Skip to main content

The Significance of Neuronal Cell Death During the Development of the Nervous System

  • Conference paper
Lesion-Induced Neuronal Plasticity in Sensorimotor Systems

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

It would seem to be a paradox that death of neurons should play a significant role during ontogenesis. Therefore it is understandable that it took a long time for this phenomenon to be generally accepted. Cell death was reported at the beginning of this century by Collin (1906) and by Mühlmann (for references see Ernst 1926). In 1926 Ernst, stimulated by Kallius, published an extensive study on cell death in vertebrates during normal development, after he had carefully investigated no less than 1000 serially sectioned specimens from 32 species. He found that cell death was such a common and widespread phenomenon that it needed systematic investigation to be understood. Although Ernst speculated about endogenous and exogenous factors which might cause embryonic cell death, these factors were not generally accepted. Kallius (1931) emphasized another viewpoint. Instead of looking for mechanisms leading to cell death, he analyzed cell death as a mechanism involved in morpho-, histio- and phylogenesis. Twenty years later, Glücksmann (1951), a former student of Kallius, continued with his teacher’s ideas and classified cell degenerations according to their developmental functions. He distinguished morphogenetic, histiogenetic and phylogenetic degenerations. Morphogenetic degenerations were thought to precede or accompany changes in the form of organs; histiogenetic degenerations occur during differentiation of tissues; phylogenetic degenerations are related to vestigial organs and to the regression of larval structures. These distinctions are, however, merely descriptive and do not reveal any developmental mechanisms leading to cell death. Our interest is now to further the ideas of Ernst and search for mechanisms leading to neuronal cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Betz H, Bourgeois J-P, Changeux J-P (1980) Evolution of cholinergic proteins in developing slow and fast skeletal muscles in chick embryo. J Physiol 302: 197–218

    PubMed  CAS  Google Scholar 

  • Binggeli RL, Paule WJ (1969) The pigeon retina: quantitative aspects of the optic nerve and ganglion cell layer. J Comp Neurol 137: 1–18

    Article  PubMed  CAS  Google Scholar 

  • Changeux J-P, Danchin A (1976) Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature (London) 264: 705–712

    Article  CAS  Google Scholar 

  • Chu-Wang IW, Oppenheim RW (1978a) Cell death of motoneurones in the chick embryo spinal cord. I. A light and electron microscopic study of naturally occurring and induced cell loss during development. J Comp Neurol 177: 33–58

    Article  CAS  Google Scholar 

  • Chu-Wang IW, Oppenheim RW (1978b) Cell death of motoneurones in the chick spinal cord. II. A quantitative and qualitative analysis of degeneration in the ventral root, including evidence for axon outgrowth and limb innervation prior to cell death. J Comp Neurol 177: 59–86

    Article  CAS  Google Scholar 

  • Clarke PGH, Rogers LA, Cowan WM (1976) The time of origin and the pattern of survival of neurons in the isthmo-optic nucleus of the chick. J Comp Neurol 167: 125–142

    Article  PubMed  CAS  Google Scholar 

  • Collin R (1906) Recherches cytologiques sur le développment de la cellule nerveuse. Névrae 8: 181–308

    Google Scholar 

  • Cowan WM (1973) Neuronal death as a regulative mechanism in the control of cell number in the nervous system. In: Rockstein M (ed) Development and aging in the nervous system. Academic Press, London New York, pp 19–41

    Chapter  Google Scholar 

  • Cowan WM, Wenger E (1967) Cell loss in the trochlear nucleus of the chick during normal development and after radical extirpation of the optic vesicle. J Exp Zool 164: 267–280

    Article  PubMed  CAS  Google Scholar 

  • Cowan WM, Wenger E (1968) Degeneration in the nucleus of origin of the preganglionic fibers to the chick ciliary ganglion following early removal of the optic vesicle. J Exp Zool 168: 105–123

    Article  PubMed  CAS  Google Scholar 

  • Creazzo TL, Sohal GS (1979) Effects of chronic injections of a-bungarotoxin on embryonic cell death. Exp Neurol 66: 135–145

    Article  PubMed  CAS  Google Scholar 

  • Crossland WJ, Cowan WM, Rogers LA (1975) Studies on the development of the chick optic tectum. IV. An autoradiographic study of the development of retino-tectal connections. Brain Res 91: 1–23

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich D, Morgan IG (1980) Kainic acid destroys displaced amacrine cells in post-hatch chicken retina. Neurosci Lett 17: 43–48

    Article  PubMed  CAS  Google Scholar 

  • Ernst M (1926) Über Untergang von Zellen während der normalen Entwicklung bei Wirbeltieren. Z Anat Entwicklungsgesch 79: 228–262

    Article  Google Scholar 

  • Giacobini G, Filogamo G, Weber M, Boquet P, Changeux JP (1973) Effects of a snake a-neurotoxin on the development of innervated skeletal muscles in chick embryo. Proc Natl Acad Sci USA 70: 1708–1712

    Article  PubMed  CAS  Google Scholar 

  • Glücksmann A (1951) Cell deaths in normal vertebrate ontogeny. Biol Rev 26: 59–86 Hamburger V (1958) Regression versus peripheral control of differentiation in motor hypoplasia. Am J Anat 102: 365–409

    Google Scholar 

  • Hamburger V (1975) Cell death in the development of the lateral motor column of the chick embryo. J Comp Neurol 160: 535–546

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V, Levi-Montalcini R (1949) Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J Exp Zool 111: 457–501

    Article  PubMed  CAS  Google Scholar 

  • Hinds JW, Hinds PL (1978) Early development of amacrine cells in the mouse retina: an electron microscopic, serial section analysis. J Comp Neurol 179: 277–300

    Article  PubMed  CAS  Google Scholar 

  • Hollyday M, Hamburger V (1976) Reduction of the naturally occurring motor neuron loss by enlargement of the periphery. J Comp Neurol 170: 311–320

    Article  PubMed  CAS  Google Scholar 

  • Hughes WF, LaVelle A (1975) The effects of early tectal lesions on development in the retinal ganglion cell layer of chick embryos. J Comp Neurol 163: 265–284

    Article  Google Scholar 

  • Hughes WF, McLoon SC (1979) Ganglion cell death during normal retinal development in the chick: Comparisons with cell death induced by early target field destruction. Exp Neurol 66: 587–601

    Article  PubMed  CAS  Google Scholar 

  • Jacobson M (1978) Developmental neurobiology. Plenum, New York

    Book  Google Scholar 

  • Kallius E (1931) Der Zelluntergang als Mechanismus bei der Histio-and Morphogenese. Verh Anat Ges Suppl Anat Anz 72: 10–22

    Google Scholar 

  • Knyihar E, Csillik B, Rakic P (1978) Transient synapses in the embryonic primate spinal cord. Science 202: 1206–1209

    Article  PubMed  CAS  Google Scholar 

  • Lamb AH (1979a) Evidence that some developing limb motoneurones die for reasons other than peripheral competition. Dev Biol 71: 8–21

    Article  CAS  Google Scholar 

  • Lamb AH (1979b) Ventral horn cell counts in a Xenopus with naturally occurring supernumerary hind limbs. J Embryol Exp Morphol 49: 13–16

    CAS  Google Scholar 

  • Lamb AH (1980) Motoneurone counts in Xenopus frogs reared with one bilaterally-innervated hindlimb. Nature (London) 284: 347–350

    Article  CAS  Google Scholar 

  • Landmesser LT (1976) The role of the periphery in cell death. Neurosci Res Prog Bull 14: 295–301

    Google Scholar 

  • Landmesser L, Pilar G (1974a) Synapse formation during embryogenesis on ganglion cells lacking a periphery. J Physiol (London) 241: 751–736

    Google Scholar 

  • Landmesser L, Pilar G (1974b) Synaptic transmission and cell death during normal ganglionic development. J Physiol (London) 241: 737–749

    CAS  Google Scholar 

  • Landmesser L, Pilar G (1976) Fate of ganglionic synapses and ganglion cell axons during normal and induced cell death. J Cell Biol 68: 357–374

    Article  PubMed  CAS  Google Scholar 

  • Lewis J (1980) Death and the neurone. Nature (London) 284: 305–306

    Article  CAS  Google Scholar 

  • McGraw CF, McLaughlin BJ (1980) Fine structural studies of synaptogenesis in the superficial layers of the chick optic tectum. J Neurocytol 9: 79–93

    Article  PubMed  CAS  Google Scholar 

  • McGraw CF, McLaughlin BJ (1980) Fine structural studies of synaptogenesis in the superficial layers of the chick optic tectum. J Neurocytol 9: 79–93

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim RW, Pittman R, Gray M, Maderdrut JL (1978) Embryonic behaviour, hatching and neuromuscular development in the chick following a transient reduction of spontaneous motility and sensory input by neuromuscular blocking agents. J Comp Neurol 179: 619–640

    Article  PubMed  CAS  Google Scholar 

  • Piatt J (1946) The influence of the peripheral field on the development of the mesencephalic V nucleus in Amblystoma. J Exp Zool 102: 109–141

    Article  PubMed  CAS  Google Scholar 

  • Pilar G, Landmesser L (1976) Ultrastructural differences during embryonic cell death in normal and peripherally deprived ciliary ganglia. J Cell Biol 68: 339–356

    Article  PubMed  CAS  Google Scholar 

  • Pittman RH, Oppenheim RW (1978) Neuromuscular blockade increases motoneurone survival during normal cell death in the chick embryo. Nature (London) 271: 364–366

    Article  CAS  Google Scholar 

  • Prestige MC (1967a) The control of cell number in the lumbar spinal ganglia during the development of Xenopus laevis tadpoles. J Embryol Exp Morphol 17: 453–471

    CAS  Google Scholar 

  • Prestige MD (1967b) The control of cell number in the lumbar ventral horns during the development of Xenopus laevis tadpoles. J Embryol Exp Morphol 18: 359–387

    CAS  Google Scholar 

  • Prestige MC (1970) Differentiation, degeneration, and the role of the periphery: Quantitative considerations. In: Schmitt FO (ed) The neurosciences: Second Study Programme. Rockefeller Univ Press, New York, pp 73–82

    Google Scholar 

  • Prestige MC, Willshaw DJ (1975) On a role for competition in the formation of patterned neural connexions. Proc R Soc London Ser B 190: 77–98

    Article  CAS  Google Scholar 

  • Rager G (1976a) Morphogenesis and physiogenesis of the retino-tectal connection in the chicken. The retinal ganglion cells and their axons. Proc R Soc London Ser B 192: 331–352

    Article  CAS  Google Scholar 

  • Rager G (1976b) Morphogenesis and physiogenesis of the retino-tectal connection in the chicken. II. The retino-tectal synapses. Proc R Soc London Ser B 192: 353–370

    Article  CAS  Google Scholar 

  • Rager G (1978) Systems-matching. II. Interpretation of the generation and degeneration of retinal ganglion cells by a mathematical model. Exp Brain Res 33: 79–90

    Article  PubMed  CAS  Google Scholar 

  • Rager G (1979) The cellular origin of the b-wave in the electroretinogram. A developmental approach. J Comp Neurol 188: 225–244

    Article  PubMed  CAS  Google Scholar 

  • Rager G (1979) The cellular origin of the b-wave in the electroretinogram. A developmental approach. J Comp Neurol 188: 225–244

    Article  PubMed  CAS  Google Scholar 

  • Rager G, Oeynhausen B von (1979) Ingrowth and ramification of retinal fibres in the developing optic tectum of the chick embryo. Exp Brain Res 35: 213–227

    Article  PubMed  CAS  Google Scholar 

  • Rager G, Rager U (1978) Systems-matching by degeneration. I. A quantitative electronmicroscopic study of the generation and degeneration of retinal ganglion cells in the chicken. Exp Brain Res 33: 65–78

    Article  PubMed  CAS  Google Scholar 

  • Ramón y Cajal S (1911) Histologie du systéme nerveux de l’homme et des vertébrés, vol II. Maloine, Paris

    Google Scholar 

  • Ramón y Cajal S (1929) Etudes sur la neurogenése de quelques vertébrés. Inst Ramón y Cajal, Madrid

    Google Scholar 

  • Shieh P (1951) The neoformation of cells of preganglionic type in the cervical spinal cord of the chick embryo following its transplantation to the thoracic level. J Exp Zool 117: 359–396

    Article  Google Scholar 

  • Silver J (1978) Cell death during development of the nervous system. In: Jacobson M (ed) Develop-ment of sensory systems, pp 419–436

    Chapter  Google Scholar 

  • Silver J, Robb RM (1979) Studies on the development of the eye cup and optic nerve in normal mice and in mutants with congenital optic nerve aplasia. Dev Biol 68: 175–190

    Article  PubMed  CAS  Google Scholar 

  • Silver J, Sidman RL (1980) A mechanism for the guidance and topographic patterning of retinal ganglion cell axons. J Comp Neurol 189: 101–111

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rager, G. (1981). The Significance of Neuronal Cell Death During the Development of the Nervous System. In: Flohr, H., Precht, W. (eds) Lesion-Induced Neuronal Plasticity in Sensorimotor Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68074-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68074-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68076-2

  • Online ISBN: 978-3-642-68074-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics