Skip to main content

Genetically Controlled Resistance to Flavivirus and Lactate-Dehydrogenase-Elevating Virus-Induced Disease

  • Chapter
Natural Resistance to Tumors and Viruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 92))

Abstract

The first demonstrations that a host gene could control resistance to disease induced by an animal virus were reported independently by Lynch and Hughes (1936) and Webster and Clow (1936). Subsequently this resistance was found to be specifically directed against flaviviruses. A number of other genes which confer resistance to other types of virus infections have since been identified (Pincus and Snyder 1915; Bang 1978). Different classes of viruses vary greatly in their mode and site of replication, and it would be expected that the mechanisms of action of various resistance gene products would also differ significantly. The strict virus specificity of host genetically controlled resistance indicates that the resistance gene products interact with unique molecular events characteristic of only one type of virus. Such a specific resistance mechanism acting at the cellular level constitutes a first-line host defense mechanism. However, the phenotypic expression of resistance genes on the whole-animal level can certainly be modified by the degree of functioning of other types of host defense mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bang FB (1978) Genetics of resistance of animals to viruses: I. Introduction and studies in mice. Adv Virus Res 23:269–348

    Article  PubMed  CAS  Google Scholar 

  • Brinton MA (1980a) Lactate dehydrogenase virus (LDV) induced polioencephalitis of C58 mice. In: Boese A (ed) Search for the cause of multiple sclerosis and other chronic diseases of the central nervous system. Chemie, Weinheim, pp 222–229

    Google Scholar 

  • Brinton MA (1980b) Genetically-controlled resistance to togaviruses. In: Skamene E, Kongshavn PAL, Landy M (eds) Gene control of natural resistance to infection and malignancy. Academic Press, New York, pp 297–303

    Google Scholar 

  • Brinton MA (1981a) Lactate dehydrogenase-elevating virus. In: Foster HL, Small JD, Fox JG (eds) The mouse in biomedical research. Academic Press, New York

    Google Scholar 

  • Brinton MA (1981b) Isolation of a replication efficient mutant of West Nile virus from a persistently infected genetically resistant mouse cell culture. J Virol (in press)

    Google Scholar 

  • Brinton-Darnell M, Plagemann PGW (1975) Structure and chemical-physical characteristics of lactate dehydrogenase-elevating virus and its RNA. J Virol 16:420–433

    PubMed  CAS  Google Scholar 

  • Brinton-Darnell M, Collins JK, Plagemann PGW (1975) Lactate dehydrogenase-elevating virus replication, maturation, and viral RNA synthesis in primary mouse macrophage cultures. Virology 65:187–195

    Article  PubMed  CAS  Google Scholar 

  • Casals J, Brown LV (1954) Hemagglutination with arthropod-borne viruses. J Exp Med 99:429–449

    Article  PubMed  CAS  Google Scholar 

  • Casals J, Schneider H (1943) Natural resistance and susceptibility to RSSE in mice. Proc Soc Exp Biol Med 54:201–202

    Google Scholar 

  • Darnell MB, Koprowski H (1974) Genetically determined resistance to infection with group B arboviruses. II. Increased production of interfering particles in cell cultures from resistant mice. J Infect Dis 129:248–256

    Article  PubMed  CAS  Google Scholar 

  • Darnell MB, Koprowski H, Lagerspetz H (1974) Genetically determined resistance to infection with group B arboviruses. I. Distribution of the resistance gene among various mouse populations and characteristics of gene expression in vivo. J Infect Dis 129:240–247

    Article  PubMed  CAS  Google Scholar 

  • Duffey PS, Lukasewycz OA, Martinez D, Murphy WH (1976a) Pathogenic mechanisms in immune polioencephalomyelitis: quantitative evaluation of protective and pathogenetic effects of lymphoid cells. J Immunol 116:1332–1336

    PubMed  CAS  Google Scholar 

  • Duffey PS, Martinez D, Abrams GD, Murphy WH (1976b) Pathogenetic mechanisms in immune polioencephalomyelitis: induction of disease in immunosuppressed mice. J Immunol 116: 475–481

    PubMed  CAS  Google Scholar 

  • Goodman GT, Koprowski H (1962a) Study of the mechanism of innate resistance to virus infection. J Cell Comp Physiol 59:333–373

    Article  PubMed  CAS  Google Scholar 

  • Goodman GT, Koprowski H (1962b) Macrophages as a cellular expression of inherited natural resistance. Proc Natl Acad Sci USA 48:160–165

    Article  PubMed  CAS  Google Scholar 

  • Groschel D, Koprowski H (1965) Development of a virus-resistant inbred mouse strain for the study of innate resistance to arbo B viruses. Arch Gesamte Virusforsch 18:379–391

    Article  Google Scholar 

  • Haller O, Arnheiter H, Gresser I, Lindenmann J (1979) Genetically determined-interferon-dependent resistance to influenza virus in mice. J Exp Med 149:601–612

    Article  PubMed  CAS  Google Scholar 

  • Hanson B, Koprowski H (1969) Interferon-mediated natural resistance of mice to arbo B virus infection. Microbios 1B:51–68

    Google Scholar 

  • Howard RJ, Notkins AL, Mergenhagen SE (1969) Inhibition of cellular immune reactions in mice infected with lactic dehydrogenase virus. Nature 221:873–874

    Article  PubMed  CAS  Google Scholar 

  • Huang AS, Baltimore D (1976) Defective interfering animal viruses. In: Fraenkel-Conrat M (ed) Comprehensive virology, vol 10. Plenum Press, New York, pp 73–116

    Google Scholar 

  • Jacoby RO, Bhatt PN (1976a) Genetic resistance to lethal flavivirus encephalitis. I. Infection of normal and immunosuppressed congenic mice with Banzi virus. J Infect Dis 134:158–166

    Article  PubMed  CAS  Google Scholar 

  • Jacoby RO, Bhatt PN (1976b) Genetic resistance to lethal flavivirus encephalitis. H. Effect of immunosuppression. J Infect Dis 134:166–173

    Article  PubMed  Google Scholar 

  • Jacoby RO, Bhatt PN, Schwartz A (1980) Protection of mice from lethal flaviviral encephalitis by adoptive transfer of splenic cells from donors infected with live virus. J Infect Dis 141:617–624

    Article  PubMed  CAS  Google Scholar 

  • Lawton JW, Murphy WH (1973) Histopathology of immune polioencephalomyelitis in C58 mice. Arch Neurol 28:367–370

    Article  PubMed  CAS  Google Scholar 

  • Lynch CJ, Hughes TP (1936) The inheritance of susceptibility to yellow fever encephalitis in mice. Genetics 21:104–112

    PubMed  CAS  Google Scholar 

  • MacDowell EC, Richter MN (1932) Studies on mouse leukemia. V. A genetic analysis of susceptibility to inoculated leukemia of line I. Biol Zentralbl 52:266–279

    Google Scholar 

  • Martinez D (1979) Histocompatibility linked genetic control of susceptibility to age-dependent polioencephalitis in mice. Infect Immun 23:45–48

    PubMed  CAS  Google Scholar 

  • Martinez D, Wolanski B, Tytell AA, Davlin RG (1979) Viral etiology of age-dependent polioencephalitis in C58 mice. Infect Immun 23:133–139

    PubMed  CAS  Google Scholar 

  • Martinez D, Brinton MA, Tachovsky TG, Phelps AH (1980) Identification of lactate dehydrogenase-elevating virus as the etiologic agent of the genetically restricted age-dependent polioencephalitis of mice. Infect Immun 27:979–987

    PubMed  CAS  Google Scholar 

  • Mergenhagen SE, Notkins AL, Dougherty SF (1967) Adjuvanticity of lactic dehydrogenase virus: influence of virus infection on the establishment of immunologic tolerance to a protein antigen in adult mice. J Immunol 99:576–581

    PubMed  CAS  Google Scholar 

  • Michaelides M, Schlesinger S (1974) Effect of acute or chronic infection with lactic dehydrogenase virus (LDV) on the susceptibility of mice to plasmacytoma MOPC-315. J Immunol 112: 1560–1564

    PubMed  CAS  Google Scholar 

  • Murphy WH (1979) Mouse model for motor neurone disease-immune polioencephalomyelitis. In: Behan PO, Rose FC (eds) Progress in neurological research. University Park Press, Baltimore, pp 175–193

    Google Scholar 

  • Murphy WH, Wiens AL, Watson DW (1958) Impairment of innate resistance by triiodothyronine. Proc Soc Exp Biol Med 99:213–215

    PubMed  CAS  Google Scholar 

  • Murphy WH, Tarn MR, Lanzi RL, Abell MR, Kauffman C (1970) Age dependence of immunologically induced central nervous system disease in C58 mice. Cancer Res 30:1612–1622

    PubMed  CAS  Google Scholar 

  • Nawrocki JF, Murphy WH (1978) Failure to eliminate antigen in an autoimmune central nervous system disease. Fed Proc 37:1120

    Google Scholar 

  • Notkins AL, Mergenhagen SE, Rizzo AA, Scheele C, Waldmann TA (1966) Elevated Y-globulin and increased antibody production in mice infected with lactic dehydrogenase virus. J Exp Med 123:347–364

    Article  PubMed  CAS  Google Scholar 

  • Pease JR, Murphy WH (1980) Co-infection by lactic dehydrogenase virus and C-type retrovirus elicits neurological disease. Nature 286:398–340

    Article  PubMed  CAS  Google Scholar 

  • Pincus T, Snyder HW (1975) Genetic control of resistance to viral infection in mice. In: Notkins A (ed) Viral immunology and immunopathology. Academic Press, New York, pp 167–187

    Google Scholar 

  • Riley V, Lilly F, Huerto E, Bardell D (1960) Transmissible agent associated with 26 types of experimental mouse neoplasms. Science 132:545–547

    Article  PubMed  CAS  Google Scholar 

  • Sabin AB (1952a) Nature of inherited resistance to viruses affecting the nervous system. Proc Natl Acad Sci USA 38:540–546

    Article  PubMed  CAS  Google Scholar 

  • Sabin AB (1952b) Genetic, hormonal and age factors in natural resistance to certain viruses. Ann NY Acad Sci 54:936–944

    Article  PubMed  CAS  Google Scholar 

  • Sabin AB (1953) Relationships between arthropod-borne viruses based on antigenic analysis, growth requirements, and selective biochemical inactivation. Ann NY Acad Sci 56:580–582

    Article  PubMed  CAS  Google Scholar 

  • Sabin AB (1954) Genetic factors affecting susceptibility and resistance to virus diseases of the nervous system. Res Publ Assoc Res Nerv Ment Dis 33:57–67

    PubMed  CAS  Google Scholar 

  • Sager M, Lawton JWM, Murphy WM (1973) Serum transmissibility of immune polioencephalomyelitis in C58 mice. J Immunol 110:219–226

    PubMed  CAS  Google Scholar 

  • Sawyer WA, Lloyd W (1931) The use of mice in tests of immunity against yellow fever. J Exp Med 54:533–555

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger W (ed) (1980) The togaviruses. Academic Press, New York

    Google Scholar 

  • Vanio T (1963a) Virus and hereditary resistance in vitro. I. Behavior of West Nile (E-101) virus in the cultures prepared from genetically resistant and susceptible strains of mice. Ann Med Exp Biol Fenn [Suppl 1] 41:1–24

    Google Scholar 

  • Vanio T (1963b) Virus and hereditary resistance in vitro. II. Behavior of West Nile (E-101) virus in cultures prepared from challenged resistant, challenged backcross and non-challenged susceptible mice. Ann Med Exp Biol Fenn [Suppl 1] 41:25–35

    Google Scholar 

  • Vanio R, Gavatkin R, Koprowski H (1961) Production of interferon by brains of genetically resistant and susceptible mice infected with West Nile virus. Virology 14:385–387

    Article  Google Scholar 

  • Webster LT (1923) Microbic virulence and host susceptibility in mouse typhoid infection. J Exp Med 37:231–244

    Article  PubMed  CAS  Google Scholar 

  • Webster LT (1933) Inherited and acquired factors in resistance to infection. I. Development of resistant and susceptible lines of mice through selective breeding. J Exp Med 57:793–817

    Article  PubMed  CAS  Google Scholar 

  • Webster LT (1937) Inheritance of resistance of mice to enteric bacterial and neurotropic virus infections. J Exp Med 65:261–286

    Article  PubMed  CAS  Google Scholar 

  • Webster LT, Clow AD (1936) Experimental encephalitis (St Louis type) in mice with high inborn resistance. J Exp Med 63:827–846

    Article  PubMed  CAS  Google Scholar 

  • Webster LT, Fite GL (1933) Infection in mice following nasal instillation of Louping Ill virus. Proc Soc Exp Biol Med 30:656–657

    Google Scholar 

  • Webster LT, Fite GL (1934) Distribution of virus of Louping Ill in blood and brain of intranasally infected mice. Proc Soc Exp Biol Med 31:695–696

    Google Scholar 

  • Webster LT, Johnson MS (1941) Comparative virulence of St Louis encephalitis virus cultured with brain tissue from innately susceptible and innately resistant mice. J Exp Med 74:489–494

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brinton, M.A. (1981). Genetically Controlled Resistance to Flavivirus and Lactate-Dehydrogenase-Elevating Virus-Induced Disease. In: Haller, O. (eds) Natural Resistance to Tumors and Viruses. Current Topics in Microbiology and Immunology, vol 92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68069-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68069-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68071-7

  • Online ISBN: 978-3-642-68069-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics