Nitrates III pp 401-405 | Cite as

Influence of Nitroglycerine on Myocardial Metabolism of Cyclic AMP, Cyclic GMP, Lactate, Free Fatty Acids, and Glucose at Rest and During Exercise in Patients with Coronary Heart Disease

  • V. Hombach
  • W. C. Jansen
  • D. W. Behrenbeck
  • M. Tauchert
  • B. Niehues
  • H. Hilger
Conference paper


At present it is generally accepted that in resting conditions the antianginal effect of nitrates is due to a reduction of ventricular pre-and afterload [2, 10]. Parker et al. [12] did not observe any change in coronary blood flow (CBF) at rest and during exercise after administration of nitroglycerin (NTG). In contrast, Lichtlen et al. [10] found a reduction of exercise CBF due to the action of isosorbide dinitrate, when compared with the control values before drug administration. Atrial pacing induced signs of myocardial ischemia, particularly myocardial lactate (LA) release, may be alleviated by NTG [9]. In normal individuals without obvious coronary heart disease (CHD), during physical activity a reduction of myocardial utilization of free fatty acids (FFA) and glucose (G) was observed together with an enhanced myocardial utilization of lactate, when compared with the control values at rest [6]. However, studies on the effect of ergometric exercise on myocardial metabolism and the influence of nitrates on it in patients with proven CHD are sparse. Therefore, the intention of this study was to investigate the myocardial metabolism of the substrates FFA, LA, and G as well as of cyclic 3,5-AMP and cyclic 3,5-GMP in patients with coronary heart disease at rest and during exercise before and after administration of nitroglycerin.


Coronary Blood Flow Myocardial Oxygen Consumption Atrial Pace Myocardial Metabolism Isosorbide Dinitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiko Y, Ichihara K, Izumi T (1979) Effects of antianginal drugs on ischemic myocardial metabolism. In: Abiko Y, Winbury M (eds) Ischemic myocardium and antianginal drugs. Raven, New York, p 213Google Scholar
  2. 2.
    Dobbs W, Povalski HJ (1977) Coronary circulation, angina pectoris, and antianginal drugs. In: Antonaccio (ed) Cardiovascular pharmacology. Raven, New York, p 461Google Scholar
  3. 3.
    Duncombe WG (1964) The colorimetric micro-determination of non-esterified fatty acids in plasma. Clin Chim Acta 9: 122–125PubMedCrossRefGoogle Scholar
  4. 4.
    Gutmann I, Wahlefeld AW (1974) Laktat. In: Bergmeyer (ed) Methoden der enzymatischen Analyse, 3rd edn. Chemie, Weinheim, p 1510Google Scholar
  5. 5.
    Hombach V, Behrenbeck DW, Tauchert M, Gil-Sanchez D, Jansen W, Hötzel J, Niehues B, Hilger HH (1979) Myocardial metabolism of cyclic 3,5-adenosine monophosphate as influenced by dipyridamole and theophylline in patients with coronary heart disease. Clin Cardiol 2: 431PubMedCrossRefGoogle Scholar
  6. 6.
    Keul J, Doll E, Steim E, Homburger H, Kern H, Singer H, Reindell H (1965) Über den Stoffwechsel des menschlichen Herzens. I. Die Substratversorgung des menschlichen Herzens in Ruhe, während und nach körperlicher Arbeit. Pfluegers Arch 282: 1Google Scholar
  7. 7.
    Kjekshus JK, Simonsen S, Böhmer T (1978) Effect of carbochromen-induced coronary vasodilatation on myocardial metabolism in coronary artery disease. Clin Cardiol 1: 74PubMedGoogle Scholar
  8. 8.
    Kugler G, Nolde S (1979) Myocardial extraction of cyclic AMP during pacing-induced angina. Basic Res Cardiol 74: 155PubMedCrossRefGoogle Scholar
  9. 9.
    Kupper W, Bleifeld W (1980) Effect of nitrates on myocardial blood flow, myocardial extraction and hemodynamics during angina pectoris. In: Rudolph L, Schrey A (eds) Nitrate II, Wirkung auf Herz und Kreislauf. Urban & Schwarzenberg, München Wien Baltimore, p 86–88Google Scholar
  10. 10.
    Lichtlen P, Halter J, Gattiker K (1974) The effect of Isosorbiddinitrate on coronary blood flow, coronary resistance and left ventricular dynamics under exercise in patients with coronary artery disease. Basic Res Cardiol 69: 402PubMedCrossRefGoogle Scholar
  11. 11.
    Mäurer W, Mehmel HC, Zebe H, Opherk D, Müller JH, Kübler W (1976) Freisetzung endogener Katecholamine in den Koronarsinus durch isometrische Belastung und frequente Vorhofstimulation bei koronarer Herzkrankheit. Verh Dtsch Ges Kreislaufforsch 42: 294PubMedGoogle Scholar
  12. 12.
    Parker JO, West RO, Di Giorgi S (1971) The effect of Nitroglycerin on coronary blood flow and the hemodynamic response to exercise in coronary artery disease. Am J Cardiol 27: 59PubMedCrossRefGoogle Scholar
  13. 13.
    Robson RH, Carruthers M, Fluck DC (1977) Arterial and coronary sinus catecholamines and cyclic-AMP during dynamic supine exercise in patients with chest pain. Eur J Clin Invest 7: 543PubMedCrossRefGoogle Scholar
  14. 14.
    Schmidt FW (1961) Gleichzeitige enzymatische Bestimmung von Glukose und Fruktose. Klin Wschr 39: 1244–1247PubMedCrossRefGoogle Scholar
  15. 15.
    Steiner AL, Pagliari AS, Chase LR, Kipnis DM (1972) Radioimmunoassay for cyclic nucleotides. II. Adenosine 3,5-monophosphate in mammalian tissues and body fluids. J Biol Chem 247: 1114PubMedGoogle Scholar
  16. 16.
    Sugiura M (1978) Effects of various drugs on myocardial cyclic AMP. Nagoya J Med Sei 40: 1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • V. Hombach
  • W. C. Jansen
  • D. W. Behrenbeck
  • M. Tauchert
  • B. Niehues
  • H. Hilger

There are no affiliations available

Personalised recommendations