Hong SK (1962) Urinary and biliary excretion of various phenol red derivatives in the anaesthetized dog. Am J Physiol 202: 174–178

    PubMed  CAS  Google Scholar 

  92. Kim JK, Hook JB (1972) On the mechanism of acetate enhancement of renal para-amino-hippurate transport. Biochim Biophys Acta 290: 368–375

    PubMed  CAS  Google Scholar 

  93. Kinsella JL, Holohan PD, Pessah NI, Ross CR (1979) Transport of organic ions in renal cortical luminal and antiluminal membrane vesicles. J Pharmacol Exp Ther 209: 443–451

    PubMed  CAS  Google Scholar 

  94. Kinter WB (1975) Structure and function of renal tubules isolated from fish kidneys. Fortschr Zool 23: 223–231

    Google Scholar 

  95. Kinter WB (1959) Renal tubular transport of diodrast and PAH in Necturus. Evidence for simultaneous reabsorption and secretion. Am J Physiol 196: 1141–1149

    PubMed  CAS  Google Scholar 

  96. Kippen J, Klinenberg JR (1978) Effects of renal fuels on uptake of PAH and uric acid by separated renal tubules of the rabbit. Am J Physiol 235: F137–F141

    PubMed  CAS  Google Scholar 

  97. Klahr S, Robson AM, Guggenheim SJ, Tateishi S, Bourgoignie JJ, Hwang KH (1970) Ammonium induced alterations in PAH uptake and cation composition of kidney slices. Am J Physiol 219: 994–1000

    PubMed  CAS  Google Scholar 

  98. Kliger AS, Eastman ST, Zachek M, Kullick M, Preuss H (1977) Effect of renal fuels on p-aminohippurate transport in rat renal cortical fragments. Metabolism 26: 979–988

    PubMed  CAS  Google Scholar 

  99. Knauf PA, Rothstein A (1971) Chemical modification of membranes. I. Effect of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell. J Gen Physiol 58: 190–210

    PubMed  CAS  Google Scholar 

  100. Knoefel PK, Huang KC, Despopoulos A (1959) Conjugation and excretion of the amino and acetamido benzoic acid. Am J Physiol 196: 1224–1230

    PubMed  CAS  Google Scholar 

  101. KoishiT (1959) Studies on renal tubular transport. 1. Accumulation of p-aminohippurate by kidney slices. Jpn J Pharmacol 8: 101–123

    Google Scholar 

  102. Koshier FJ, Stokols MF, Goldringer JM, Acara M, Hong SK (1980) Effect of DIDS on renal tubular transport. Am J Physiol 238: F99–F106

    Google Scholar 

  103. Lee KSh, Hong SK (1960) Binding of some sulphonphthalein dyes to plasma protein of various species. Yonsei Med J 1: 22–24

    CAS  Google Scholar 

  104. Maddy AH (1964) Fluorescent labelling of the plasma membrane. Biochim Biophys Acta 88: 390–399

    PubMed  CAS  Google Scholar 

  105. Malyusz M, Girndt J, Malyusz G, Ochwadt B (1972) Metabolism of para-aminohippurate in kidney of normal rats and rats with experimental Goldblatt-hypertension. Pfliigers Arch 333: 156–165

    CAS  Google Scholar 

  106. Marshall EK, Vickers JL (1923) The mechanism of the elimination of phenolsulphonphtha- lein by the kidney; a proof of secretion by the convoluted tubules. Bull Johns Hopkins Hosp 34: 1–7

    Google Scholar 

  107. Masoni A, Payan P (1974) Urea, inulin and para-aminohippuric acid (PAH) excretion by gills of eel, anguilla-anguilla-L. Comp Biochem 47: 1241–1244

    CAS  Google Scholar 

  108. Maude DL (1970) Effects of substrate and inhibitors of the tricarboxylic acid cycle on pro-ximal tubular fluid transport in vitro. Biochim Biophys Acta 215: 216–219

    PubMed  CAS  Google Scholar 

  109. Maxild J, Mueller JV (1969) Metabolic studies on renal transport of p-aminohippurate in vitro. Biochim Biophys Acta 184: 614–624

    PubMed  CAS  Google Scholar 

  110. Maxild J (1971) Role of fatty acid metabolism on renal transport of para-aminohippurate in vitro. Biochim Biophys Acta 233: 434–445

    PubMed  CAS  Google Scholar 

  111. Maxild J (1973) Energy requirements for active transport of p-aminohippurate in renal cortical slices. Arch Int Physiol Biochim 81: 501–521

    PubMed  CAS  Google Scholar 

  112. May DG, Weiner IM (1970) Bidirectional transport of m-hydroxybenzoate in proximal tubules of the dog. Am J Physiol 218: 430–436

    PubMed  CAS  Google Scholar 

  113. McDonough A, Hong SK (1976) Na+-K+-ATPase and PAH transport in the renal cortex. Fed Proc 35: 848 Abstr

    Google Scholar 

  114. Meijer AJ, Dam K van (1974) The metabolic significance of anion transport in mitochondria. Biochim Biophys Acta 346: 213–244

    PubMed  CAS  Google Scholar 

  115. Motáis R, Cousin JL (1976) The inhibitor effect of probenecid and structural analogues on organic anions and chloride permeabilities in ox erythrocytes. Biochim Biophys Acta 419: 309–313

    PubMed  Google Scholar 

  116. Mudge GH, Taggart JV (1950) Effect of acetate on the renal excretion of p-aminohippurate in the dog. Am J Physiol 161: 191–197

    PubMed  CAS  Google Scholar 

  117. Mudge GH, Berndt WO, Valtin H (1973) Tubular transport of urea, glucose, phosphate, uric acid, sulfate and thiosulfate. In: Qrloff J, Berliner R (eds) Handbook of physiology, Sect VIII. Am Physiol Soc, Washington, pp 587–652

    Google Scholar 

  118. Not used

    Google Scholar 

  119. Murdaugh HV, Eliott B (1969) Effect of glycine excess on para-aminohippurate uptake by the kidney. Proc Soc Exp Biol Med 130: 1181–1182

    PubMed  CAS  Google Scholar 

  120. Nechay BR, Pardee LM (1965) Inhibition of N’-methylnicotinamide secretion by ouabain in the chicken kidney. J Pharmacol Exp Ther 147: 270–276

    PubMed  CAS  Google Scholar 

  121. Nikoforov AA, Bresler VM (1977) Double dependence of organic acid transport in proximal tubules of surviving frog kidney on sodium ions. II. Relationship between counterflows of fluorescein and sodium ions across cell layers. Biochim Biophys Acta 468: 100–113

    Google Scholar 

  122. Oldendorf WH (1973) Carrier mediated blood brain barrier transport of short chain mono-carboxylic organic acids. Am J Physiol 224: 1450–1453

    PubMed  CAS  Google Scholar 

  123. Pakarinen A, Runeberg L (1969) Effects of phenolsulphonpthalein and probenecid on the uptake and utilization of citrate and a-ketoglutarate by kidney in vitro. Biochem Pharmacol 18: 2439–2452

    PubMed  CAS  Google Scholar 

  124. Pakarinen A (1970) Palmitate uptake and oxydation by kidney cortex slices. - Effects of probenecid, p-aminohippurate,and phenolsulfonphthalein. Biochem Pharmacol 19: 2707–2718

    PubMed  CAS  Google Scholar 

  125. Pappenheimer JR, Heisey SR, Jordan EF (1961) Active transport of Diodrast and phenol- sulfonpththalein from cerebrospinal fluid to blood. Am J Physiol 200: 1–10

    PubMed  CAS  Google Scholar 

  126. Park YS, Yoo HS, Hong SK (1971) Kinetic studies on transport of organic anions in rabbit kidney slices. Am J Physiol 220: 95–99

    PubMed  CAS  Google Scholar 

  127. Park YS, Solomon S (1977) pH, temperature dependence of organic acid transport in rat kidney slices. Am J Physiol 233: F382–F387

    Google Scholar 

  128. Pegg DG, Hewitt WR, Hook JB (1975) Substrate stimulation of p-aminohippuric acid transport — effect on uptake and run out. Proc Soc Exp Biol Med 149: 546–549

    PubMed  CAS  Google Scholar 

  129. Pegg DG, Hook JB (1977) Glutathione S-transferases: An evaluation of their role in renal organic anion transport. J Pharmacol Exp Ther 200: 65–74

    PubMed  CAS  Google Scholar 

  130. Podevin RA, Boumendil-Podevin EF (1975) Inhibition by cyclic AMP and dibutyryl cyclic AMP of transport of organic acids in the kidney cortex. Biochim Biophys Acta 375: 106–114

    PubMed  CAS  Google Scholar 

  131. Podevin RA, Boumendil-Podevin EF (1977) Monovalent cation and ouabain effects on PAH uptake by rabbit kidney slices. Am J Physiol 232: F239–F247

    PubMed  CAS  Google Scholar 

  132. Podevin RA, Boumendil-Podevin EF, Bujoli-Riche J, Pirol CL(1980) Effects of probenecid on transport and metabolism of cyclic AMP by isolated rabbit renal tubules. Biochim Biophys Acta 629: 135–142

    Google Scholar 

  133. Pollay M, Davson H (1963) The passage of certain substances out of the cerebrospinal fluid. Brain 86: 137–150

    PubMed  CAS  Google Scholar 

  134. Preuss HG, Massry SG, Mäher JF, Gilliece M, Schreiner GS (1966) Effects of uremic sera on renal tubular p-aminohippurate transport. Nephron 3: 265–273

    PubMed  CAS  Google Scholar 

  135. Preuss HG, Weiss FR, Vavatsimanos O, Vertuno LL, Schreiner GE (1973) Acid-base effects on renal organic cation transport. Proc Soc Exp Biol Med 142: 356–358

    PubMed  CAS  Google Scholar 

  136. Preuss HG, Byrne D, Shim PS (1976) Effect of para-aminohippurate on renal glutamine metabolism in the rat. J Pharmacol Exp Hier 197: 199–205

    CAS  Google Scholar 

  137. Rasmussen F (1969) Active mammary excretion of N 4-acetylated p-aminohippuric acid. Acta Vet Scand 10: 193–199

    CAS  Google Scholar 

  138. Rennick BR (1977) Renal tubular transport of prostaglandins: Inhibition by probenecid and indomethacin. Am J Physiol 233: F133–F137

    PubMed  CAS  Google Scholar 

  139. Riggs TR, Christensen HN (1951) Metabolic conjugations of p-aminobenzoic adic in the rat. J Biol Chem 193: 675–681

    PubMed  CAS  Google Scholar 

  140. Robinson JR (1957) The recovery of kidney slices from anoxia in different media. J Physiol (London) 136: 585–594

    CAS  Google Scholar 

  141. Robinson JWL, Mirkovitch V, Sepulveda FV (1977) A comparison of the effects of ouabain and ethaerynic acid on the dog kidney in vivo and in vitro. Pflügers Arch 371: 9–18

    PubMed  CAS  Google Scholar 

  142. Roch-Ramel F, Peters G (1978) Urinary excretion of uric acid in nonhuman mammalian species. In: Kelley WN, Weiner IM (eds) Handbook of experimental pharmacology, vol 51, Uric acid. Springer, Berlin Heidelberg New York, pp 211–255

    Google Scholar 

  143. Roch-Ramel F (1980) Renal tubular transport of urate in mammals. Renal Pathophysiology. Recent Adv 281: 139–143

    Google Scholar 

  144. Rollhäuser A (1957) Histologische und cytologische Untersuchungen über den Mechanismus der tubulären Farbstoffausscheidung der Rattenniere. Z Zellforsch 46: 52–66

    PubMed  Google Scholar 

  145. Rosenblatt SG, Patak RV, Lifschitz MD (1978) Organic acid secretory pathway and urinary excretion of prostaglandin E in the dog. Am J Physiol 235: F473–F479

    CAS  Google Scholar 

  146. Ross CR, Pessah NI, Farah A (1968) Studies of uptake and run out of p-aminohippurate and N-methylnicotinamide in dog renal slices. J Pharmacol Exp Ther 160: 381–386

    PubMed  CAS  Google Scholar 

  147. Ross CR, Weiner IM (1972) Adenine nucleotides and PAH transport in slices of renal cortex: effects of DNP and CN-. Am J Physiol 222: 356–359

    PubMed  CAS  Google Scholar 

  148. Rothstein A, Cabantchik ZI, Baishin M, Juliano R (1975) Enhancement of anion permeability in lecithin vesicles by hydrophobic proteins extracted from red blood cell membranes. Biochem Biophys Res Commun 64: 144–150

    PubMed  CAS  Google Scholar 

  149. Rothstein A, Cabantchik ZI, Knauf P (1976) Mechanism of anion transport in red blood cells: role of membrane proteins. Fed Proc 35: 3–10

    PubMed  CAS  Google Scholar 

  150. Rothstein A (1979) Role of protein channels in anion transport across the red cell mem-brane. In: Quagliariello E, Palmieri F, Papa S, Klingenberg M (eds) Function and molecular aspects of biomembrane transport, vol 3. Elsevier North Holland Biomed Press, Amsterdam, pp 15–24

    Google Scholar 

  151. Schachter D, Freinkel N (1951) Self-depression of TmPAH dog at high plasma levels and its reversibility by acetate. Am J Physiol 167: 531–538

    PubMed  CAS  Google Scholar 

  152. Schachter DJ, Manis J, Taggart JV (1955) Renal synthesis, degradation and active transport of aliphatic acylamino acids. Relationship to p-aminohippurate transport. Am J Physiol 182: 537–544

    PubMed  CAS  Google Scholar 

  153. Schanker LS, Johnson JM, Jeffrey JJ (1964) Rapid passage of organic anions into human red cells. Am J Physiol 207: 503–508

    PubMed  CAS  Google Scholar 

  154. Schneider W (1970) Konzentrationsabhängigkeit des PAH-Flusses in Froschhaut und Krötenblase. Pflügers Arch 319: R97

    Google Scholar 

  155. Sheikh M, Malier J (1970) The kinetic parameters of renal transport of p-aminohippurate in vitro. Bioehim Biophys Acta 196: 305–319

    CAS  Google Scholar 

  156. Sheikh MI (1972) Renal handling of phenol red. I. A comparative study on accumulation of phenol red and para-aminohippurate in rabbit kidney tubules in vitro. J Physiol (London) 227: 565–590

    CAS  Google Scholar 

  157. Sheikh MI (1976) Renal handling of phenol red. II. The mechanism of substituted phenol- sulfonphthalein (PSP) dye transport in rabbit kidney tubules in vitro. J Physiol (London) 256: 175–195

    CAS  Google Scholar 

  158. Sheikh MI, Stahl M (1977) Characteristics of accumulation of probenecid by rabbit kidney cortical slices. Am J Physiol 232: F513–F523

    PubMed  CAS  Google Scholar 

  159. Sheikh MI, Miller JV (1980) Renal handling of phenol red. IV. Tubular localisation in rabbit and rat kidney in vivo. Am J Physiol 238: F159–F165

    PubMed  CAS  Google Scholar 

  160. Smith HW (1951) The kidney. Oxford University Press, New York

    Google Scholar 

  161. Spencer AM, Sack J, Hong SK (1979) Relationship between PAH transport and Na+-K+- ATPase activity in the rabbit kidney. Am J Physiol 236: F126–F130

    PubMed  CAS  Google Scholar 

  162. Sperber I (1954) Competitive inhibition and specificity of renal tubular transport mechanisms. Arch Int Pharmacodyn 97: 221–231

    PubMed  CAS  Google Scholar 

  163. Steele TH, Rieselbach RE (1976) The renal handling of urate and other organic anions. In: Brenner B, Rector FC (eds) The kidney, vol I. WB Saunders, Philadelphia London Toronto, pp 442–476

    Google Scholar 

  164. Stopp M, Bräunlich H (1980) In vitro analysis of drug induced stimulation of renal tubular p-aminohippurate (PAH) transport in rats. Biochem Pharmacol 29: 983–986

    PubMed  CAS  Google Scholar 

  165. Taggart JV, Silverman L, Trayner EM (1953) Influence of renal electrolyte composition on the tubular excretion of PAH. Am J Physiol 173: 345–350

    PubMed  CAS  Google Scholar 

  166. Tanner GA, Kinter WB (1966) Reabsorption and secretion of PAH and Diodrast in Necturus kidney. Am J Physiol 210: 221–231

    PubMed  CAS  Google Scholar 

  167. Tanner GA, Isenberg MT (1970) Secretion of p-aminohippurate by rat kidney proximal tubules. Am J Physiol 219: 889–892

    PubMed  CAS  Google Scholar 

  168. Tanner GA, Carmines PK, Kinter WB (1979) Excretion of phenol red by Necturus kidney. Am J Physiol 236: F442–F447

    PubMed  CAS  Google Scholar 

  169. Trimble ME (1979) Transport and metabolism of octanoate by the perfused rat kidney. Am J Physiol 237: F210–F217

    PubMed  CAS  Google Scholar 

  170. Tune BM, Fernholt M (1973) Relationship between cephaloridine and para-aminohippurate transport in kidney. Am J Physiol 225: 1114–1117

    PubMed  CAS  Google Scholar 

  171. Tune BM, Wu KY, Kepson RL (1977) Inhibition of transport and prevention of toxicity of cephaloridine in the kidney. Dose-responsiveness of the rabbit and guinea pig to probenecid. J Pharmacol Exp Ther 202: 466–473

    PubMed  CAS  Google Scholar 

  172. Tune BM, Burg MB, Pattlak CS (1969) Characteristics of p-aminohippurate transport in proximal renal tubules. Am J Physiol 217: 1057–1063

    PubMed  CAS  Google Scholar 

  173. Ullrich KJ, Rumrich G, Klöss S (1974) Specifity and sodium dependence of the active sugar transport in the proximal convolution of the rat kidney. Pflügers Arch 351: 35–48

    PubMed  CAS  Google Scholar 

  174. Ullrich KJ, Rumrich G, Klöss S (1974) Sodium dependence of the amino acid transport in the proximal convolution of the rat kidney. Pflügers Arch 351: 49–60

    PubMed  CAS  Google Scholar 

  175. Ullrich KJ (1976) Renal tubular mechanisms of organic solute transport. Kidney Int 9: 134–148

    PubMed  CAS  Google Scholar 

  176. Ullrich KJ, Capasso G, Rumrich G, Papavassiliou F, Klöss S (1977) Coupling between the proximal tubular transport processes: Studies with ouabain, SITS and HCO3-free solutions. Pflügers Arch 368: 245–252

    PubMed  CAS  Google Scholar 

  177. Ullrich KJ (1979) Renal transport of organic solutes. In: Giebisch G, Tosteson DC, Ussing HH (eds) Membrane transport in biology, vol IVA, Transport organs. Springer, Berlin Heidelberg New York, pp 413–448

    Google Scholar 

  178. Vogel G, Kröger W (1965) Das Tm-PAH der Niere als Na+-abhängige Größe. Pflügers Arch 286: 317–322

    CAS  Google Scholar 

  179. Vogel G (1965) The importance of Na+ for the renal transport of glucose and p-aminohip- puric acid. Arch Exp Pathol Pharmacol 250: 287–295

    Google Scholar 

  180. Vogel G, Kröger W (1966) Die Bedeutung des Transportes, der Konzentration und der Darbietungsrichtung von Na+ für den tubulären Glucose- und PAH-Transport. Pflügers Arch 288: 342–358

    CAS  Google Scholar 

  181. Vogel G, Stöckert I (1966) Die Bedeutung des Anions für den renalen tubulären Transport von Na+ und die Transporte von Glucose und PAH. Pflügers Arch 292: 309–315

    CAS  Google Scholar 

  182. Wedeen RP, Weiner B (1969) Extraction of hippuran- I and 3H-PAH from red blood cells and plasma in the rat. Am J Physiol 217: 838–844

    PubMed  CAS  Google Scholar 

  183. Wedeen RP, Weiner B (1974) Distribution of p-aminohippuric acid in rat kidney slices. 3. Effect of inhibitors. Am J Physiol 226: 953–961

    PubMed  CAS  Google Scholar 

  184. Wedeen RP, Vygas BT (1978) Phlorhizin stimulation of p-aminohippurate uptake in rat kidney cortex slices, Kidney Int 14: 158–168

    PubMed  CAS  Google Scholar 

  185. Weiner IM (1971) Excretion of drugs by the kidney. In: Eichlar O, Farah A, Harken H, Welch AD (eds) Handbook of experimental pharmacology, New Ser, vol 28, part I. Springer, Berlin Heidelberg New York, pp 328–353

    Google Scholar 

  186. Weiner IM (1973) Transport of weak acids and bases. In: Qrloff J, Berliner RW (eds) Handbook of physiology, Sect 8, Renal physiology. Am Soc Physiol, Washington, pp 521–554

    Google Scholar 

  187. Weinman EJ, Frankfurt SJ, Ince A, Samson S (1978) Renal tubular transport of organic acids. Studies with oxalate and para-aminohippurate in the rat. J Clin Invest 61: 801–806

    PubMed  CAS  Google Scholar 

  188. Weiss FR, Preuss HG (1970) Influence of extracellular and intracellular factors on hippurate uptake by rat kidney cortex: acid base effects. Proc Soc Exp Biol Med 135: 30–32

    PubMed  CAS  Google Scholar 

  189. Welch K (1962) Concentration of thiocyanate by the choroid plexus of the rabbit in vitro. Proc Soc Exp Biol Med 109: 953–954

    PubMed  CAS  Google Scholar 

  190. Wright EM (1974) Active transport of iodide and other anions across the choroid plexus. J Physiol (London) 240: 535–566

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Häberle, D.A. (1981). Characteristics of p-Aminohippurate Transport in the Mammalian Kidney. In: Greger, R., Lang, F., Silbernagl, S. (eds) Renal Transport of Organic Substances. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68147-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68147-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68149-3

  • Online ISBN: 978-3-642-68147-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics