Skip to main content

Concepts of Vestibular Compensation

  • Conference paper

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Peripheral vestibular lesions such as unilateral labyrinthectomy or unilateral vestibular nerve transection result in characteristic gross disturbances of posture and movement. These symptoms disappear spontaneously with time and normal behavior is restored. This compensation process encompasses all observed deficits. The pattern of disturbances following the lesion and the time course of the compensation processes are basically similar but not identical in different vertebrates. A detailed description of the similarities and differences in the symptomatology and recovery processes in different species is given by Schaefer and Meyer (1974). The basic phenomena of the compensation process have been well known since the classical investigations of Bechterew (1883) and Ewald (1892). Magnus (1924) realized that compensation must involve an extensive reorganization of the remaining structures of the vestibular system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azzena GB (1969) Role of the spinal cord in compensating the effects of hemilabyrinthectomy. Arch Ital Biol 107: 43–53

    PubMed  CAS  Google Scholar 

  • Azzena GB, Mameli O, Tolu E (1977) Vestibular units during decompensation. Experientia 33: 234–235

    Article  PubMed  CAS  Google Scholar 

  • Bechterew W von (1883) Ergebnisse der Durchschneidung des N. acusticus, nebst Erörterung der Bedeutung der semicirculären Candle für das Körpergleichgewicht. Pflügers Arch Ges Physiol 30: 312–347

    Google Scholar 

  • Bienhold H, Flohr H (1978) Role of commissural connexions between vestibular nuclei in compensation following unilateral labyrinthectomy. J Physiol (London) 284: 178 P

    Google Scholar 

  • Bienhold H, Flohr H (1980) Role of cholinergic synapses in vestibular compensation. Brain Res 195: 476–478

    Article  PubMed  CAS  Google Scholar 

  • Cannon WB, Rosenblueth A (1949) The supersensitivity of denervated structures. McMillan, New York

    Google Scholar 

  • Carpenter MB, Fabrega H, Glinsman W (1959) Physiological deficits occurring with lesions of labyrinth and fastigial nuclei. J Neurophysiol 22: 222–234

    PubMed  CAS  Google Scholar 

  • Courjon JH, Jeannerod M, Ossuzio I, Schmidt R (1977) Role of vision in compensation of vestibulo-ocular reflex after hemilabyrinthectomy in the cat. Exp Brain Res 28: 235–248

    PubMed  CAS  Google Scholar 

  • Dal Ri H, Schaefer K-P (1957) Beeinflussung des Nystagmus durch Stell-und Haltereflexe amnichtfixierten Meerschweinchen. Pflügers Arch Ges Physiol 265: 125–137

    Article  Google Scholar 

  • Dieringer N, Precht W (1977) Modification of synaptic input following unilateral labyrinthectomy. Nature (London) 269: 431–433

    Article  CAS  Google Scholar 

  • Dieringer N, Precht W (1979a) Mechanism of compensation for vestibular deficits in the frog. I. Modification of the excitatory commissural system. Exp Brain Res 36: 311–328

    Google Scholar 

  • Dieringer N, Precht W (1979b) Mechanism of compensation for vestibular deficits in the frog. II. Modification of the inhibitory pathways. Exp Brain Res 36: 329–341

    Google Scholar 

  • Di Giorgio AM (1939) Effetti di lesioni unilaterali della corteccia cerebrale sui fenomeni di compenso da hemislabirintazione. Atti Accad Fisiol Fac Med Siena Ser XI 2: 382–384

    Google Scholar 

  • Ewald JR (1892) Physiologische Untersuchungen über das Endorgan des N. octavus. Bergmann, Wiesbaden

    Google Scholar 

  • Gernandt BE, Thulin CA (1952) Vestibular connections of the brain stem. Am J Physiol 171: 121–127

    PubMed  CAS  Google Scholar 

  • Giretti ML (1971) Spinal compensation of the cerebral release phenomena. Exp Neurol 30: 459–466

    Article  PubMed  CAS  Google Scholar 

  • Igarashi M, Watanabe T, Maxian PM (1970) Dynamic equilibrium in squirrel monkeys after unilateral and bilateral labyrinthectomy. Acta Oto-Laryngol 69: 247–253

    Article  CAS  Google Scholar 

  • Jensen DW (1977) Vestibular compensation: Influence of spinal cord on spontaneous activity of vestibular nuclei. Soc Neurosci Abstr 3: 543

    Google Scholar 

  • Kolb E (1955) Untersuchungen über zentrale Kompensation und Kompensationsbewegungen einseitig entstateter Frösche. Z Vergl Physiol 37: 136–160

    Article  Google Scholar 

  • Korte GE, Friedrich VL (1979) The fine structure of the feline superior vestibular nucleus: identification and synaptology of the primary vestibular afferents. Brain Res 176: 3–32

    Article  PubMed  CAS  Google Scholar 

  • Kuffler SW, Dennis MJ, Harris AS (1971) The development of chemosensitivity in extrasynaptic areas of the neuronal surface after denervation of parasympathetic ganglion cells in the heart of the frog. Proc R Soc London Ser B 177: 555–563

    Article  CAS  Google Scholar 

  • Lashley K (1950) In search of the engram. Symp Soc Biol 4: 454–482

    Google Scholar 

  • Llinâs R, Walton K (1979) Place of the cerebellum in motor learning. In: Brazier MAB (ed) Brain mechanisms in memory and learning: from the single neuron to man. Raven Press, New York, p17

    Google Scholar 

  • Llinâs R, Walton K, Hillmann DE (1975) Inferior olive: its role in motor learning. Science 190: 1230–1231

    Article  PubMed  Google Scholar 

  • Lynch GS, Smith RL, Cotman CW (1976) Recovery of function following brain damage: a consideration of some neural mechanisms. In: Buerger AA, Tobis JS (eds) Neurophysiologic aspects of rehabiliation medicine. Thomas, Springfield Illinois, p 280

    Google Scholar 

  • Magnus R (1924) Körperstellung. Springer, Berlin

    Book  Google Scholar 

  • McCabe BF, Ryu JH (1969) Experiments on vestibular compensation. Laryngoscope 79: 1728–1736

    Article  PubMed  CAS  Google Scholar 

  • Menzio P (1949) Rapporti fra la corteccia cerebrale ed i fenomeni di hemislabirintazione. Arch Fisiol 49: 97–104

    Google Scholar 

  • Precht W, Shimazu H, Markham CH (1966) A mechanism of central compensation of vestibular function following hemilabyrinthectomy. J Neurophysiol 29: 996–1010

    PubMed  CAS  Google Scholar 

  • Putkonen PTS, Courjon JH, Jeannerod M (1977) Compensation of postural effects of hemilaby-rinthectomy in the cat. A sensory substitution process? Exp Brain Res 28: 249–257

    PubMed  CAS  Google Scholar 

  • Reiffenstein RJ, Triggle C (1972) Sensitivity of denervated cerebral cortex to cholinomimetics. Electroencephalogr. Clin Neurophysiol 33: 215–220

    Google Scholar 

  • Schaefer K-P, Meyer DL (1973) Compensatory mechanisms following labyrinth lesions in guinea-pigs. A simple model of learning. In: Zippel HP (ed) Memory and transfer of information. Plenum Press, New York London, p 203

    Chapter  Google Scholar 

  • Schaefer K-P, Meyer DL (1974) Compensation of vestibular lesions. In: Kornhuber HH (ed) Hand-book of sensory physiology, vol VI/2. Springer, Berlin Heidelberg New York, p 463

    Google Scholar 

  • Schön L (1950) Quantitative Untersuchungen über die zentrale Kompensation nach einseitiger Utriculusausschaltung bei Fischen. Z Vergl Physiol 39: 399–417

    Article  Google Scholar 

  • Shimazu H, Precht W (1966) Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J Neurophysiol 29: 467–492

    PubMed  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The 1 4 C-Deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916

    Google Scholar 

  • Spiegel EA, Démétriades TD (1925) Die zentrale Kompensation des Labyrinthverlustes. Pflügers Arch Ges Physiol 210: 215–222

    Article  Google Scholar 

  • Trincker D (1965) Physiologie des Gleichgewichtsorgans. In: Berendes J, Link R, Zöllner F (eds) Hals-Nasen-Ohren-Heilkunde, vol III/1. Thieme, Stuttgart, p 311

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Flohr, H., Bienhold, H., Abeln, W., Macskovics, I. (1981). Concepts of Vestibular Compensation. In: Flohr, H., Precht, W. (eds) Lesion-Induced Neuronal Plasticity in Sensorimotor Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68074-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68074-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68076-2

  • Online ISBN: 978-3-642-68074-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics