Concepts of Vestibular Compensation

  • H. Flohr
  • H. Bienhold
  • W. Abeln
  • I. Macskovics
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Peripheral vestibular lesions such as unilateral labyrinthectomy or unilateral vestibular nerve transection result in characteristic gross disturbances of posture and movement. These symptoms disappear spontaneously with time and normal behavior is restored. This compensation process encompasses all observed deficits. The pattern of disturbances following the lesion and the time course of the compensation processes are basically similar but not identical in different vertebrates. A detailed description of the similarities and differences in the symptomatology and recovery processes in different species is given by Schaefer and Meyer (1974). The basic phenomena of the compensation process have been well known since the classical investigations of Bechterew (1883) and Ewald (1892). Magnus (1924) realized that compensation must involve an extensive reorganization of the remaining structures of the vestibular system.


Vestibular Nucleus Head Deviation Head Tilt Compensation Process Intact Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azzena GB (1969) Role of the spinal cord in compensating the effects of hemilabyrinthectomy. Arch Ital Biol 107: 43–53PubMedGoogle Scholar
  2. Azzena GB, Mameli O, Tolu E (1977) Vestibular units during decompensation. Experientia 33: 234–235PubMedCrossRefGoogle Scholar
  3. Bechterew W von (1883) Ergebnisse der Durchschneidung des N. acusticus, nebst Erörterung der Bedeutung der semicirculären Candle für das Körpergleichgewicht. Pflügers Arch Ges Physiol 30: 312–347Google Scholar
  4. Bienhold H, Flohr H (1978) Role of commissural connexions between vestibular nuclei in compensation following unilateral labyrinthectomy. J Physiol (London) 284: 178 PGoogle Scholar
  5. Bienhold H, Flohr H (1980) Role of cholinergic synapses in vestibular compensation. Brain Res 195: 476–478PubMedCrossRefGoogle Scholar
  6. Cannon WB, Rosenblueth A (1949) The supersensitivity of denervated structures. McMillan, New YorkGoogle Scholar
  7. Carpenter MB, Fabrega H, Glinsman W (1959) Physiological deficits occurring with lesions of labyrinth and fastigial nuclei. J Neurophysiol 22: 222–234PubMedGoogle Scholar
  8. Courjon JH, Jeannerod M, Ossuzio I, Schmidt R (1977) Role of vision in compensation of vestibulo-ocular reflex after hemilabyrinthectomy in the cat. Exp Brain Res 28: 235–248PubMedGoogle Scholar
  9. Dal Ri H, Schaefer K-P (1957) Beeinflussung des Nystagmus durch Stell-und Haltereflexe amnichtfixierten Meerschweinchen. Pflügers Arch Ges Physiol 265: 125–137CrossRefGoogle Scholar
  10. Dieringer N, Precht W (1977) Modification of synaptic input following unilateral labyrinthectomy. Nature (London) 269: 431–433CrossRefGoogle Scholar
  11. Dieringer N, Precht W (1979a) Mechanism of compensation for vestibular deficits in the frog. I. Modification of the excitatory commissural system. Exp Brain Res 36: 311–328Google Scholar
  12. Dieringer N, Precht W (1979b) Mechanism of compensation for vestibular deficits in the frog. II. Modification of the inhibitory pathways. Exp Brain Res 36: 329–341Google Scholar
  13. Di Giorgio AM (1939) Effetti di lesioni unilaterali della corteccia cerebrale sui fenomeni di compenso da hemislabirintazione. Atti Accad Fisiol Fac Med Siena Ser XI 2: 382–384Google Scholar
  14. Ewald JR (1892) Physiologische Untersuchungen über das Endorgan des N. octavus. Bergmann, WiesbadenGoogle Scholar
  15. Gernandt BE, Thulin CA (1952) Vestibular connections of the brain stem. Am J Physiol 171: 121–127PubMedGoogle Scholar
  16. Giretti ML (1971) Spinal compensation of the cerebral release phenomena. Exp Neurol 30: 459–466PubMedCrossRefGoogle Scholar
  17. Igarashi M, Watanabe T, Maxian PM (1970) Dynamic equilibrium in squirrel monkeys after unilateral and bilateral labyrinthectomy. Acta Oto-Laryngol 69: 247–253CrossRefGoogle Scholar
  18. Jensen DW (1977) Vestibular compensation: Influence of spinal cord on spontaneous activity of vestibular nuclei. Soc Neurosci Abstr 3: 543Google Scholar
  19. Kolb E (1955) Untersuchungen über zentrale Kompensation und Kompensationsbewegungen einseitig entstateter Frösche. Z Vergl Physiol 37: 136–160CrossRefGoogle Scholar
  20. Korte GE, Friedrich VL (1979) The fine structure of the feline superior vestibular nucleus: identification and synaptology of the primary vestibular afferents. Brain Res 176: 3–32PubMedCrossRefGoogle Scholar
  21. Kuffler SW, Dennis MJ, Harris AS (1971) The development of chemosensitivity in extrasynaptic areas of the neuronal surface after denervation of parasympathetic ganglion cells in the heart of the frog. Proc R Soc London Ser B 177: 555–563CrossRefGoogle Scholar
  22. Lashley K (1950) In search of the engram. Symp Soc Biol 4: 454–482Google Scholar
  23. Llinâs R, Walton K (1979) Place of the cerebellum in motor learning. In: Brazier MAB (ed) Brain mechanisms in memory and learning: from the single neuron to man. Raven Press, New York, p17Google Scholar
  24. Llinâs R, Walton K, Hillmann DE (1975) Inferior olive: its role in motor learning. Science 190: 1230–1231PubMedCrossRefGoogle Scholar
  25. Lynch GS, Smith RL, Cotman CW (1976) Recovery of function following brain damage: a consideration of some neural mechanisms. In: Buerger AA, Tobis JS (eds) Neurophysiologic aspects of rehabiliation medicine. Thomas, Springfield Illinois, p 280Google Scholar
  26. Magnus R (1924) Körperstellung. Springer, BerlinCrossRefGoogle Scholar
  27. McCabe BF, Ryu JH (1969) Experiments on vestibular compensation. Laryngoscope 79: 1728–1736PubMedCrossRefGoogle Scholar
  28. Menzio P (1949) Rapporti fra la corteccia cerebrale ed i fenomeni di hemislabirintazione. Arch Fisiol 49: 97–104Google Scholar
  29. Precht W, Shimazu H, Markham CH (1966) A mechanism of central compensation of vestibular function following hemilabyrinthectomy. J Neurophysiol 29: 996–1010PubMedGoogle Scholar
  30. Putkonen PTS, Courjon JH, Jeannerod M (1977) Compensation of postural effects of hemilaby-rinthectomy in the cat. A sensory substitution process? Exp Brain Res 28: 249–257PubMedGoogle Scholar
  31. Reiffenstein RJ, Triggle C (1972) Sensitivity of denervated cerebral cortex to cholinomimetics. Electroencephalogr. Clin Neurophysiol 33: 215–220Google Scholar
  32. Schaefer K-P, Meyer DL (1973) Compensatory mechanisms following labyrinth lesions in guinea-pigs. A simple model of learning. In: Zippel HP (ed) Memory and transfer of information. Plenum Press, New York London, p 203CrossRefGoogle Scholar
  33. Schaefer K-P, Meyer DL (1974) Compensation of vestibular lesions. In: Kornhuber HH (ed) Hand-book of sensory physiology, vol VI/2. Springer, Berlin Heidelberg New York, p 463Google Scholar
  34. Schön L (1950) Quantitative Untersuchungen über die zentrale Kompensation nach einseitiger Utriculusausschaltung bei Fischen. Z Vergl Physiol 39: 399–417CrossRefGoogle Scholar
  35. Shimazu H, Precht W (1966) Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J Neurophysiol 29: 467–492PubMedGoogle Scholar
  36. Sokoloff L, Reivich M, Kennedy C, des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The 1 4 C-Deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916Google Scholar
  37. Spiegel EA, Démétriades TD (1925) Die zentrale Kompensation des Labyrinthverlustes. Pflügers Arch Ges Physiol 210: 215–222CrossRefGoogle Scholar
  38. Trincker D (1965) Physiologie des Gleichgewichtsorgans. In: Berendes J, Link R, Zöllner F (eds) Hals-Nasen-Ohren-Heilkunde, vol III/1. Thieme, Stuttgart, p 311Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • H. Flohr
  • H. Bienhold
  • W. Abeln
  • I. Macskovics
    • 1
  1. 1.Universität BremenBremen 33Germany

Personalised recommendations