Skip to main content

Primary Afferent Synaptic Modulation as a Mechanism of Behavioral Compensation Following Spinal Cord Lesion in the Frog

  • Conference paper
Lesion-Induced Neuronal Plasticity in Sensorimotor Systems

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Direct investigation of neuronal mechanisms responsible for recovery of function following lesions of the central nervous system (CNS) or its peripheral inputs is limited by the need for detailed knowledge of normal functional organization in the system under study. Without this knowledge it is generally impossible to say whether a neuronal change consequent to lesion is a symptom of deficit or an aspect of compensatory self-regulation. Various studies have shown that when a neuron is partly deafferented other inputs to the cell or its region can take over vacant synaptic sites (see, e.g., Cotman, Gall, Tsukahara, this vol.) in a manner analogous to the “sprouting” of motor axon terminals onto denervated muscle fibers. However, it is not easy to demonstrate that such substitution of synaptic input is functionally useful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez-Leefmans FJ, De Santis A, Miledi R (1979) Effects of some divalent cations on synaptic transmission in frog spinal neurones. J Physiol (London) 294: 387–406

    CAS  Google Scholar 

  • Bernstein JJ, Wells MR, Bernstein ME (1978) Spinal cord regeneration: Synaptic renewal and neurochemistry. In: Cotman CW (ed) Neuronal plasticity. Raven Press, New York, pp 49–71

    Google Scholar 

  • Blight AR, Precht W (1981) Electrical transmission between primary afferents and moto neurons related to function. In: Szentágothai J, Palkovits M, Hámori J (eds) Advances in physiological sciences, vol 1. Regulatory functions of the CNS. Akadémiai Kiadó and Pergamon Press, in press

    Google Scholar 

  • Cruce WLR (1974) The anatomical organisation of hindlimb motoneurons in the lumbar spinal cord of the frog Rana catesbiana. J comp Neurol 153: 59–76

    Article  PubMed  CAS  Google Scholar 

  • Dieringer N, Precht W (1977) Modification of synaptic input following unilateral labyrinthectomy. Nature (London) 269: 431–433

    Article  CAS  Google Scholar 

  • Eccles JC, Eccles RM, Sheally CN, Willis WD (1962) Experiments utilizing monosynaptic excitatory action on motoneurons for testing hypotheses relating to specificity of neuronal connections. J Neurophysiol 25: 559–580

    PubMed  CAS  Google Scholar 

  • Fadiga E, Brookhart JM (1960) Monosynaptic activation of different portions of the motor neuron membrane. Am J Physiol 198: 693–703

    PubMed  CAS  Google Scholar 

  • Gaupp E (1899) A. Ecker’s and R. Wiedersheim’s Anatomie des Frosches, vol II. 2nd edn. Lehre vom Nerven-und Gefässystem. F. Vieweg, Braunschweig

    Google Scholar 

  • Gray EG (1957) The spindle and extrafusal innervation of a frog muscle. Proc R Soc London Ser B 146: 416–430

    Article  CAS  Google Scholar 

  • Jankowski K, Melt Z (1964) Degeneration and regeneration in the chronic spinal preparation of Rana esculenta. Acta Biol Exp (Warsaw) 24: 3–11

    CAS  Google Scholar 

  • Katz B, Miledi R (1963) A study of spontaneous miniature potentials in spinal motoneurones. J Physiol (London) 168: 389–422

    CAS  Google Scholar 

  • Liu CN, Chambers WW (1958) Intraspinal sprouting of dorsal root axons. Arch Neurol Psychiatr (Chicago) 79: 46–61

    CAS  Google Scholar 

  • Löscher H-R, Ruenzel P, Henneman E (1980) How the size of motoneurones determines their susceptibility to discharge. Nature (London) 282: 859–861

    Article  Google Scholar 

  • Murray M, Goldberger ME (1974) Restitution of function and collateral sprouting in the cat spinal cord: the partially hemisected animal. J comp Neurol 158: 19–36

    Article  PubMed  CAS  Google Scholar 

  • Nelson SG, Mendell LM (1979) Enhancement in Ia-motoneuron synaptic transmission caudal to chronic spinal cord transection. J Neurophysiol 42: 642–654

    PubMed  CAS  Google Scholar 

  • Nelson SG, Collatos TC, Niechaj JA, Mendell LM (1979) Immediate increase in Ia-motoneuron synaptic transmission caudal to spinal cord transection. J Neurophysiol 42: 655–664

    PubMed  CAS  Google Scholar 

  • Pacheco P, Guzman Flores C (1969) Intracellular recording in extensor motoneurons of spastic cats. Exp Neurol 25: 472–481

    Article  PubMed  CAS  Google Scholar 

  • Redman S (1979) Junctional mechanisms at group la synaptses. Prog Neurobiol 12: 33–83

    Article  PubMed  CAS  Google Scholar 

  • Rensch B, Franszisket L (1954) Lang andauernde bedingte Reflexe bei Rückenmarksfröschen. Z Vergl Physiol 36: S318–326

    Article  Google Scholar 

  • Shapovalov AI (1981) Junctional mechanisms at synapses between primary afferents and vertebrate motoneurones. In: Szentágothai J, Palkovits M, Hámori J (eds) Advances in physiological sciences, vol 1. Regulatory functions of the CNS. Akadémiai Kiadó and Pergamon Press, in press

    Google Scholar 

  • Shapovalov AI, Shiriaev BI (1978) Electrical coupling between primary afferents and amphibian motoneurons. Exp Brain Res 33: 299–312

    PubMed  CAS  Google Scholar 

  • Shapovalov AI, Shiriaev BI (1979) Single fibre epsps in amphibian motoneurons. Brain Res 160: 519–523

    Article  PubMed  CAS  Google Scholar 

  • Shapovalov AI, Shiriaev BI, Velumian AA (1978) Mechanisms of post-synaptic excitation in amphibian motoneurons. J Physiol (London) 279: 437–455

    CAS  Google Scholar 

  • Stelzner DJ, Ershler WB, Weber EB (1975) Effects of spinal transection in neonatal and weanling rats: survival of function. Exp Neurol 46: 156–177

    Article  PubMed  CAS  Google Scholar 

  • Stelzner DJ, Weber ED, Prendergast J (1979) A comparison of the effect of mid-thoracic spinal hemisection in the neonatal or weanling rat on the distribution and density of dorsal root axons in the lumbosacral spinal cord of the adult. Brain Res 103: 275–290

    Google Scholar 

  • Taugner R, Sonnhof U, Richter DW, Schiller A (1978) Mixed chemical and electrical synapses on frog spinal motoneurons. Cell Tissue Res 193: 41–59

    Article  PubMed  CAS  Google Scholar 

  • Teasdall RD, Magladery JW, Ramey EH (1958) Changes in reflex patterns following spinal cord hemisection in cats. Johns Hopkins Hosp Bull 103: 223–241

    CAS  Google Scholar 

  • Tsukahara N, Hultborn H, Murakami F, Fuji Y (1975) Electrophysiological study of formation of new synapses and collateral sprouting in red nucleus neurons after partial denervation. J Neurophysiol 38: 1359–1372

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blight, A.R., Precht, W. (1981). Primary Afferent Synaptic Modulation as a Mechanism of Behavioral Compensation Following Spinal Cord Lesion in the Frog. In: Flohr, H., Precht, W. (eds) Lesion-Induced Neuronal Plasticity in Sensorimotor Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68074-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68074-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68076-2

  • Online ISBN: 978-3-642-68074-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics