Skip to main content

Formation and Regression of Synaptic Contacts in the Adult Muscle

  • Conference paper

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

A large amount of information has been accumulating over the last 30 years indicating that the adult motoneuron is capable of producing extensive peripheral sprouting under a variety of conditions. Sprouts can reoccupy abandoned synaptic sites, form new ones, or might remain or be withdrawn without forming synaptic contacts. Such abnormal outgrowth of branches, which was first described after partial denervation of a muscle (van Harreveld 1945; Weiss and Edds 1945; Edds 1950; Hoffman 1950), includes collateral sprouts which originate from the nodes of Ranvier, preterminal sprouts and sprouts from the endplate itself (‘ultraterminal’ sprouts). Consequently, when searching for sprouts most investigators have been looking for nerve branches which appear “abnormal” in the sense that they leave the vicinity of the parent endplate and do not regularly occur under normal conditions (see Sect. 2.1). This is demonstrated in Fig. 1, which shows a typical endplate from a normal mouse muscle (Fig. 1A) and an endplate after local application of tetanus toxin (Fig. 1B); in the latter unusual branches are present (arrows) which leave the endplate area, often to reach neighboring muscle fibers (cf. Duchen and Tonge 1973).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barker D, Ip MC (1966) Sprouting and degeneration of mammalian motor axons in normal and deafferentated skeletal muscle. Proc R Soc London Ser B 163: 538–554

    Article  CAS  Google Scholar 

  • Bixby JL, van Essen DC (1979) Competition between foreign and original nerves in adult mammalian skeletal muscle. Nature (London) 282: 726–728

    Article  CAS  Google Scholar 

  • Blinzinger K, Kreutzberg G (1968) Displacement of synaptic terminals from regenerating moto-neurons by microglial cells. Z Zellforsch 85: 145–157

    Article  PubMed  CAS  Google Scholar 

  • Brown MC, Holland RL (1979) A central role for denervated tissues in causing nerve sprouting. Nature (London) 282: 724–726

    Article  CAS  Google Scholar 

  • Brown MC, Ironton R (1977) Motor neuron sprouting induced by prolonged tetrodotoxin block of nerve action protentials. Nature (London) 265: 549–561

    Google Scholar 

  • Brown MC, Ironton R (1978) Sprouting and regression of neuromuscular synapses in partially denervated mammalian muscles. J Physiol 278: 325–348

    PubMed  CAS  Google Scholar 

  • Brown MC, Holland RL, Ironton R (1978) Degnerating nerve products affect innervated muscle fibres. Nature (London) 275: 652–654

    Article  CAS  Google Scholar 

  • Burden SJ, Sargent PB, McMahan UJ (1979) Acetylcholine receptors in regenerating muscle ac- cumulate at original synaptic sites in the absence of the nerve. J Cell Biol 82: 412–425

    Article  PubMed  CAS  Google Scholar 

  • Cangiano A, Lutzemberger L, Nicotra L (1977) Non-equivalence of impulse blockade and denerva- tion in the production of membrane changes in rat skeletal muscle. J Physiol 273: 325–348

    Google Scholar 

  • Cangiano A, Lutzemberger L, Nicotra L (1977) Non-equivalence of impulse blockade and denerva- tion in the production of membrane changes in rat skeletal muscle. J Physiol 273: 325–348

    Google Scholar 

  • Diamond J, Cooper E, Turner C, Macintyre L (1976) Trophic regulation of nerve sprouting. Science 193: 371–377

    Article  PubMed  CAS  Google Scholar 

  • Dimpfel W, Habermann E (1973) Histoautoradiographic localisation of 125I-labelled tetanus toxin in rat spinal cord. Naunyn-Schmiedeberg’s Arch Pharmacol 280: 177–182

    Article  CAS  Google Scholar 

  • Duchen LW (1971) An electron microscopic study of the changes induced by botulinum toxin in the motor end-plates of slow and fast skeletal muscle fibres of the mouse. J Neurol Sci 14: 4760

    Google Scholar 

  • Duchen LW (1973) The effects of tetanus toxin on the motor end-plates of the mouse — an electron microscopic study. J Neurol Sci 19: 153–167

    Article  PubMed  CAS  Google Scholar 

  • Duchen LW, Strich SJ (1968) The ffects of botulinum toxin on the pattern of innervation of skeletal muscle in the mouse. Q J Exp Physiol 53: 84–89

    PubMed  CAS  Google Scholar 

  • Duchen LW, Tonge DA (1973) The effects of tetanus toxin of neuromuscular transmission and on the morphology of motor endplates in slow and fast skeletal muscle of the mouse. J Physiol 228: 157–172

    PubMed  CAS  Google Scholar 

  • Edds MV (1950) Collateral regeneration of residual motor axons in partially denervated muscles. J Exp Zool 113: 517–552

    Article  Google Scholar 

  • Edds MV (1953) Collateral nerve regeneration. Q Rev Biol 28: 260–276

    Article  PubMed  Google Scholar 

  • Frank E, Jansen JKS, Lömo T, Westgaard RH (1975) The interaction between foreign and original motor nerves innervating the soleus muscle of rats..1 Physiol 247: 725–743

    CAS  Google Scholar 

  • Goldowitz D, Cotman CW (1980) Do neurotrophic interactions control synapse formation in the adult rat brain. Brain Res 181: 325–344

    Article  PubMed  CAS  Google Scholar 

  • Guth L (1968) “Trophic” influences of nerve on muscle. Physiol Rev 48: 645–687

    PubMed  CAS  Google Scholar 

  • Haimann C, Mallart A, Zilber-Gachelin NF (1976) Competition between motor nerves in the estab-lishment of neuromuscular junctions in striated muscles of Xenopus laevis. Neurosci Lett 2: 15–20

    Article  Google Scholar 

  • Hansson HA, Norström A (1971) Glial reactions induced by colchicine-treatment of the hypothalamic-neurohypophyseal system. Z Zellforsch 113: 294–310

    Article  PubMed  CAS  Google Scholar 

  • Hoffman H (1950) Local re-innervation in partially denervated muscle: a histophysiological study. Aust J Exp Biol Med Sci 28: 383–397

    Article  PubMed  CAS  Google Scholar 

  • Holland RL, Brown MC (1980) Postsynaptic transmission block can cause terminal sprouting of a motor nerve. Science 207: 649–651

    Article  PubMed  CAS  Google Scholar 

  • Huizar P, Kuno M, Kudo N, Miyata Y (1977) Reaction of intact spinal motoneurones to partial denervation of the muscle. J Physiol 265: 175–191

    PubMed  CAS  Google Scholar 

  • Ip MC (1974) Some morphological features of the myoneural junction in certain normal muscles of the rat. Anat Rec 180: 605–616

    Article  PubMed  CAS  Google Scholar 

  • Karnovsky MJ, Roots L (1964) A “direct-coloring” thiocholine method for cholinesterases. J Histochem Cytochem 12: 219–221

    Article  PubMed  CAS  Google Scholar 

  • Koenig J (1973) Morphogenesis of motor end-plates “in vivo” and “in vitro”. Brain Res 62: 361–435

    Article  PubMed  CAS  Google Scholar 

  • Kuffler D, Thompson W, Jansen JKS (1977) The elimination of synapses in multiply-innervated skeletal muscle fibres of the rat: dependence on distance between end-plates. Brain Res 138: 353–358

    Article  PubMed  CAS  Google Scholar 

  • Letinsky MS, Fischbeck KH, McMahan UJ (1976) Precision of reinnervation of original postsynaptic sites in frog muscle after a nerve crush. J Neurocytol 5: 691–718

    Article  PubMed  CAS  Google Scholar 

  • Lömo T (1980) The role of impulse activity in the formation of neuromuscular junctions. In: Taxi J (ed) Ontogenesis and functional mechanisms of peripheral synapses. Elsevier, Amsterdam pp 327–334

    Google Scholar 

  • Lömo T, Slater CR (1978) Control of acetylcholine sensitivity and synapse formation by muscle activity. J Physiol 275: 391–402

    PubMed  Google Scholar 

  • Lömo T, Slater CR (1980a) Control of junctional acetylcholinesterase by neural and muscular influences in the rat. J Physiol 303: 191–202

    Google Scholar 

  • Lömo T, Slater CR (1980b) Acetylcholine sensitivity of developing ectopic nerve-muscle junctions in adult rat soleus muscles. J Physiol 303: 173–189

    Google Scholar 

  • Nyström B (1968) Postnatal development of motor nerve terminals in “slow-red” and “fast-white” cat muscles. Acta Neurol Scand 44: 363–383

    Article  PubMed  Google Scholar 

  • Pecot-Dechavassine M, Wernig A, Stöver H (1979) A combined silver and cholinesterase method for studying exact relations between the pre-and the postsynaptic elements at the frog neuromuscular junction. Stain Technol 54: 25–28

    PubMed  CAS  Google Scholar 

  • Pestronk A, Drachman DB (1978) Motor nerve sprouting and acetylcholine receptors. Science 199: 1223–1225

    Article  PubMed  CAS  Google Scholar 

  • Purves D, Lichtman JW (1978) Formation and maintenance of synaptic connections in autonomic ganglia. Physiol Rev 58: 821–862

    PubMed  CAS  Google Scholar 

  • Rotshenker S (1979) Synapse formation in intact innervated cutaneous pectoris muscles of the frog following denervation of the opposite muscle. J Physiol 292: 535–547

    PubMed  CAS  Google Scholar 

  • Sanes JR, Marshall LM, McMahan UJ (1978) Reinnervation of muscle fiber basal lamina after removal of myofibers. J Cell Biol 78: 176–198

    Article  PubMed  CAS  Google Scholar 

  • Schubert P, Kreutzberg GW, Lux HD (1972) Neuroplasmic transport in dendrites: effect of colchi- cine on morphology and physiology of motoneurones in the cat. Brain Res 47: 331–343

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MS, Sargent MK, Swash M (1977) Neostigmin-induced end-plate proliferation in the rat. Neurology 27: 289–293

    Article  PubMed  CAS  Google Scholar 

  • Sumner BEH (1977) Ultrastructural responses of the hypoglossal nucleus to the presence in the tongue of botulinum toxin, a quantitative study. Exp Brain Res 30: 313–321

    PubMed  CAS  Google Scholar 

  • Teräväinen H (1968) Development of the myoneural junction in the rat. Z Zellforsch 87: 249–265

    Article  PubMed  Google Scholar 

  • Tonge DA (1977) Effect of implantation of an extra nerve on the recovery of neuromuscular transmission from botulinum toxin. J Physiol 265: 809–820

    PubMed  CAS  Google Scholar 

  • Tonge DA (1978) Prolonged effects of a post-synaptic blocking fraction of “naja siamensis” venom on skeletal muscle of the mouse. Q J Exp Physiol 63: 33–47

    Google Scholar 

  • Tuffery RA (1971) Growth and degeneration of motor end-plates in normal cat hind limb muscles. J Anat 110: 221–247

    PubMed  CAS  Google Scholar 

  • Tweedle CD, Kabara JJ (1977) Lipophilic nerve sprouting factor(s) isolated form denervated muscle. Neurosci Lett 6: 41–46

    Article  PubMed  CAS  Google Scholar 

  • Van Harreveld D (1945) Reinnervation of denervated muscle fibres by adjacent functioning motor units. Am J Physiol 144: 477–493

    Google Scholar 

  • Watson WE (1968) Observations on the nucleolar and total cell body nucleic acid of injured nerve cells. J Physiol 196: 655–676

    PubMed  CAS  Google Scholar 

  • Watson WE (1969) The response of motor neurones to intramuscular injection of botulinum toxin. J Physiol 202: 611–630

    PubMed  CAS  Google Scholar 

  • Watson WE (1972) Some quantitative observations upon the responses of neuroglial cells which follow axotomy of adjacent neurones. J Physiol 225: 415–435

    PubMed  CAS  Google Scholar 

  • Weiss P, Edds MV (1945) Spontaneous recovery of muscle following partial denervation. Am J Physiol 145: 587–607

    Google Scholar 

  • Wernig A, Pecot-Dechavassine M, Stöver H (1980a) Sprouting and regression of the nerve at the frog neuromuscular junction in normal conditions and after prolonged paralysis with curare. J Neurocytol 9: 277–303

    Article  Google Scholar 

  • Wernig A, Pecot-Dechavassine M, Stöver H (1980b) Signs of nerve regression and sprouting in the frog neuromuscular synapse. In: Taxi J (ed) Ontogenesis and functional mechanisms of peripheral synapses. Elsevier, Amsterdam, pp 225–238

    Google Scholar 

  • Wernig A, Anzil AP, Bieser A (1981a) Light and electron microscopic identification of a nerve sprout in muscle of normal adult frog. Neurosci Lett 21: 261–266

    Article  CAS  Google Scholar 

  • Wernig A, Anzil AP, Bieser A (1981a) Light and electron microscopic identification of a nerve sprout in muscle of normal adult frog. Neurosci Lett 21: 261–266

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wernig, A., Anzil, A.P., Bieser, A. (1981). Formation and Regression of Synaptic Contacts in the Adult Muscle. In: Flohr, H., Precht, W. (eds) Lesion-Induced Neuronal Plasticity in Sensorimotor Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68074-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68074-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68076-2

  • Online ISBN: 978-3-642-68074-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics