Skip to main content

Transport of D-Glucose in the Mammalian Kidney

  • Conference paper
Renal Transport of Organic Substances

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

This article attempts to review the physiological and biochemical literature on renal D-glucose transport of the last ten years. The preceding literature is reviewed comprehensively in the Handbook of Physiology, Section 8, Chapter 19 [85]. Special emphasis has been given to the quantitative findings rather than to the presentation of theoretical considerations. Certainly, as consequence of the necessary shortness, some important contributions were not regarded extensively enough.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronson PS, Sacktor B (1974) Transport of D-glucose by brushborder membranes isolated from the renal cortex. Biochim Biophys Acta 356:231–243

    PubMed  CAS  Google Scholar 

  2. Aronson PS, Hayslett JP, Kashgarian M (1979) Dissociation of proximal tubular glucose on Na+reabsorption by amphotericin B. Am J Physiol 236 (4):F392–F397

    PubMed  CAS  Google Scholar 

  3. Aronson PS, Sacktor B (1975) The Na+ gradient dependent transport of D-glucose in renal brushborder membranes. J Biol Chem 250:6032–6039

    PubMed  CAS  Google Scholar 

  4. Arruda JAL, Westenfelder Ch, Lockwood R (1976) Glucose and bicarbonate reabsorption in edematous dogs. Am J Physiol 231:749–753

    PubMed  CAS  Google Scholar 

  5. von Baeyer H, von Conta C, Haeberle DA (1972) Glucosetransport am proximalen Nierentubulus. Biochemische Aspekte der Nierenfunktion. Hohenegger M (ed). Wilhelm Goldmann, München, pp 17–31

    Google Scholar 

  6. von Baeyer H, Haeberle DA, van Liew JB, Hare D (1980) Glomerular tubulär balance of renal D-glucose transport during hyperglycemia. Qearance and micropuncture studies on its characteristics at saturated transport conditions. Pflügers Arch 384:39–47

    Google Scholar 

  7. von Baeyer H (1975) Glucose transport in the short loop of Henle of the rat kidney. Pflügers Arch 359:317–323

    Google Scholar 

  8. von Baeyer H, von Conta C, Haeberle DA, Deetjen P (1973) Determination of transport constants for glucose in proximal tubules of the rat kidney. Pflügers Arch 343:273–286

    Google Scholar 

  9. Baines AD (1971) Effect of extracellular fluid volume expansion on maximum glucose reabsorption rate and glomerular tubular balance in single rat nephrons. J Clin Invest 50:2414–2424

    PubMed  CAS  Google Scholar 

  10. Baker JT, Kleinman LJ (1974) Relationship between glucose and sodium excretion in the new-born dog. J Physiol 243:45–67

    PubMed  CAS  Google Scholar 

  11. Barber DC, Levin RI, Mitchell MA (1977) Estimation of real Km for in vivo absorption of glucose. J Physiol 5-P

    Google Scholar 

  12. Barfuss DW, Schafer JA (1979) Flow dependence of nonelectrolyte absorption in the nephron. Am J Physiol 236 (2):F163–F174

    PubMed  CAS  Google Scholar 

  13. Barratt LJ, Rector FC Jr, Kokko JP, Seldin DW (1974) Factors governing the transepithelial potential difference across the proximal tubule of the rat kidney. J Clin Invest 53:454–464

    PubMed  CAS  Google Scholar 

  14. Baumann K, Frömter E, Ullrich KJ (1967) Passiver Stofftransport durch die Epithelzellschicht von Harnkanälchen. Ber Bunsenges Phys Chem 71:834–838

    CAS  Google Scholar 

  15. Beck JC, Sacktor B (1973) The sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles. J Biol Chem 253 (15):5531–5535

    Google Scholar 

  16. Beck JC, Sacktor B (1978) Membrane potential-sensitive fluorescence changes during Na+- dependent D-glucose transport in renal brush border membrane vesicles. J Biol Chem 253 (20):7158–7162

    PubMed  CAS  Google Scholar 

  17. Beck JC, Sacktor B (1975) Energeitcs of the Na+ dependent transport of D-glucose in renal brush border membrane vesicles. J Biol Chem 250:8674–8680

    PubMed  CAS  Google Scholar 

  18. Bishop JHV, Green R, Thomas S (1978) Effects of glucose in water and sodium reabsorption in the proximal convoluted tubule of rat kidney. J Physiol 275:481–493

    PubMed  CAS  Google Scholar 

  19. Bishop JHV, Green R, Thomas S (1976) Glucose reabsorption in short loops of Henle in the rat. J Physiol, 55 P

    Google Scholar 

  20. Bishop JHV, Green R, Thomas S (1977) Reabsorption of sodium and water in proximal convoluted tubules of the rat kidney. J Physiol 266:66P–67 P

    PubMed  CAS  Google Scholar 

  21. Bishop JHV, Green R, Thomas S (1979) Free-flow reabsorption of glucose, sodium, osmoles and water in rat proximal convoluted tubule. J Physiol 288:331–351

    PubMed  CAS  Google Scholar 

  22. Bishop JHV, Elegbe R, Green R, Thomas S (1978) Effects of phlorizin on glucose, water and sodium handling by the rat kidney. J Physiol 275:467–480

    PubMed  CAS  Google Scholar 

  23. Bode F, Chan YL, Goldner AM, Papavassiliou F, Wagner M, Baumann K (1973) Reabsorption of D-glucose from various regions of the rat proximal convoluted tubule:evidence that the proximal convolution is not homogeneous. Prox IX Symp Ges Nephrol, Basel, R73

    Google Scholar 

  24. Bode F, Baumann K, Diedrich DF (1972) Inhibition of 3H phlorizin binding to isolated kidney brush border membranes by phlorizin-like compounds. Biochim Biophys Acta 230:134–149

    Google Scholar 

  25. Bode F, Baumann K, Frasch W, Kinne R (1970) Die Binding von Phlorrhizin an die Bürstensaumfraktion der Rattenniere. Pflügers Arch 315:53–65

    PubMed  CAS  Google Scholar 

  26. Boonjarern S, Laski ME, Kurtzman NA (1976) Effects of extracellular volume expansion on the tubular reabsorption of glucose. Pflügers Arch 266:67–71

    Google Scholar 

  27. Boonjarern S, Metha PK, Laski ME, Earnest WR, Kurtzman NA (1977) Effect of furosemide on renal handling of glucose in the rat. Am J Physiol 232 (5):F438–F442

    PubMed  CAS  Google Scholar 

  28. Bowman RH, Maack T (1972) Glucose transport by the isolated perfused rat kidney. Am J Physiol 222(6):1499–1504

    PubMed  CAS  Google Scholar 

  29. Brazy PC, Dennis VW (1978) Charaeterisitcs of glucose-phlorizin interactions in isolated proximal tubules. Am J Physiol 234(4):F279–F286

    PubMed  CAS  Google Scholar 

  30. Brod J (1973) Investigation of tubular function. Techniques based on clearance methods. In:The kidney. Butterworths, London, pp 98–102

    Google Scholar 

  31. Burg M, Patlak C, Green N, Villey D (1976) Organic solutes in fluid absorption by renal convoluted tubules. Am J Physiol 231 (2):627–637

    PubMed  CAS  Google Scholar 

  32. Busse D, Jahn A, Steinmaier G (1975) Carrier-mediated transfer of D-glucose in brush border vesicles derived from rabbit renal tubules Na+ dependent versus Na+independent transfer. Biochim Biophys Acta 401:231–243

    PubMed  CAS  Google Scholar 

  33. Busse D, Elsas LJ, Rosenberg LE (9172) Uptake of D-glucose by renal tubule membranes. I. Evidence for two transport systems. J Biol Chem 247:1188–1193

    Google Scholar 

  34. Chetok RJ, Lake S (1974) Evidence for a single kind of D-glucose binding site on renal brush border. Biochim Biophys Acta 339:202–209

    Google Scholar 

  35. Chesney R, Sacktor B, Kleinzeller A (1974) The binding of phloridzin to the isolated luminal membrane of the renal proximal tubule. Biochim Biophys Acta 332:263–277

    CAS  Google Scholar 

  36. Chesney RW, Sacktor B, Rowen R (1973) The binding of D-glucose to the isolated luminal membrane of the renal proximal tubule. J Biol Chem 248:2182–2191

    PubMed  CAS  Google Scholar 

  37. Crane RK, Miller D, Bihler I (1961) The restrictions on possible mechanisms of intestinal active transport of sugars. In:Kleinzeller A, Kotyk A (eds) Symposium on membrane transport and metabolism. Academic Press, London New York, pp 433–449

    Google Scholar 

  38. Deetjen P, Van Liew JB, Boylan JW (1966) Einfluß der tubulären Harnstromstärke auf die Glukoseresorption. Pflügers Arch 289:R67

    Google Scholar 

  39. Deetjen P, Boylan JW, Gerstein B (1969) Mikroperfusionsuntersuchungen an der Rattenniere über die Beziehung zwischen Glukoseresorption und dem Transport von Natrium und Wasser. IV. Symposium der Gesellschaft für Nephrologie, Men 1968, pp 113–117

    Google Scholar 

  40. Deetjen P, Boylan JW (1968) Glucose reabsorption in the rat kidney (microperfusion studies). Pflügers Arch 299:19–29

    CAS  Google Scholar 

  41. Fairclough P, Malathi P, Preiser H, Crane RK (1979) Reconstitution into liposomes of glucose active transport from the rabbit renal proximal tubule. Biochim Biophys Acta 553:295–306

    PubMed  CAS  Google Scholar 

  42. Frasch W, Frohnert PP, Baumann K, Kinne R (1970) Competitive inhibition of phloridzin binding by D-glucose and the influence of sodium:a study on isolated brush border membrane on rat kidney. Pflügers Arch 320:265–284

    PubMed  CAS  Google Scholar 

  43. Frega NS, Weinberg JM, Ross BD, Leaf S (1977) Stimulation of sodium transport by glucose in the perfused rat kidney. Am J Physiol 233(3):F235–F240

    PubMed  CAS  Google Scholar 

  44. Frömter E, Luer K (1973) Electrical studies on sugar transport kinetics of rat proximal tubule. Pflügers Arch 343:R47

    Google Scholar 

  45. Frömter E, Geßner K (1974) Free-flow potential along rat kidney proximal tubule. Pflügers Arch 351:69–83

    PubMed  Google Scholar 

  46. Frömter E, Geßner K (1974) Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule. Pflügers Arch 351:85–98

    PubMed  Google Scholar 

  47. Frohnert PP, Hörmann B, Zwiebel R, Baumann K (1970) Free flow mieropuncture studies of glucose transport in the rat nephron. Pflügers Arch 315:66–85

    PubMed  CAS  Google Scholar 

  48. Genel M, Rea CF, Segal S (1971) The transport interaction of sugars and amino acids in mammalian kidney. Biochim Biophys Acta 241:779–788

    PubMed  CAS  Google Scholar 

  49. Glossmann H, Neville DM (1972) Phlorizin receptors in isolated kidney brush border membranes. J Biol Chem 247:7779–7789

    PubMed  CAS  Google Scholar 

  50. Gregg CM, Cohen JJ, Black AJ, Espeland MA, Feldstein ML (1978) Effects of glucose and insulin on metabolism and function of perfused rat kidney. Am J Physiol 235 (I):F52–F61

    PubMed  CAS  Google Scholar 

  51. Hare D, Stolte H (1972) Rat proximal tubule D-glucose transport as a function of concentration flow, and radius. Pflügers Arch 334:207–221

    PubMed  CAS  Google Scholar 

  52. Heath DH, Aurbach GD (1973) Uptake of 125I-phloridzin by tubulus isolated from the renal cortex of the rat. J Biol Chem 248:1577–1581

    PubMed  CAS  Google Scholar 

  53. Higgins IT, Meinders AE (1975) Quantitative relationship of renal glucose and sodium reabsorption during ECF expansion. Am J Physiol 229:66–71

    PubMed  CAS  Google Scholar 

  54. Hilden SA, Sacktor B (1979) D-gloeose-dependent sodium transport in renal brush border membrane vesicles. J Biol Chem 254(15):7090–7096

    PubMed  CAS  Google Scholar 

  55. Homan GD, Naftalin RJ (1978) Transport of 3-Omethyl-D-glucose and β-methyl-D-glucoside by rabbit ileum. Biochim Biophys Acta 433:597 — 614

    Google Scholar 

  56. Hopfer U (1978) Transport in isolated plasma membranes. Am J Physiol 234 (2):F89–F96

    PubMed  CAS  Google Scholar 

  57. Horsburg T, Cannon JK, Pitts RF (1978) Action of phlorizin on luminal and antiluminal membranes of proximal cells of kidney. Am J Physiol 234 (6):F485–F489

    Google Scholar 

  58. Kawamura J, Mazumdar DC, Lubowitz H (1977) Effect of albumin infusion on renal glucose reabsorption in the rat. Am J Physiol 232 (3):F286–F290

    PubMed  CAS  Google Scholar 

  59. Keston AS, Brandt R, Barash JM (1972) Quantitative relationships between glucose reabsorption and mutarotation by dog kidney in vivo. Biochim Biophys Res Commun 46:610–615

    CAS  Google Scholar 

  60. Keyes JL, Swanson RE (1971) Dependence of glucose Tm on GFR and tubular volume in the dog kidney. Am J Physiol 221 (1):1–7

    PubMed  CAS  Google Scholar 

  61. Kimmich G, Carter-Su C, Randies J (1977) Energetics of Na+-dependent sugar transport by isolated intestinal cells:evidence for a major role for membrane potentials. Am J Physiol 233 (5):E357–E362

    PubMed  CAS  Google Scholar 

  62. Kinne R, Schwartz IL (1978) Isolated membrane vesicles in the evaluation of the nature, localization, and regulation of renal transport processes. Kidney Int 14 (6):547–556

    PubMed  CAS  Google Scholar 

  63. Kinne R, Murer H, Kinne-Saffran E, Thees M, Sachs B (1975) Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush-border microvilli and basal-lateral plasma membranes, J Membr Briol 21:375–395

    CAS  Google Scholar 

  64. Kinne R. Faust RG (1977) Incorporation of D-glucose-, L-alanine and phosphate-transport systems from rat renal brush-border membranes into liposomes. Biochem J 168 (2):311–314

    PubMed  CAS  Google Scholar 

  65. Kleinzeller A, Tam J, Kanter RK, McAvoy EM (1974) The structural requirement for C1-OH for the active transport of D-mannose and 2-deoxy-D-hexoses by renal tubular cells. Biochim Biophys Acta 373:397–403

    PubMed  CAS  Google Scholar 

  66. Kleinzeller A (1974) Pathways of sugar transport in renal cells. In:Wesson LG, Fanelli GM (eds) Recent advances in renal physiology and pharmacology. University Park Press, Baltimore London Toronto, pp 1–11

    Google Scholar 

  67. Kleinzeller A, McAvoy E (1976) Transport and phosphorylation of D-galactose in renal cortical cells. Biochim Biophys Acta 455:109–125

    PubMed  CAS  Google Scholar 

  68. Kleinzeller A, Kotyk A (1961) Cations and transport of galactose in kidney-cortex slices. Biochim Biophys Acta 54:367–369

    PubMed  CAS  Google Scholar 

  69. Kleinzeller A, McAvoy E (1976) Transport and phosphorylation of 2-deoxy-D-galactose in renal cortical cells. Biochim Biophys Acta 455:126–143

    PubMed  CAS  Google Scholar 

  70. Kleinzeller A (1970) The specificity of the active sugar transport in kidney cortex cells. Biochim Biophys Acta 211:264–275

    CAS  Google Scholar 

  71. Kleinzeller A (1970) Active sugar transport in renal cortex cells:the electrolyte requirement. Biochim Biophys Acta 211:277–292

    CAS  Google Scholar 

  72. Kleinzeller A, Ausiello DA, Almendares JA, Davis AH (1970) The effect of pH on sugar transport and ion distribution in kidney cortex cells. Biochim Biophys Acta 211:293–307

    CAS  Google Scholar 

  73. Kleinzeller A, Kolinska J, Benes I (1967) Transport of glucose and galactose in kidney-cortex cells. Biochem J 104:843–851

    PubMed  CAS  Google Scholar 

  74. Klip A, Grinstein S, Semenza G (1979) Partial purification of the sugar carrier of intestinal brush border membranes. Enrichment of the phlorizin-binding component by selective extractions. J Membr Biol 51:47–73

    PubMed  CAS  Google Scholar 

  75. Knight T, Sansom S, Weinman EJ (1977) Renal tubular absroption of D-glucose, 3-O-methyl- D-glueose, and 2-deoxy-D-glucose. Am J Physiol 233 (4):F274–F277

    PubMed  CAS  Google Scholar 

  76. Kokko JP (1973) Proximal tubule potential difference (dependence on glucose, HCO3 and amino acids). J Clin Invest 52:1352–1367

    Google Scholar 

  77. Krane SM, Crane RK (1959) The accumulation of D-galactose against a concentration gradient by slices of rabbit kidney cortex. J Biol Chem 234:211–216

    PubMed  CAS  Google Scholar 

  78. Kurtzman NA, White MG, Rogers PW, Glynn III UU (1972) Relationship of sodium reabsorption and glomerular filtration rate to renal glucose reabsorption. J Clin Invest 51:127–133

    PubMed  CAS  Google Scholar 

  79. Kwong T-F, Bennett CM (1974) Relationship between glomerular filtration rate and maximum tubular reabsorptive rate of glucose. Kidney Int 5:23–29

    PubMed  CAS  Google Scholar 

  80. Loeschke K, Baumann K, Renschier H, Ullrich KJ (1968) Differenzierung zwischen aktiver und passiver Komponente des D-Gluko setransports am proximalen Konvolut der Rattenniere. Pflügers Arch 305:118–138

    Google Scholar 

  81. Loeschke K, Baumann K (1969) Kinetische Studien der D-Glukoseresorption im proximalen Konvolut der Rattenniere. Pflügers Arch 305:139–154

    PubMed  CAS  Google Scholar 

  82. van LiewJB, Deetjen P, Voylan JW (1967) Glucose reabsorption in the rat kidney. Pflügers Arch 295:232–244

    Google Scholar 

  83. Maruyama T, Hoshi T (1972) The effect of D-glucose on the electrical potential profile across the proximal tubule of newt kidney. Biochim Biophys Acta 282:214–225

    PubMed  CAS  Google Scholar 

  84. Mitchell ME, Aronson PS, Sacktor B (1974) Further studies on the previously proposed saturable high affinity site for D-glucose in the renal brush border membrane preparations. J Biol Chem 249:6971–6975

    PubMed  CAS  Google Scholar 

  85. Mudge GM, Berndt WO, Valtin H (1973) Tubular transport of urea, glucose, phosphate, uric acid, sulfate and thiosulfate. In:Handbook of physiology, Sect 8:Renal physiology, Chap 19. Am Physiol Soc, Washington DC, pp 587–652

    Google Scholar 

  86. Murer H, Kinne R (1977) Sidedness and coupling of transport processes in small intestinal and renal epithelia. In:Semenza G, Carafoli E (eds) Biochemistry of membrane transport. FEBS-Symposium No 42. Springer, Berlin Heidelberg New York, pp 292–304

    Google Scholar 

  87. Murer H, Hopfer U, Kinne R (1976) Sodium/proton antiport in brush-border membrane vesicles isolated from the rat smaE intestine and kidney. Biochem J 154:597–604

    PubMed  CAS  Google Scholar 

  88. Ni TG, Rehberg PB (1930) On the mechanism of sugar excretion. I. Glucose. Biochem J 24:1039–1046

    PubMed  CAS  Google Scholar 

  89. Nizet A (1972) Excretion and tubular reabsorption of sodium, glucose and phosphate by isolated dog kidneys:Influence of blood dilution. Pfiigers Arch 332:248–258

    CAS  Google Scholar 

  90. Rabito CA, Ausiello DA (1980) Na-dependent sugar transport in a cultured epithelial cell line from pig kidney. J Membr Biol 54:31–38

    PubMed  CAS  Google Scholar 

  91. Renschler HE (1964) Verlauf der Titrationskurve für Glucose im Bereich physiologischer Blutglucosekonzentrationen. 3. Symp Ges Nephrol, pp 161–166

    Google Scholar 

  92. Reubi F (1960) Nierenkrankheiten. Huber, Bern Stuttgart, pp 192–196, 384–415

    Google Scholar 

  93. Reynolds R, Segal St (1974) Effects of dibutyeil cyclic AMP on α-methyl-D-glucoside accumulation in rabbit kidney. Am J Physiol 226:791–795

    PubMed  CAS  Google Scholar 

  94. Robinson JWL, Luisier A-L (1973) Inhibition of renal sugar and amin-acid transport by n-butyl-biguanide. Arch Pharmacol 278:23–34

    CAS  Google Scholar 

  95. Robson AM, Srivastava PL, Bricker NS (1968) The influence of saline loading on renal glucose reabsorption in the rat. J Clin Invest 47:329–335

    PubMed  CAS  Google Scholar 

  96. Rohde R, Deetjen P (1968) Die Glukoseresorption in der Rattenniere (Mikropunktionsanalysen der tubulären Glukosekonzentration bei freiem Fluß.) Pflügers Arch 302:219–232

    CAS  Google Scholar 

  97. Roth KS, Hwang SM, Yudkoff M, Segal S (1976) On the transport of sugars and amino acids by newborn kidney:use of isolated proximal tubule. Life Sei 18:1125–1129

    CAS  Google Scholar 

  98. Ruedas G, Weiss Ch (1967) Die Wirkung von Änderungen der Natriumkonzentration im Perfusionsmedium and von Strophantin auf die Glucoseresorption der isolierten Rattenniere. Pflügers Arch 298:12–22

    CAS  Google Scholar 

  99. Sacktor B, Beck JC (1977) Na+-electrochemical potential-mediated transport of D-glucose in renal brush border membrane vesicles. Curr Prob Clin Biochem 8:159–169

    CAS  Google Scholar 

  100. Sacktor B, Chesney RW, Mitchell ME, Aronson PS (1974) The interactions of D-glucose with the renal brush border. In:Wesson LG, Fanelli Jr GM (eds) Recent advances in renal physiology and pharmacology. University Park Press, Baltimore London Toronto, pp 13–26

    Google Scholar 

  101. Schubert GE, Schuster HP, Baum P (1964) Physiologische Glucosurie bei verschiedenen Diuresezuständen. Klin Woehenschr 42:619–622

    CAS  Google Scholar 

  102. Schultze RG, Berger H (1973) The influence of GFR and saline expansion in TIIIQ of the dog kidney. Kidney Int 3:291–297

    PubMed  CAS  Google Scholar 

  103. Seely JF, Chirito E (1975) Studies of the electrical potential difference in rat proximal tubule. Am J Physiol 229 (1):72–80

    PubMed  CAS  Google Scholar 

  104. Segal S, Rosenhagen M (1974) The effect of extracellular sodium concentration on O-methyl- D-glucoside transport by rat kidney cortex. Biochim Biophys Acta 332:278–285

    CAS  Google Scholar 

  105. Segal S, Rosenhagen M, Rea C (1973) Developmental and other characteristics of alpha methyl-D-glucoside transport by rat kidney cortex slices. Biochim Biophys Acta 291:519–530

    PubMed  CAS  Google Scholar 

  106. Segal St, Genel M, Holtzapple P, Rea Ch (1973) Transport of alpha-methyl-D-glucoside by human kidney cortex. Metabolism 22:67–76

    PubMed  CAS  Google Scholar 

  107. Shannon JA, Fisher S (1938) The renal tubular reabsorption of glucose in the normal dog. Am J Physiol 122:765–771

    CAS  Google Scholar 

  108. Shannon J A, Farber S, Troast L (1941) The measurement of glucose Tm in the normal dog. Am J Physiol 133:752–761

    CAS  Google Scholar 

  109. Silverman M (1974) The chemical and steric determinants governing sugar interactions with renal tubular membranes. Biochim Biophys Acta 332:248–262

    CAS  Google Scholar 

  110. Silverman M, Aganon MA, Chinard FP (1970) D-glucose interactions with renal tubule cell surfaces. Am J Physiol 218:735–742

    PubMed  CAS  Google Scholar 

  111. Silverman M (1974) The in vivo localization of high-affinity phlorizin receptors to the brush border surface of the proximal tubule in dog kidney. Biochim Biophys Acta 339:92–102

    PubMed  CAS  Google Scholar 

  112. Silverman M, Huang L (1976) Mechanism of maleic acid-induced glucosuria in dog kidney. Am J Physiol 231:1024–1032

    PubMed  CAS  Google Scholar 

  113. Silverman M (1977) Sugar interaction with the antiluminal surface of the proximal tubule in dog kidney. Am J Physiol 23 (5):F455–F460

    Google Scholar 

  114. Silverman M, Black J (1975) High affinity phlorizin receptor sites and their relation to the glucose transport mechanism in the proximal tubule of dog kidney. Biochim Biophys Acta 394:10–30

    PubMed  CAS  Google Scholar 

  115. Silverman M (1976) Glucose transport in the kidney. Biochim Biophys Acta 457:303–351

    PubMed  CAS  Google Scholar 

  116. Smith HW, Goldring W, Chasis H, Ranges HA, Bradley StE (1943) II. The application of saturation methods to the study of glomerular and tubular functions in the human kidney. J Mt Sinai Hosp NY 10:59–108

    Google Scholar 

  117. Singer S J, Nicolsoij GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    PubMed  CAS  Google Scholar 

  118. Stolte H, Hare DJ, Boylan JW (1972) D-glucose and fluid reabsorption in proximal surface tubule of the rat kidney. Pfliigers Arch 334:193–206

    CAS  Google Scholar 

  119. Thomas L, Kinne R, Frohnert PP (1972) N-ethylmaleimide labeling of a phlorizin-sensitive D-glucose binding site of brush border membrane from the rat kidney. Biodiim Biophys Acta 290:125–133

    CAS  Google Scholar 

  120. Trimble ME (1975) Effects of L-glucose on sodium reabsorption in the isolated perfused rat kidney. Life Sci 17:1799–1806

    PubMed  CAS  Google Scholar 

  121. Tune BM, Burg MB (1971) Glucose transport by proximal renal tubules. Am J Physiol 221:580–585

    PubMed  CAS  Google Scholar 

  122. Turner RJ, Silverman M (1977) Sugar uptake into brush border vesicles from normal human kidney. Proc Natl Acad Sci 74:2825–2829

    PubMed  CAS  Google Scholar 

  123. Ullrich KJ (1979) Sugar, amino acid, and Na+ cotransport in the proximal tubule. Annu Rev Physiol 41:181–195

    PubMed  CAS  Google Scholar 

  124. Ullrich KJ (1976) Renal tubular mechanisms of organic solute transport. Kidney Int 9:134–148

    PubMed  CAS  Google Scholar 

  125. Ullrich KJ, Rumrich G, Klôss S (1974) Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rat kidney. Pfliigers Arch 351:35–48

    CAS  Google Scholar 

  126. Vick H, Diedrich DF, Baumann K (1973) Réévaluation of renal tubular glucose transport inhibition by phlorizin analogs. Am J Physiol 224 (3):552–557

    PubMed  CAS  Google Scholar 

  127. Walker AM, Bott PA, Oliver J, MacDowell MC (1941) The collection and analysis of fluid from single nephrons of the mammalian kidney. Am J Physiol 134:580–595

    CAS  Google Scholar 

  128. Weinmann EJ, Suki WN, Eknoyan G (1976) D-glueose enhanœment of water reabsorption in proximal tubule of the rat kidney. Am J Physiol 231 (3):777–780

    Google Scholar 

  129. Wen S-F, Stoll RW (1979) Effect of volume expansion on renal glucose transport in normal and uremic dogs. Am I Physiol 236 (6):F567–F574

    CAS  Google Scholar 

  130. Wen S-F (1976) Micropuncture studies of glucose transport in the dog:Mechanism of renal glucosuria. Am J Physiol 231 (2):468–475

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

v. Baeyer, H. (1981). Transport of D-Glucose in the Mammalian Kidney. In: Greger, R., Lang, F., Silbernagl, S. (eds) Renal Transport of Organic Substances. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68147-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68147-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68149-3

  • Online ISBN: 978-3-642-68147-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics