Transport of D-Glucose in the Mammalian Kidney

  • H. v. Baeyer
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

This article attempts to review the physiological and biochemical literature on renal D-glucose transport of the last ten years. The preceding literature is reviewed comprehensively in the Handbook of Physiology, Section 8, Chapter 19 [85]. Special emphasis has been given to the quantitative findings rather than to the presentation of theoretical considerations. Certainly, as consequence of the necessary shortness, some important contributions were not regarded extensively enough.

Keywords

Sugar Galactose Hyperglycemia Furosemide Monosaccharide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aronson PS, Sacktor B (1974) Transport of D-glucose by brushborder membranes isolated from the renal cortex. Biochim Biophys Acta 356:231–243PubMedGoogle Scholar
  2. 2.
    Aronson PS, Hayslett JP, Kashgarian M (1979) Dissociation of proximal tubular glucose on Na+reabsorption by amphotericin B. Am J Physiol 236 (4):F392–F397PubMedGoogle Scholar
  3. 3.
    Aronson PS, Sacktor B (1975) The Na+ gradient dependent transport of D-glucose in renal brushborder membranes. J Biol Chem 250:6032–6039PubMedGoogle Scholar
  4. 4.
    Arruda JAL, Westenfelder Ch, Lockwood R (1976) Glucose and bicarbonate reabsorption in edematous dogs. Am J Physiol 231:749–753PubMedGoogle Scholar
  5. 5.
    von Baeyer H, von Conta C, Haeberle DA (1972) Glucosetransport am proximalen Nierentubulus. Biochemische Aspekte der Nierenfunktion. Hohenegger M (ed). Wilhelm Goldmann, München, pp 17–31Google Scholar
  6. 6.
    von Baeyer H, Haeberle DA, van Liew JB, Hare D (1980) Glomerular tubulär balance of renal D-glucose transport during hyperglycemia. Qearance and micropuncture studies on its characteristics at saturated transport conditions. Pflügers Arch 384:39–47Google Scholar
  7. 7.
    von Baeyer H (1975) Glucose transport in the short loop of Henle of the rat kidney. Pflügers Arch 359:317–323Google Scholar
  8. 8.
    von Baeyer H, von Conta C, Haeberle DA, Deetjen P (1973) Determination of transport constants for glucose in proximal tubules of the rat kidney. Pflügers Arch 343:273–286Google Scholar
  9. 9.
    Baines AD (1971) Effect of extracellular fluid volume expansion on maximum glucose reabsorption rate and glomerular tubular balance in single rat nephrons. J Clin Invest 50:2414–2424PubMedGoogle Scholar
  10. 10.
    Baker JT, Kleinman LJ (1974) Relationship between glucose and sodium excretion in the new-born dog. J Physiol 243:45–67PubMedGoogle Scholar
  11. 11.
    Barber DC, Levin RI, Mitchell MA (1977) Estimation of real Km for in vivo absorption of glucose. J Physiol 5-PGoogle Scholar
  12. 12.
    Barfuss DW, Schafer JA (1979) Flow dependence of nonelectrolyte absorption in the nephron. Am J Physiol 236 (2):F163–F174PubMedGoogle Scholar
  13. 13.
    Barratt LJ, Rector FC Jr, Kokko JP, Seldin DW (1974) Factors governing the transepithelial potential difference across the proximal tubule of the rat kidney. J Clin Invest 53:454–464PubMedGoogle Scholar
  14. 14.
    Baumann K, Frömter E, Ullrich KJ (1967) Passiver Stofftransport durch die Epithelzellschicht von Harnkanälchen. Ber Bunsenges Phys Chem 71:834–838Google Scholar
  15. 15.
    Beck JC, Sacktor B (1973) The sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles. J Biol Chem 253 (15):5531–5535Google Scholar
  16. 16.
    Beck JC, Sacktor B (1978) Membrane potential-sensitive fluorescence changes during Na+- dependent D-glucose transport in renal brush border membrane vesicles. J Biol Chem 253 (20):7158–7162PubMedGoogle Scholar
  17. 17.
    Beck JC, Sacktor B (1975) Energeitcs of the Na+ dependent transport of D-glucose in renal brush border membrane vesicles. J Biol Chem 250:8674–8680PubMedGoogle Scholar
  18. 18.
    Bishop JHV, Green R, Thomas S (1978) Effects of glucose in water and sodium reabsorption in the proximal convoluted tubule of rat kidney. J Physiol 275:481–493PubMedGoogle Scholar
  19. 19.
    Bishop JHV, Green R, Thomas S (1976) Glucose reabsorption in short loops of Henle in the rat. J Physiol, 55 PGoogle Scholar
  20. 20.
    Bishop JHV, Green R, Thomas S (1977) Reabsorption of sodium and water in proximal convoluted tubules of the rat kidney. J Physiol 266:66P–67 PPubMedGoogle Scholar
  21. 21.
    Bishop JHV, Green R, Thomas S (1979) Free-flow reabsorption of glucose, sodium, osmoles and water in rat proximal convoluted tubule. J Physiol 288:331–351PubMedGoogle Scholar
  22. 22.
    Bishop JHV, Elegbe R, Green R, Thomas S (1978) Effects of phlorizin on glucose, water and sodium handling by the rat kidney. J Physiol 275:467–480PubMedGoogle Scholar
  23. 23.
    Bode F, Chan YL, Goldner AM, Papavassiliou F, Wagner M, Baumann K (1973) Reabsorption of D-glucose from various regions of the rat proximal convoluted tubule:evidence that the proximal convolution is not homogeneous. Prox IX Symp Ges Nephrol, Basel, R73Google Scholar
  24. 24.
    Bode F, Baumann K, Diedrich DF (1972) Inhibition of 3H phlorizin binding to isolated kidney brush border membranes by phlorizin-like compounds. Biochim Biophys Acta 230:134–149Google Scholar
  25. 25.
    Bode F, Baumann K, Frasch W, Kinne R (1970) Die Binding von Phlorrhizin an die Bürstensaumfraktion der Rattenniere. Pflügers Arch 315:53–65PubMedGoogle Scholar
  26. 26.
    Boonjarern S, Laski ME, Kurtzman NA (1976) Effects of extracellular volume expansion on the tubular reabsorption of glucose. Pflügers Arch 266:67–71Google Scholar
  27. 27.
    Boonjarern S, Metha PK, Laski ME, Earnest WR, Kurtzman NA (1977) Effect of furosemide on renal handling of glucose in the rat. Am J Physiol 232 (5):F438–F442PubMedGoogle Scholar
  28. 28.
    Bowman RH, Maack T (1972) Glucose transport by the isolated perfused rat kidney. Am J Physiol 222(6):1499–1504PubMedGoogle Scholar
  29. 29.
    Brazy PC, Dennis VW (1978) Charaeterisitcs of glucose-phlorizin interactions in isolated proximal tubules. Am J Physiol 234(4):F279–F286PubMedGoogle Scholar
  30. 30.
    Brod J (1973) Investigation of tubular function. Techniques based on clearance methods. In:The kidney. Butterworths, London, pp 98–102Google Scholar
  31. 31.
    Burg M, Patlak C, Green N, Villey D (1976) Organic solutes in fluid absorption by renal convoluted tubules. Am J Physiol 231 (2):627–637PubMedGoogle Scholar
  32. 32.
    Busse D, Jahn A, Steinmaier G (1975) Carrier-mediated transfer of D-glucose in brush border vesicles derived from rabbit renal tubules Na+ dependent versus Na+independent transfer. Biochim Biophys Acta 401:231–243PubMedGoogle Scholar
  33. 33.
    Busse D, Elsas LJ, Rosenberg LE (9172) Uptake of D-glucose by renal tubule membranes. I. Evidence for two transport systems. J Biol Chem 247:1188–1193Google Scholar
  34. 34.
    Chetok RJ, Lake S (1974) Evidence for a single kind of D-glucose binding site on renal brush border. Biochim Biophys Acta 339:202–209Google Scholar
  35. 35.
    Chesney R, Sacktor B, Kleinzeller A (1974) The binding of phloridzin to the isolated luminal membrane of the renal proximal tubule. Biochim Biophys Acta 332:263–277Google Scholar
  36. 36.
    Chesney RW, Sacktor B, Rowen R (1973) The binding of D-glucose to the isolated luminal membrane of the renal proximal tubule. J Biol Chem 248:2182–2191PubMedGoogle Scholar
  37. 37.
    Crane RK, Miller D, Bihler I (1961) The restrictions on possible mechanisms of intestinal active transport of sugars. In:Kleinzeller A, Kotyk A (eds) Symposium on membrane transport and metabolism. Academic Press, London New York, pp 433–449Google Scholar
  38. 38.
    Deetjen P, Van Liew JB, Boylan JW (1966) Einfluß der tubulären Harnstromstärke auf die Glukoseresorption. Pflügers Arch 289:R67Google Scholar
  39. 39.
    Deetjen P, Boylan JW, Gerstein B (1969) Mikroperfusionsuntersuchungen an der Rattenniere über die Beziehung zwischen Glukoseresorption und dem Transport von Natrium und Wasser. IV. Symposium der Gesellschaft für Nephrologie, Men 1968, pp 113–117Google Scholar
  40. 40.
    Deetjen P, Boylan JW (1968) Glucose reabsorption in the rat kidney (microperfusion studies). Pflügers Arch 299:19–29Google Scholar
  41. 41.
    Fairclough P, Malathi P, Preiser H, Crane RK (1979) Reconstitution into liposomes of glucose active transport from the rabbit renal proximal tubule. Biochim Biophys Acta 553:295–306PubMedGoogle Scholar
  42. 42.
    Frasch W, Frohnert PP, Baumann K, Kinne R (1970) Competitive inhibition of phloridzin binding by D-glucose and the influence of sodium:a study on isolated brush border membrane on rat kidney. Pflügers Arch 320:265–284PubMedGoogle Scholar
  43. 43.
    Frega NS, Weinberg JM, Ross BD, Leaf S (1977) Stimulation of sodium transport by glucose in the perfused rat kidney. Am J Physiol 233(3):F235–F240PubMedGoogle Scholar
  44. 44.
    Frömter E, Luer K (1973) Electrical studies on sugar transport kinetics of rat proximal tubule. Pflügers Arch 343:R47Google Scholar
  45. 45.
    Frömter E, Geßner K (1974) Free-flow potential along rat kidney proximal tubule. Pflügers Arch 351:69–83PubMedGoogle Scholar
  46. 46.
    Frömter E, Geßner K (1974) Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule. Pflügers Arch 351:85–98PubMedGoogle Scholar
  47. 47.
    Frohnert PP, Hörmann B, Zwiebel R, Baumann K (1970) Free flow mieropuncture studies of glucose transport in the rat nephron. Pflügers Arch 315:66–85PubMedGoogle Scholar
  48. 48.
    Genel M, Rea CF, Segal S (1971) The transport interaction of sugars and amino acids in mammalian kidney. Biochim Biophys Acta 241:779–788PubMedGoogle Scholar
  49. 49.
    Glossmann H, Neville DM (1972) Phlorizin receptors in isolated kidney brush border membranes. J Biol Chem 247:7779–7789PubMedGoogle Scholar
  50. 50.
    Gregg CM, Cohen JJ, Black AJ, Espeland MA, Feldstein ML (1978) Effects of glucose and insulin on metabolism and function of perfused rat kidney. Am J Physiol 235 (I):F52–F61PubMedGoogle Scholar
  51. 51.
    Hare D, Stolte H (1972) Rat proximal tubule D-glucose transport as a function of concentration flow, and radius. Pflügers Arch 334:207–221PubMedGoogle Scholar
  52. 52.
    Heath DH, Aurbach GD (1973) Uptake of 125I-phloridzin by tubulus isolated from the renal cortex of the rat. J Biol Chem 248:1577–1581PubMedGoogle Scholar
  53. 53.
    Higgins IT, Meinders AE (1975) Quantitative relationship of renal glucose and sodium reabsorption during ECF expansion. Am J Physiol 229:66–71PubMedGoogle Scholar
  54. 54.
    Hilden SA, Sacktor B (1979) D-gloeose-dependent sodium transport in renal brush border membrane vesicles. J Biol Chem 254(15):7090–7096PubMedGoogle Scholar
  55. 55.
    Homan GD, Naftalin RJ (1978) Transport of 3-Omethyl-D-glucose and β-methyl-D-glucoside by rabbit ileum. Biochim Biophys Acta 433:597 — 614Google Scholar
  56. 56.
    Hopfer U (1978) Transport in isolated plasma membranes. Am J Physiol 234 (2):F89–F96PubMedGoogle Scholar
  57. 57.
    Horsburg T, Cannon JK, Pitts RF (1978) Action of phlorizin on luminal and antiluminal membranes of proximal cells of kidney. Am J Physiol 234 (6):F485–F489Google Scholar
  58. 58.
    Kawamura J, Mazumdar DC, Lubowitz H (1977) Effect of albumin infusion on renal glucose reabsorption in the rat. Am J Physiol 232 (3):F286–F290PubMedGoogle Scholar
  59. 59.
    Keston AS, Brandt R, Barash JM (1972) Quantitative relationships between glucose reabsorption and mutarotation by dog kidney in vivo. Biochim Biophys Res Commun 46:610–615Google Scholar
  60. 60.
    Keyes JL, Swanson RE (1971) Dependence of glucose Tm on GFR and tubular volume in the dog kidney. Am J Physiol 221 (1):1–7PubMedGoogle Scholar
  61. 61.
    Kimmich G, Carter-Su C, Randies J (1977) Energetics of Na+-dependent sugar transport by isolated intestinal cells:evidence for a major role for membrane potentials. Am J Physiol 233 (5):E357–E362PubMedGoogle Scholar
  62. 62.
    Kinne R, Schwartz IL (1978) Isolated membrane vesicles in the evaluation of the nature, localization, and regulation of renal transport processes. Kidney Int 14 (6):547–556PubMedGoogle Scholar
  63. 63.
    Kinne R, Murer H, Kinne-Saffran E, Thees M, Sachs B (1975) Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush-border microvilli and basal-lateral plasma membranes, J Membr Briol 21:375–395Google Scholar
  64. 64.
    Kinne R. Faust RG (1977) Incorporation of D-glucose-, L-alanine and phosphate-transport systems from rat renal brush-border membranes into liposomes. Biochem J 168 (2):311–314PubMedGoogle Scholar
  65. 65.
    Kleinzeller A, Tam J, Kanter RK, McAvoy EM (1974) The structural requirement for C1-OH for the active transport of D-mannose and 2-deoxy-D-hexoses by renal tubular cells. Biochim Biophys Acta 373:397–403PubMedGoogle Scholar
  66. 66.
    Kleinzeller A (1974) Pathways of sugar transport in renal cells. In:Wesson LG, Fanelli GM (eds) Recent advances in renal physiology and pharmacology. University Park Press, Baltimore London Toronto, pp 1–11Google Scholar
  67. 67.
    Kleinzeller A, McAvoy E (1976) Transport and phosphorylation of D-galactose in renal cortical cells. Biochim Biophys Acta 455:109–125PubMedGoogle Scholar
  68. 68.
    Kleinzeller A, Kotyk A (1961) Cations and transport of galactose in kidney-cortex slices. Biochim Biophys Acta 54:367–369PubMedGoogle Scholar
  69. 69.
    Kleinzeller A, McAvoy E (1976) Transport and phosphorylation of 2-deoxy-D-galactose in renal cortical cells. Biochim Biophys Acta 455:126–143PubMedGoogle Scholar
  70. 70.
    Kleinzeller A (1970) The specificity of the active sugar transport in kidney cortex cells. Biochim Biophys Acta 211:264–275Google Scholar
  71. 71.
    Kleinzeller A (1970) Active sugar transport in renal cortex cells:the electrolyte requirement. Biochim Biophys Acta 211:277–292Google Scholar
  72. 72.
    Kleinzeller A, Ausiello DA, Almendares JA, Davis AH (1970) The effect of pH on sugar transport and ion distribution in kidney cortex cells. Biochim Biophys Acta 211:293–307Google Scholar
  73. 73.
    Kleinzeller A, Kolinska J, Benes I (1967) Transport of glucose and galactose in kidney-cortex cells. Biochem J 104:843–851PubMedGoogle Scholar
  74. 74.
    Klip A, Grinstein S, Semenza G (1979) Partial purification of the sugar carrier of intestinal brush border membranes. Enrichment of the phlorizin-binding component by selective extractions. J Membr Biol 51:47–73PubMedGoogle Scholar
  75. 75.
    Knight T, Sansom S, Weinman EJ (1977) Renal tubular absroption of D-glucose, 3-O-methyl- D-glueose, and 2-deoxy-D-glucose. Am J Physiol 233 (4):F274–F277PubMedGoogle Scholar
  76. 76.
    Kokko JP (1973) Proximal tubule potential difference (dependence on glucose, HCO3 and amino acids). J Clin Invest 52:1352–1367Google Scholar
  77. 77.
    Krane SM, Crane RK (1959) The accumulation of D-galactose against a concentration gradient by slices of rabbit kidney cortex. J Biol Chem 234:211–216PubMedGoogle Scholar
  78. 78.
    Kurtzman NA, White MG, Rogers PW, Glynn III UU (1972) Relationship of sodium reabsorption and glomerular filtration rate to renal glucose reabsorption. J Clin Invest 51:127–133PubMedGoogle Scholar
  79. 79.
    Kwong T-F, Bennett CM (1974) Relationship between glomerular filtration rate and maximum tubular reabsorptive rate of glucose. Kidney Int 5:23–29PubMedGoogle Scholar
  80. 80.
    Loeschke K, Baumann K, Renschier H, Ullrich KJ (1968) Differenzierung zwischen aktiver und passiver Komponente des D-Gluko setransports am proximalen Konvolut der Rattenniere. Pflügers Arch 305:118–138Google Scholar
  81. 81.
    Loeschke K, Baumann K (1969) Kinetische Studien der D-Glukoseresorption im proximalen Konvolut der Rattenniere. Pflügers Arch 305:139–154PubMedGoogle Scholar
  82. 82.
    van LiewJB, Deetjen P, Voylan JW (1967) Glucose reabsorption in the rat kidney. Pflügers Arch 295:232–244Google Scholar
  83. 83.
    Maruyama T, Hoshi T (1972) The effect of D-glucose on the electrical potential profile across the proximal tubule of newt kidney. Biochim Biophys Acta 282:214–225PubMedGoogle Scholar
  84. 84.
    Mitchell ME, Aronson PS, Sacktor B (1974) Further studies on the previously proposed saturable high affinity site for D-glucose in the renal brush border membrane preparations. J Biol Chem 249:6971–6975PubMedGoogle Scholar
  85. 85.
    Mudge GM, Berndt WO, Valtin H (1973) Tubular transport of urea, glucose, phosphate, uric acid, sulfate and thiosulfate. In:Handbook of physiology, Sect 8:Renal physiology, Chap 19. Am Physiol Soc, Washington DC, pp 587–652Google Scholar
  86. 86.
    Murer H, Kinne R (1977) Sidedness and coupling of transport processes in small intestinal and renal epithelia. In:Semenza G, Carafoli E (eds) Biochemistry of membrane transport. FEBS-Symposium No 42. Springer, Berlin Heidelberg New York, pp 292–304Google Scholar
  87. 87.
    Murer H, Hopfer U, Kinne R (1976) Sodium/proton antiport in brush-border membrane vesicles isolated from the rat smaE intestine and kidney. Biochem J 154:597–604PubMedGoogle Scholar
  88. 88.
    Ni TG, Rehberg PB (1930) On the mechanism of sugar excretion. I. Glucose. Biochem J 24:1039–1046PubMedGoogle Scholar
  89. 89.
    Nizet A (1972) Excretion and tubular reabsorption of sodium, glucose and phosphate by isolated dog kidneys:Influence of blood dilution. Pfiigers Arch 332:248–258Google Scholar
  90. 90.
    Rabito CA, Ausiello DA (1980) Na-dependent sugar transport in a cultured epithelial cell line from pig kidney. J Membr Biol 54:31–38PubMedGoogle Scholar
  91. 91.
    Renschler HE (1964) Verlauf der Titrationskurve für Glucose im Bereich physiologischer Blutglucosekonzentrationen. 3. Symp Ges Nephrol, pp 161–166Google Scholar
  92. 92.
    Reubi F (1960) Nierenkrankheiten. Huber, Bern Stuttgart, pp 192–196, 384–415Google Scholar
  93. 93.
    Reynolds R, Segal St (1974) Effects of dibutyeil cyclic AMP on α-methyl-D-glucoside accumulation in rabbit kidney. Am J Physiol 226:791–795PubMedGoogle Scholar
  94. 94.
    Robinson JWL, Luisier A-L (1973) Inhibition of renal sugar and amin-acid transport by n-butyl-biguanide. Arch Pharmacol 278:23–34Google Scholar
  95. 95.
    Robson AM, Srivastava PL, Bricker NS (1968) The influence of saline loading on renal glucose reabsorption in the rat. J Clin Invest 47:329–335PubMedGoogle Scholar
  96. 96.
    Rohde R, Deetjen P (1968) Die Glukoseresorption in der Rattenniere (Mikropunktionsanalysen der tubulären Glukosekonzentration bei freiem Fluß.) Pflügers Arch 302:219–232Google Scholar
  97. 97.
    Roth KS, Hwang SM, Yudkoff M, Segal S (1976) On the transport of sugars and amino acids by newborn kidney:use of isolated proximal tubule. Life Sei 18:1125–1129Google Scholar
  98. 98.
    Ruedas G, Weiss Ch (1967) Die Wirkung von Änderungen der Natriumkonzentration im Perfusionsmedium and von Strophantin auf die Glucoseresorption der isolierten Rattenniere. Pflügers Arch 298:12–22Google Scholar
  99. 99.
    Sacktor B, Beck JC (1977) Na+-electrochemical potential-mediated transport of D-glucose in renal brush border membrane vesicles. Curr Prob Clin Biochem 8:159–169Google Scholar
  100. 100.
    Sacktor B, Chesney RW, Mitchell ME, Aronson PS (1974) The interactions of D-glucose with the renal brush border. In:Wesson LG, Fanelli Jr GM (eds) Recent advances in renal physiology and pharmacology. University Park Press, Baltimore London Toronto, pp 13–26Google Scholar
  101. 101.
    Schubert GE, Schuster HP, Baum P (1964) Physiologische Glucosurie bei verschiedenen Diuresezuständen. Klin Woehenschr 42:619–622Google Scholar
  102. 102.
    Schultze RG, Berger H (1973) The influence of GFR and saline expansion in TIIIQ of the dog kidney. Kidney Int 3:291–297PubMedGoogle Scholar
  103. 103.
    Seely JF, Chirito E (1975) Studies of the electrical potential difference in rat proximal tubule. Am J Physiol 229 (1):72–80PubMedGoogle Scholar
  104. 104.
    Segal S, Rosenhagen M (1974) The effect of extracellular sodium concentration on O-methyl- D-glucoside transport by rat kidney cortex. Biochim Biophys Acta 332:278–285Google Scholar
  105. 105.
    Segal S, Rosenhagen M, Rea C (1973) Developmental and other characteristics of alpha methyl-D-glucoside transport by rat kidney cortex slices. Biochim Biophys Acta 291:519–530PubMedGoogle Scholar
  106. 106.
    Segal St, Genel M, Holtzapple P, Rea Ch (1973) Transport of alpha-methyl-D-glucoside by human kidney cortex. Metabolism 22:67–76PubMedGoogle Scholar
  107. 107.
    Shannon JA, Fisher S (1938) The renal tubular reabsorption of glucose in the normal dog. Am J Physiol 122:765–771Google Scholar
  108. 108.
    Shannon J A, Farber S, Troast L (1941) The measurement of glucose Tm in the normal dog. Am J Physiol 133:752–761Google Scholar
  109. 109.
    Silverman M (1974) The chemical and steric determinants governing sugar interactions with renal tubular membranes. Biochim Biophys Acta 332:248–262Google Scholar
  110. 110.
    Silverman M, Aganon MA, Chinard FP (1970) D-glucose interactions with renal tubule cell surfaces. Am J Physiol 218:735–742PubMedGoogle Scholar
  111. 111.
    Silverman M (1974) The in vivo localization of high-affinity phlorizin receptors to the brush border surface of the proximal tubule in dog kidney. Biochim Biophys Acta 339:92–102PubMedGoogle Scholar
  112. 112.
    Silverman M, Huang L (1976) Mechanism of maleic acid-induced glucosuria in dog kidney. Am J Physiol 231:1024–1032PubMedGoogle Scholar
  113. 113.
    Silverman M (1977) Sugar interaction with the antiluminal surface of the proximal tubule in dog kidney. Am J Physiol 23 (5):F455–F460Google Scholar
  114. 114.
    Silverman M, Black J (1975) High affinity phlorizin receptor sites and their relation to the glucose transport mechanism in the proximal tubule of dog kidney. Biochim Biophys Acta 394:10–30PubMedGoogle Scholar
  115. 115.
    Silverman M (1976) Glucose transport in the kidney. Biochim Biophys Acta 457:303–351PubMedGoogle Scholar
  116. 116.
    Smith HW, Goldring W, Chasis H, Ranges HA, Bradley StE (1943) II. The application of saturation methods to the study of glomerular and tubular functions in the human kidney. J Mt Sinai Hosp NY 10:59–108Google Scholar
  117. 117.
    Singer S J, Nicolsoij GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731PubMedGoogle Scholar
  118. 118.
    Stolte H, Hare DJ, Boylan JW (1972) D-glucose and fluid reabsorption in proximal surface tubule of the rat kidney. Pfliigers Arch 334:193–206Google Scholar
  119. 119.
    Thomas L, Kinne R, Frohnert PP (1972) N-ethylmaleimide labeling of a phlorizin-sensitive D-glucose binding site of brush border membrane from the rat kidney. Biodiim Biophys Acta 290:125–133Google Scholar
  120. 120.
    Trimble ME (1975) Effects of L-glucose on sodium reabsorption in the isolated perfused rat kidney. Life Sci 17:1799–1806PubMedGoogle Scholar
  121. 121.
    Tune BM, Burg MB (1971) Glucose transport by proximal renal tubules. Am J Physiol 221:580–585PubMedGoogle Scholar
  122. 122.
    Turner RJ, Silverman M (1977) Sugar uptake into brush border vesicles from normal human kidney. Proc Natl Acad Sci 74:2825–2829PubMedGoogle Scholar
  123. 123.
    Ullrich KJ (1979) Sugar, amino acid, and Na+ cotransport in the proximal tubule. Annu Rev Physiol 41:181–195PubMedGoogle Scholar
  124. 124.
    Ullrich KJ (1976) Renal tubular mechanisms of organic solute transport. Kidney Int 9:134–148PubMedGoogle Scholar
  125. 125.
    Ullrich KJ, Rumrich G, Klôss S (1974) Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rat kidney. Pfliigers Arch 351:35–48Google Scholar
  126. 126.
    Vick H, Diedrich DF, Baumann K (1973) Réévaluation of renal tubular glucose transport inhibition by phlorizin analogs. Am J Physiol 224 (3):552–557PubMedGoogle Scholar
  127. 127.
    Walker AM, Bott PA, Oliver J, MacDowell MC (1941) The collection and analysis of fluid from single nephrons of the mammalian kidney. Am J Physiol 134:580–595Google Scholar
  128. 128.
    Weinmann EJ, Suki WN, Eknoyan G (1976) D-glueose enhanœment of water reabsorption in proximal tubule of the rat kidney. Am J Physiol 231 (3):777–780Google Scholar
  129. 129.
    Wen S-F, Stoll RW (1979) Effect of volume expansion on renal glucose transport in normal and uremic dogs. Am I Physiol 236 (6):F567–F574Google Scholar
  130. 130.
    Wen S-F (1976) Micropuncture studies of glucose transport in the dog:Mechanism of renal glucosuria. Am J Physiol 231 (2):468–475PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • H. v. Baeyer
    • 1
  1. 1.Klinikum Charlottenburg, Abteilung für Innere Medizin, mit Schwerpunkt NephrologieFreie Universität BerlinBerlin 19Germany

Personalised recommendations