Advertisement

Nucleic Acid Independent Synthesis of Peptides

  • H. Kleinkauf
  • H. von Döhren
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 91)

Abstract

In this review we summarize some results on enzymatic peptide biosynthesis, the subject has been reviewed recently (Kurahashi 1974; Frøyshov et al. 1978; Katz and Demain 1977; Laland et al. 1978; Vining and Wright 1977; Kleinkauf and Koischwitz 1978). We will extent the concepts of enzymatic peptide elongation reactions which we have summarized earlier (Kleinkauf and Koischwitz 1978).

Keywords

Surf Actin Cyclic Peptide Limited Proteolysis Peptide Antibiotic Peptide Bond Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Glossary of Abbreviations

a, A

amino acid

Ac

acetyl

Aib

amino-isobutyric acid

αAad

α-amino-adipic acid

αAbu

α-amino-butyric acid

AL

alamethicin synthetase

βAla

β-alanine

ΔAla

dehydroalanine

BA

bacitracin

ΔBut

α-β-dehydrobutyric acid

Dbu

diaminobutyric acid

Dha

2,6-diamino-7-hydroxyazaleic acid

Dhb

2,3-dihydroxybenzoic acid

Dhi

2,3-dihydroxyisoleucine

Dpm

diaminopimelic acid

mDpm

meso-Dpm

Dpr

diaminopropionic acid

ED

edeine synthetase

EN

enniatin synthetase

Enz, ENZ

enzyme

f

formyl

GS

gramicidin S synthetase

Hiv

hydroxyisovaleric acid

Ise

isoserine

LE

leupeptin acid synthetase

LG

linear gramicidin synthetase

MurNAc

N-acetyl-muramic acid

O, Orn

ornithine

Pheol

phenylalanine

TY

tyrocidine synthetase

βTyr

β-tyrosine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarstad K, Zimmer TL, Laland SG (1979) Replacement of phenylalanine in gramicidin S by other amino acids. Febs Lett 103: 118–121PubMedGoogle Scholar
  2. Abiko Y (1970) Pantothenic acid and coenzyme A: phosphopantothenoylcysteine synthetase from rat liver. And: phosphopantothenoylcysteine decarboxylase from rat liver. Methods Enzymol 18:350–358Google Scholar
  3. Akashi K, Kurahashi K (1977) Formylation of enzyme-bound valine and stepwise elongation of intermediate peptides of gramicidin. A by a cell-free enzyme system. Biochem Biophys Res Comm 77: 259–267PubMedGoogle Scholar
  4. Akashi K, Kurahashi K (1978) Enzyme-bound formylvaline and formylvalylglycine; an initiation complex for gramicidin A biosynthesis. J Biochem (Tokyo) 83: 1219–1229Google Scholar
  5. Akers HA, Lee SG, Lipmann F (1977) Identification of two enzymes responsible for the synthesis of the initial portion of linear gramicidin. Biochemistry 16: 5722–5729PubMedGoogle Scholar
  6. Allen CM jr (1972) Biosynthesis of echinulin. Isoprenylation of cyclo-L-alanyl-L-tryptophanyl. Biochemistry 11: 2154–2160PubMedGoogle Scholar
  7. Allen JK, Barrow KD, Jones A J (1979) Biosynthesis of echinulin. The stereochemistry of aromatic isoprenylation. J Chem Soc Chem Commun 1979: 280–282Google Scholar
  8. Altmann M, Kittelberger R (1979) Gramicidin S-synthetase: Kinetik der Aktivierungsreaktionen. Hoppe Seylers Z Physiol Chem 360: 224–225Google Scholar
  9. Altmann M, Koischwitz H, Kittelberger R (1979) Isolation of partially active structures of the multienzyme gramicidin S-synthetase. 11th Int Congr Biochem Toronto 1979, Abstract 04–5–S 107, p 302Google Scholar
  10. Anderson B, Hodgkin DC, Viswamitra MA (1970) The structure of thiostrepton. Nature 225: 233–235PubMedGoogle Scholar
  11. Aoyagi T (1978) Structure and activities of proteinase inhibitors of microbial origin. In: Bioactive peptides produced by microorganisms. Umezawa H, Takita T, Shiba T (eds) Kodansha Wiley, New York, pp 129–151Google Scholar
  12. Apontoweil P, Berends W (1975) Glutathione biosynthesis in Escherichia coli K 12. Properties of the enzymes and regulation. Biochim Biophys Acta 399: 1–9PubMedGoogle Scholar
  13. Balakrishnan R, Kaur S, Goel AK, Padmavathi S, Jayaraman K (1980) Biosynthesis of polymyxin by Bacillus polymyxa. II. On the nature and interaction of the multienzyme complex with the end product polymyxin. Arch Biochem Biophys 200: 45–54PubMedGoogle Scholar
  14. Baldas J, Birch AJ, Russell RA (1974) Studies in relation to biosynthesis. Part XLVI. Incorporation of cyclo-L-tryptophyl-L-proline into brevianamide A. J Chem Soc 005B;Perkin I005D; 1974: 50–52Google Scholar
  15. Barman TE ( 1969, 1974) Enzyme handbook, vol II, Suppl I. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. Bauer K, Roskoski R Jr, Kleinkauf H, Lipmann F (1972) Synthesis of a linear gramicidin by a combination of biosynthetic and organic methods. Biochemistry 11: 3266–3271PubMedGoogle Scholar
  17. Beacco E, Bianchi ML, Minghetti A, Spalla C (1978) Directed biosynthesis of analogues of ergot peptide alkaloids with Claviceps purpurea. Experientia 34: 1291–1293PubMedGoogle Scholar
  18. Bérdy J (1974) Recent developments of antibiotic research and classification of antibiotics according to chemical structure. Adv Appl Microbiol 18: 309–406PubMedGoogle Scholar
  19. Besson F, Peypoux F, Michel G, Delcambe L (1977) Structure de la bacillomycine L, antibiotique de Bacillus subtilis. Eur J Biochem 77: 61–67PubMedGoogle Scholar
  20. Besson F, Peypoux F, Michel G, Delcambe L (1978) Identification of antibiotics of iturin group in various strains of Bacillus subtilis. J Antibiot (Tokyo) 31: 284–288Google Scholar
  21. Birch AJ, Russell RA (1972) Studies in relation to biosynthesis - XLIV. Structural elucidations of brevianamides -B, -C, -D and -F. Tetrahedron 28: 2999–3008Google Scholar
  22. Bisswanger H, Schmincke-Ott E (eds) (1980) Multifunctional proteins. Wiley, New YorkGoogle Scholar
  23. Bodanszky M, Izdebski J, Muramatzu I (1969) The structure of the peptide antibiotic stendomycin. J Am Chem Soc 91: 2351–2358PubMedGoogle Scholar
  24. Bridger WA (1974) Succinyl-CoA synthetase. In: Boyer PD (ed) The enzymes, 3rd edn, vol X. Academic Press, New York London, pp 581–606Google Scholar
  25. Bryce GF (1973) Enzymes involved in the biosynthesis of cyclic (tris (N-2,3-di-hydroxybenzoyl-L- serine) in Escherichia coli. Kinetic properties of the L-serine activating enzyme. J Bacteriol 116: 790–796PubMedGoogle Scholar
  26. Bryce GF, Brot N (1972) Synthesis of the cyclic trimer of 2,3-dihydroxy-N-benzoyl-L-serine in Escherichia coli. Biochemistry 11: 1708–1715PubMedGoogle Scholar
  27. Bu’Lock JD, Leigh C (1975) Biosynthesis of gliotoxin. J Chem Soc Chem Commun 1975: 628–629Google Scholar
  28. Bycroft BW, Gowland MS (1978) The structures of the highly modified peptide antibiotics micrococcin P1 and P2. J Chem Soc Chem Commun 1978: 256–256Google Scholar
  29. Casnati G, Marchelli R, Pochini A (1974) Rearrangement of 3-alkyl-l-allylindoles: a model reaction for the biogenesis of echinulin-type compounds. J Chem Soc 005B;Perkin I005D; 1974: 754–757Google Scholar
  30. Chakraborty T, Hansen J, Schazschneider B, Ristow H (1978) The DNA tyrocidine complex and its dissociation in the presence of gramicidin D. Eur J Biochem 90: 261–270PubMedGoogle Scholar
  31. Chan JA, Huang F-C, Sih CJ (1976) The absolute configuration of the amino acids in δ-(α-aminoadipyl)cysteinylvaline from Penicillium chrysogenum. Biochemistry 15: 177–180PubMedGoogle Scholar
  32. Chan SJ, Patzel C, Duguid JR, Quinn P, Labrecque A, Noyes B, Keim P, Heinrikson RL, Steiner DF (1979) Precursors in the biosynthesis of insulin and other peptide hormones. In: Russell TR, Brew K, Faber H, Schultz J (eds) From gene to protein, Academic Press, New York, pp 361–378Google Scholar
  33. Chopra C, Hook DJ, Vining LC, Das BC, Shimizu S, Taylor A, Wright JLC (1979) Congeners of etamycin produced by Streptomyces griseoviridus. J Antibiot (Tokyo) 32: 392–401Google Scholar
  34. Christansen C, Aarstad K, Zimmer T-L, Laland SG (1977) A rapid method for the preparation of pure heavy enzyme of gramicidin S synthetase. Febs Lett 81: 121–124Google Scholar
  35. Crush KG (1970) Carnosine and related substances in animal tissues. Comp Biochem Physiol 34: 3–30PubMedGoogle Scholar
  36. Demain AL (1974) How do antibiotic-producing microorganisms avoid suicide? Ann NY Acad Sci 235: 601–612PubMedGoogle Scholar
  37. Deutch CE, Scarpulla RC, Soffer RL (1978) Posttranslational NH2-terminal amino-acylation. Curr Top Cell Regul 13: 1–28PubMedGoogle Scholar
  38. Dobritsa AP, Dobritsa SV, Tanyashin VI (1978) Isolation and characterization of plasmid from the Bacillus brevis var G.-B. cells. Mol Gen Genet 164: 195–204PubMedGoogle Scholar
  39. Döhren H von (1980) Current problems in multienzyme description. Trends Biol Sci 5: VIIIGoogle Scholar
  40. Döhren H von, Kleinkauf H (1980) Enzymatische Biosynthese von Peptidantibiotika. 5. Sachbericht des Forschungsvorhabens PTB 8013 des Bundesministeriums für Forschung und Technologie, BonnGoogle Scholar
  41. Egorov NS, Vypiyach AN, Zharikova GG, Maksimov VN (1975) Effect of various factors on spore germination in S and P-variants of Bacillus brevis. Mikrobiologiya 44: 237–240Google Scholar
  42. Fawcett PH, Usher JJ, Huddieston JA, Bleaney RC, Nisbet JJ, Abraham EP (1976) Synthesis of δ-(α-aminoadipyl)cysteinylvaline and its role in penicillin biosynthesis. Biochem J 157: 651–660PubMedGoogle Scholar
  43. Formica JV, Apple MA (1976) Production, isolation and properties of actinomycins. Antimicrob Agents Chemother 9: 214–221PubMedGoogle Scholar
  44. Framm J, Nover L, El Azzouny A, Richter H, Winter K, Werner S, Luckner M (1973) Cyclopeptin und Dehydrocyclopeptin. Zwischenprodukte der Biosynthese von Alkaloiden der Cyclopenin-Viridicatin-Gruppe bei Penicillium cyclopium Westling. Eur J Biochem 37: 78–85PubMedGoogle Scholar
  45. Frøyshov Ø (1974) Bacitracin biosynthesis by three complementary fractions from Bacillus licheniformis. Febs Lett 44: 75–78PubMedGoogle Scholar
  46. Frøyshov Ø (1975) Enzyme-bound intermediates in the biosynthesis of bacitracin. Eur J Biochem 59: 201–206PubMedGoogle Scholar
  47. Frøyshov Ø (1979) Synthesis of secondary products during sporulation. In: Luckner M, Schreiber K (eds) Regulation of secondary product and plant hormone metabolism. Pergamon, Elmsford, pp 189–198Google Scholar
  48. Frøyshov Ø, Mathiesen A (1979) Tryptic cleavage of enzyme A in bacitracin synthetase. Febs Lett 106: 275–278PubMedGoogle Scholar
  49. Frøyshov Ø, Zimmer TL, Laland SG (1970) The nature of the enzyme bound intermediates in gramicidin S biosynthesis. Febs Lett 7: 68–71Google Scholar
  50. Frøyshov Ø, Zimmer TL, Laland SG (1978) Biosynthesis of microbial peptides by the thiotemplate mechanism. In: Arnstein HRV (ed) Int rev biochem amino acid and protein biosynthesis n, vol 18, University Park Press, Baltimore, pp 49–78Google Scholar
  51. Gardner JM, Troy FA (1979) Chemistry and biosynthesis of the poly (γ-D-glutamyl) capsule in Bacillus licheniformis. Activation, racemization, and polymerization of glutamic acid by a membranous polyglutamyl synthetase complex. J Biol Chem 254: 6262–6269PubMedGoogle Scholar
  52. Gevers W, Kleinkauf H, Lipmann F (1968) The activation of amino acids for biosynthesis of gramicidin S. Proc Natl Acad Sci USA 60: 269–276PubMedGoogle Scholar
  53. Gevers W, Kleinkauf H, Lipmann F (1969) Peptidyl transfers in gramicidin S biosynthesis from enzyme-bound thioester intermediates. Proc Natl Acad Sci USA 63: 1335–1342PubMedGoogle Scholar
  54. Gisin B, Merrifield RB (1972) Carboxyl-catalyzed intramolecular aminolysis. A side reaction in solid-phase peptide synthesis. J Am Chem Soc 94: 3102–3106PubMedGoogle Scholar
  55. Haavik HI, Frøyshov Ø (1975) Function of peptide antibiotics in producer organisms. Nature 254: 79–82PubMedGoogle Scholar
  56. Hamill RL, Higgings CE, Boaz HE, Gorman M (1969) The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetr Lett 1969: 4255–4258Google Scholar
  57. Hirotsu Y, Nishiuchi Y, Shiba T (1978) cited by Shoji (1978)Google Scholar
  58. Hook DJ, Vining LC (1973a) Biosynthesis of the peptide antibiotic etamycin. Origin of the 3-hy-droxypicolinyl and amino-acid fractions. J Chem Soc Chem Commun 1973: 185–186Google Scholar
  59. Hook DJ, Vining LC (1973b) Biosynthetic precursors of etamycin, a peptidolactone antibiotic from Streptomyces griseoviridus. Can J Biochem 51: 1630–1637PubMedGoogle Scholar
  60. Hori K, Kurotsu T, Kanda M, Miura S, Nozoe A, Saito Y (1978) Studies on gramicidin S-synthetase: Purification of the heavy enzyme obtained from some mutants of Bacillus brevis. J Biochem (Tokyo) 84: 425–434Google Scholar
  61. Horinishi H, Grillo M, Margolis FL (1978) Purification and characterization of carnosine synthetase from mouse olfactory bulbs. J Neurochem 31: 909–919PubMedGoogle Scholar
  62. Hurst A, Paterson GM (1971) Observations on the conversion of an inactive precursor protein to the antibiotic nisin. Can J Microbiol 17: 1379–1384PubMedGoogle Scholar
  63. Ingram LC (1970) A ribosomal mechanism for synthesis of peptides related to nisin. Biochim Biophys Acta 224: 263–265PubMedGoogle Scholar
  64. Ishihara H, Shimura K (1974) Biosynthesis of bacitracin. III. Partial purification of a bacitracin synthesizing enzyme system from Bacillus licheniformis. Biochim Biophys Acta 338: 588–600Google Scholar
  65. Ishihara H, Shimura K (1979) Thiazoline ring formation in bacitracin biosynthesis. Febs Lett 99: 109–112PubMedGoogle Scholar
  66. Ishihara H, Endo Y, Abe S, Shimura K (1975) The presence of 4′-phosphopantetheine in the bacitracin synthetase. Febs Lett 50: 43–46Google Scholar
  67. Ito M, Aida K, Uemura T (1970a) Isolation of a new intermediary substance consisting of Colistin fatty acid and L-α, γ-diaminobutyric acid from colistin-producing cells of Bacillus colistinus Koyama. Agric Biol Chem 34: 476–479Google Scholar
  68. Ito M, Aida K, Uemura T (1970b) Biosynthesis of Colistin by Bacillus colistinus Koyama. Biochim Biophys Acta 213: 244–247PubMedGoogle Scholar
  69. Ito M, Koyama Y, Aida K, Uemura T (1970c) Biosynthesis of Colistin by a cell-free system Bacillus colistinus Koyama. Biochim Biophys Acta 215: 418–420PubMedGoogle Scholar
  70. Johnson BC, Preston JF (1979) Unique amanitin resistence of RNA synthesis in isolated nuclei from amanita species accumulating amanitins. Arch Microbiol 122: 161–167PubMedGoogle Scholar
  71. Kakinuma A, Ouchida A, Shima T, Sugino H, Isono M, Tamura G, Arima K (1969) Confirmation of the structure of surfactin by mass spectrometry. Agric Biol Chem 33: 1669–1671Google Scholar
  72. Kambe M, Imae Y, Kurahashi K (1974) Biochemical studies on gramicidin S non-producing mutants of Bacillus brevis ATCC 9999. J Biochem (Tokyo) 75: 481–493Google Scholar
  73. Kanaoka M, Isogai A, Suzuki A (1977) Synthesis of bassianolide. Tetr Lett 1977: 4049–4050Google Scholar
  74. Kanaoka M, Isogai A, Murakoshi S, Ichinoe M, Suzuki A, Tamura S (1978) Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Agric Biol Chem 212: 629–635Google Scholar
  75. Kanda M, Hori K, Kurotsu T, Miura S, Nozoe A, Saito Y (1978) Studies on gramicidin S-synthetase. Purification and properties of the light enzyme obtained from some mutants of Bacillus brevis. J Biochem (Tokyo) 84: 435–441Google Scholar
  76. Katz E, Demain AL (1977) The peptide antibiotics of Bacillus: Chemistry, biogenesis and possible functions. Bacterial Rev 41: 449–474Google Scholar
  77. Katz E, Williams WK, Mason KT, Mauger AB (1977) Novel actinomycins formed by biosynthetic incorporation of cis- and trans-4-methyl-proline. Antimicrob Agents Chemother 11: 1056–1063PubMedGoogle Scholar
  78. Katz E, Kamal F, Mason K (1979) Biosynthesis of trans4-hydroxyl-L-proline by Streptomyces griseoviridus. J Biol Chem 254: 6684–6690PubMedGoogle Scholar
  79. Keller U (1977) Studien zur Biosynthese des Actinomycins in Streptomyces antibioticus. Doctoral thesis, Technische Universität BerlinGoogle Scholar
  80. Kim J-JP, Chakraburtty K, Mehler AH (1977) Evidence for single mechanism for aminoacyl- tRNA synthetases including aminoacyl adenylates as intermediates. J Biol Chem 252: 2698–2701PubMedGoogle Scholar
  81. Kindl H (1979) Compartments and microcompartments channelling intermediates in phenylpropanoid metabolism. In: Luckner M, Schreiber K (eds) Regulation of secondary product and plant hormone metabolism. Pergamon, pp 49–61Google Scholar
  82. Kirby GW, Robins DJ (1976) Analogue biosynthesis in Trichoderma viride: the formation of 3a-deoxygliotoxin. J Chem Soc Chem Commun 1976: 354–355Google Scholar
  83. Kleinkauf H (1979) Antibiotic polypeptides-biosynthesis on multifunctional protein templates. Planta Med 35: 1–18PubMedGoogle Scholar
  84. Kleinkauf H, Koischwitz H (1978) Peptide bond formation in non-ribosomal systems. Prog Mol Subcell Biol 6: 59–112Google Scholar
  85. Kleinkauf H, Koischwitz H (1979) Gramicidin S-synthetase 1979. In: Nover L, Lynen F, Mothes K (eds) Cell compartmentation and metabolic channeling. Fischer/Elsevier, Stuttgart, pp 147–158Google Scholar
  86. Kleinkauf H, Koischwitz H (1980a) Gramicidin S-synthetase. In: Bisswanger H, Schmincke-Ott E (eds) Multifunctional proteins. Wiley, Elmsford, pp 217–233Google Scholar
  87. Kleinkauf H, Koischwitz H (1980b) Gramicidin S-synthetase. On the structure of a polyenzyme template in polypeptide synthesis. In: Kleinzeller A, Springer GF, Wittmann HG (eds) Chemical recognition in biology. Springer, Berlin Heidelberg New York (Molecular biology, vol 32 )Google Scholar
  88. Kleinkauf H, Koischwitz H, Vater J, Zocher R, Keller U, Mahmutoglu I, Bauer K, Altmann M, Kittelberger R, Marahiel M, Salnikow (1979) Non-ribosomal biosynthesis of biologically active peptides. In: Luckner M, Schreiber K (eds) Regulation of secondary product and plant hormone metabolism. Pergamon Press, Oxford New York, pp 37–47Google Scholar
  89. Kleinkauf H, Roskoski R Jr, Lipmann F (1971) Pantetheine-linked peptide intermediates in gramicidin S and tyrocidine biosynthesis. Proc Natl Acad Sci 68: 2069–2072PubMedGoogle Scholar
  90. Koischwitz H (1975) Zur Struktur der Proteinmatrize von Gramicidin S. Hoppe Seyler’s Z Physiol Chem 360: 307Google Scholar
  91. Koischwitz H (1978) Zu Struktur und Funktionen des Multienzyms GS 2 der Gramicidin S-Synthetase. Doctoral thesis, Technische Universität BerlinGoogle Scholar
  92. Koischwitz H, Kleinkauf H (1976a) Gramicidin S synthetase. Preparation of the multienzyme with high specific activity. Biochim Biophys Acta 429: 1041–1051PubMedGoogle Scholar
  93. Koischwitz H, Kleinkauf H (1976b) Gramicidin S synthetase. Electrophoretic characterization of the multienzyme. Biochim Biophys Acta 429: 1052–1061PubMedGoogle Scholar
  94. Komura S, Kurahashi K (1979) Partial purification and properties of L-2,4-diaminobutyric acid activating enzyme from a polymyxin E producing organism. J Biochem (Tokyo) 86: 1013–1021Google Scholar
  95. Kondo S, Shiba T, Suzuki A, Takita T, Maeda K, Kimura Y (1978) Appendix tables. In: Umezawa H, Takita T, Shiba T (eds) Bioactive peptides produced by microorganisms. Halsted Kodansha, pp 183–269Google Scholar
  96. Konomi T, Herchen S, Baldwin JE, Yoshida M, Hunt NA, Demain AL (1979) Cell-free conversion of δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine into an antibiotic with the properties of isopenicillin N in Cephalosporium acremonium. Biochem J 184: 427–430PubMedGoogle Scholar
  97. Kovaleva GK, Moroz SG, Favorova OO, Kisselev LL (1978) Tryptophanyl-tRNA synthetase: evidence for an anhydrous bond involved in the tryptophanyl enzyme formation. Febs Lett 95: 81–84PubMedGoogle Scholar
  98. Krayevsky AA, Kisselev LL, Gottikh BP (1973) Aminoacyl- RNA synthetases: Chemical model for catalytic mechanism. Molek Biol 7: 769–775Google Scholar
  99. Kurahashi K (1974) Biosynthesis of small peptides. Annu Rev Biochem 43: 445–459PubMedGoogle Scholar
  100. Kurylo-Borowska Z (1974) Biosynthesis of edeine. I. Fractionation and characterization of enzymes responsible for biosynthesis of edeine A and B. Biochim Biophys Acta 351: 42–56PubMedGoogle Scholar
  101. Kurylo-Borowska Z (1975) Edeine synthetase. Methods Enzymol 43: 559–567PubMedGoogle Scholar
  102. Kurylo-Borowska Z, Abramsky T (1972) Biosynthesis of β-tyrosine. Biochim Biophys Acta 264: 1–10PubMedGoogle Scholar
  103. Kurylo-Borowska Z, Kieras J (1976) On the structure of edeine synthetase. 10th Int Congr Biochem Hamburg 1976, Abstract 04–3–351Google Scholar
  104. Laland SG, Zimmer TL (1973) The protein thiotemplate mechanism of synthesis for the peptide antibiotics produced by Bacillus brevis. Essays Biochem 9: 31–57PubMedGoogle Scholar
  105. Laland SG, Frøyshov Ø, Gilhuus-Moe CC, Zimmer TL (1972) Gramicidin S-synthetase, an enzyme with an unusually large number of catalytic functions. Nature 239: 43–44Google Scholar
  106. Laland SG, Zimmer TL, Frøyshov Ø (1978) Biosynthesis of bioactive peptides produced by microorganisms. In: Umezawa H, Takita T, Shiba T (eds) Bioactive peptides produced by microorganisms. Kodanska Wiley, pp 7–34Google Scholar
  107. Lee SG, Lipmann F (1975) Tyrocidine synthetase system. Methods Enzymol 43: 585–602PubMedGoogle Scholar
  108. Lee SG, Lipmann F (1977) Isolation of amino acid activating subunit pantetheine protein complexes: Their role in chain elongation in tyrocidine synthesis. Proc Natl Acad Sci USA 74: 2343–2347PubMedGoogle Scholar
  109. Lee SG, Roskoski R Jr, Bauer K, Lipmann F (1973) Purification of the polyenzymes responsible for tyrocidine synthesis and their dissociation into subunits. Biochemistry 12: 398–405PubMedGoogle Scholar
  110. Lipmann F (1954) On the mechanism of some ATP-linked reactions and certain aspects of protein synthesis. In: McElroy WD, Glass B (eds) The Mechanism of enzyme action. Hopkins, Baltimore, p 599Google Scholar
  111. Lipmann F (1968) The relation between direction and mechanism of polymerization. Essays Biochem 4: 1–23PubMedGoogle Scholar
  112. Lipmann F (1971) Attempts to map a process evolution of peptide biosynthesis. Science 173: 875–884PubMedGoogle Scholar
  113. Lipmann F (1973) Nonribosomal polypeptide synthesis on polyenzyme templates. Acc Chem Res 6: 361–367Google Scholar
  114. Lipmann F (1975) Search for remnants of early evolution in present-day metabolism. Biosystems 6: 234–238PubMedGoogle Scholar
  115. Lynen F, Hartmann GR (1977) Zur Struktur und Wirkungsweise von Enzymen. In: Ditfurth GR (ed) Mannheimer Forum 1976/77. Boehringer, Mannheim, p 42Google Scholar
  116. MacDonald JC (1965) Biosynthesis of pulcherriminic acid. Biochem J 96: 533–538PubMedGoogle Scholar
  117. MacDonald JC, Slater GP (1975) Biosynthesis of gliotoxin and mycelianamide. Can J Biochem 53: 475–478PubMedGoogle Scholar
  118. Mach B, Reich E, Tatum EL (1963) Separation of the biosynthesis of the antibiotic polypeptide tyrocidine from protein biosynthesis. Proc Natl Acad Sci USA 50: 175–181PubMedGoogle Scholar
  119. Marahiel MA, Danders W, Krause M, Kleinkauf H (1979a) Gramicidin S regulates spore outgrowth in Bacillus brevis ATCC 9999. Hoppe Seyler’s Z Physiol Chem 360: 324Google Scholar
  120. Marahiel MA, Danders W, Krause M, Kleinkauf H (1979b) Biological role of gramicidin S in spore functions. Studies on gramicidin S-negative mutants of Bacillus brevis ATCC 9999. Eur J Biochem 99: 49–55PubMedGoogle Scholar
  121. Marahiel MA, Lurtz R, Kleinkauf H (1980) Characterization of plasmid from Bacillus brevis ATCC 9999. In: 6th Int Fermentation Symp. London ( Ontario ) 1980, Pergamon Press in printGoogle Scholar
  122. Marchelli R, Dossena A, Casnati G (1975) Biosynthesis of neoechinulinby Aspergillus amstelodami from cyclo-L-005B;U-14C005D; alanyl-L-005B;5,7-3H2005D;tryptophyl. J Chem Soc Chem Commun 1975. 779–780Google Scholar
  123. Margolis FL (1974) Carnosine in the primary olfactory pathway. Science 184: 909–911PubMedGoogle Scholar
  124. Margolis FL, Grillo M (1977) Axoplasmic transport of carnosine in the mouse olfactory pathway. Neurochem Res 2: 507–519Google Scholar
  125. Mauger AB (1968) Peptide antibiotic biosynthesis: A new approach. Exp 24: 1068–1072Google Scholar
  126. Meister A (1974) Glutathione synthesis. In: Boyer PD (ed) The enzymes 3rd edn, vol X. Academic Press, New York, pp 699–754Google Scholar
  127. Meister A, Tate SS (1976) Glutathione and related y-glutamyl compounds: biosynthesis and utilization. Annu Rev Biochem 45: 559–604PubMedGoogle Scholar
  128. Miyatake K, Nakano Y, Kitaoka S (1979) Pantothenate synthetase from Escherichia coli Methods Enzymol 62: 215–219Google Scholar
  129. Mizuno Y, Yaegashi M, Ho E (1973) Purification and properties of uridine-diphosphate N-acetyl-muramate: L-alanine ligase. J Biochem (Tokyo) 74: 525–538Google Scholar
  130. Mohr H, Kleinkauf H (1978) Alamethicin biosynthesis. Acetylation of the amino terminus and attachment of phenyl alaninol. Biochim Biophys Acta 526: 375–386PubMedGoogle Scholar
  131. Mukherjee PK, Paulus H (1977) Biological function of gramicidin: studies on gramicidin-negative mutants. Proc Natl Acad Sci USA 74: 780–784PubMedGoogle Scholar
  132. Munekata E, Faulstich H, Wieland T (1978) Components of the green deathcap toadstool Amanita phalloides. LV. Peptide synthesis LXH. Isolation, characterization and total synthesis of prophallin (Pro4-phalloin), a non-toxic probable precursor of the phallotoxins. Liebigs Ann 1978: 776–784Google Scholar
  133. Murayama A, Raffln JP, Remy P, Ebel JP (1975) Yeast phenylalanyl-tRNA synthetase: properties of the sulfhydryl groups: evidence for -SH requirement in tRN A acylation. Febs Lett 53: 15–22PubMedGoogle Scholar
  134. Myaskovskaya SP, Zharikova GG, Silaev AB (1973) Amino acid composition and some of the physicochemical properties of gratisin. Vesta Mosk Univ Biol Pochvoved 28: 123–125Google Scholar
  135. Nandi S, Seddon A (1978) Biochemical aspects of germination and outgrowth of Bacillus brevis Nagano and control by gramicidin S. Biochem Soc Trans 6: 409–411PubMedGoogle Scholar
  136. Neuhaus FC, Goyer S, Neuhaus DW (1977) Growth inhibition of Escherichia coli W by D-norvalyl- D-alanine; an analogue of D-alanine in position 4 of the peptide subunit of peptidoglycan. Antimicrob Agents Chemother 11: 638–644PubMedGoogle Scholar
  137. Okumura Y, Okamura K, Takei T, Kouno K, Lein J, Ishikura T, Fukagawa Y (1979a) Controlled biosynthesis of neoviridogriseins, new homologues of viridogrisein. I. Taxonomy and fermentation. J Antibiot (Tokyo) 32: 575–583Google Scholar
  138. Okumura Y, Takei T, Sakamoto M, Ishikura T, Fukagawa Y (1979b) Controlled biosynthesis of neoviridogriseins, new homologues of viridogrisein. II. Production, biological properties and structure of neoviridogrisein EL J Antibiot (Tokyo) 32: 584–592Google Scholar
  139. Ong DE, Emery TF (1972) Ferrichrome biosynthesis: enzyme catalyzed formation of the hydroxamic acid group. Arch Biochem Biophys 148: 77–83PubMedGoogle Scholar
  140. O’Sullivan J, Bleaney RC, Huddieston JA, Abraham EP (1979) Incorporation of 3H from δ-(L-α-amino 005B;4,5-3H005D;adipyl)-L-cysteinyl-D-[4,4-3H005D;valine into isopenicillin N. Biochem J 184: 421–426Google Scholar
  141. Ott H, Frey A J, Hofmann A (1963) The stereospeciflc cyclolization of N-(α-Hydroxyacyl)-phenyl-alanylproline lactams. Tetrahedron 19: 1675–1684PubMedGoogle Scholar
  142. Pandey RC, Meng H, Cook JC Jr, Rinehart KL (1977a) Structure of antiamoebin I from high resolution field resorption and gas chromatographic mass spectrometry studies. J Am Chem Soc 99: 5203–5205PubMedGoogle Scholar
  143. Pandey RC, Cook JC Jr, Rinehart KL Jr (1977b) Structures of the peptide antibiotics emericins III and IV. J Am Chem Soc 99: 5205–5205PubMedGoogle Scholar
  144. Pandey RC, Cook JC Jr, Rinehart KL Jr (1977c) High resolution and field desorption mass spectrometry studies and revised structures of alamethicins I and II. Jacs 99: 8469–8483Google Scholar
  145. Pandey RC, Cook JC Jr, Rinehart KL Jr (1978) Structure of the peptide antibiotic antiamoebin II. J Antibiot (Tokyo) 31, 241–243Google Scholar
  146. Paulus H (1975) Polymyxin synthetase: L-3,4-diaminobutyrate activating enzyme. Methods Enzymol 43: 579–584PubMedGoogle Scholar
  147. Paulus H, Sarkar N, Mukheijee PK, Langley D, Ivanov VT, Shepel EN, Veatch W (1979) Comparison of the effect of linear gramicidin analogues on bacterial sporulation, membrane permeability, and ribonucleic acid polymerase. Biochem 18: 4532–4536Google Scholar
  148. Perlman D (1978) Antibiotics (peptides). In: Kirk-Othmer encyclopedia of chemical technology, vol 2. Wiley, New York, pp 991–1036Google Scholar
  149. Peypoux F, Michel G, Delcambe L (1976) Structure de la mycosubtiline, antibiotique isolé de Bacillus subtilis. Eur J Biochem 63: 391–398PubMedGoogle Scholar
  150. Peypoux F, Guinand M, Michel G, Delcambe L, Das BC, Lederer E (1978) Structure of iturin A, a peptidolipid antibiotic from Bacillus subtilis. Biochemistry 17: 3992–3996PubMedGoogle Scholar
  151. Plattner PA, Nager U (1948) Wilting agents and antibiotics. VIII. Constitution of enniatin B. Helv Chim Acta 31: 665–671PubMedGoogle Scholar
  152. Plattner PA, Nager U, Boller A (1948) Wilting agents and antibiotics. VII. Isolation of new type antibiotics from fusaria. Helv Chim Acta 31: 594–602PubMedGoogle Scholar
  153. Purdie JE, Benoiton NL (1973) Piperazinedione formation from esters of dipeptides containing glycine, alanine, and sarcosine: the kinetics in aqueous solution. J Chem Soc 005B;Perkin H005D; 1973: 1845–1852Google Scholar
  154. Queener SW, Sebek OK, Vézina C (1978) Mutants blocked in antibiotic synthesis. Annu Rev Microbiol 32: 593–636PubMedGoogle Scholar
  155. Ramachandran LK (1975) The gramicidins. J Scient Ind Res 34: 249–265Google Scholar
  156. Remy P, Ebel JP (1976) Yeast phenylalanyl-tRNA synthetase: evidence for the triggering of an AMP-ATP exchange by tRNA. Febs Lett 61: 28–31PubMedGoogle Scholar
  157. Ressler C, Kashelikar DV (1966) Identification of asparaginyl and glutaminyl residues in endo position in peptides by dehydration-reduction. J Am Chem Soc 88: 2025–2035Google Scholar
  158. Ristow H (1977) The peptide antibiotic gramicidin D. A specific reactivator of tyrocidine-inhibited transcription. Biochem Biophys Acta 477: 177–184PubMedGoogle Scholar
  159. Ristow H, Pschorn W, Hansen J, Winkel U (1979) Induction of sporulation in Bacillus brevis by peptide antibiotics. Nature 280: 165–166PubMedGoogle Scholar
  160. Roland I, Frøyshov Ø, Laland SG (1975) On the presence of pantothenic acid in the three complementary enzymes of bacitracin synthetase. Febs Lett 60: 305–308PubMedGoogle Scholar
  161. Roland I, Frøyshov Ø, Laland SG (1977) A rapid method for the preparation of the three enzymes of bacitracin synthetase essentially free from other proteins. Febs Lett 84: 22–24PubMedGoogle Scholar
  162. Roskoski R Jr, Ryan G, Kleinkauf H, Gevers W, Lipmann F (1971) Polypeptide biosynthesis from thioesters of amino acids. Arch Biochem Biophys 143: 485–492PubMedGoogle Scholar
  163. Rothe M, Mazânek J (1972) Possible side-reactions during solid-phase peptide synthesis. H. Reaction between neighboring chains. Formation of hydroxy groups on the resin and their consequences. In: Meienhofer J (ed) Chemistry and biology of peptides. Proc. 3rd American Peptide Symp. Ann Arbor Science, pp 89–92Google Scholar
  164. Rouget P, Chapeville F (1968) Reactions sequence of leucine activation catalyzed by leucyl-RNA synthetase. 2. Formation of complexes between the enzyme and substrates. Eur J Biochem 4: 310–314PubMedGoogle Scholar
  165. Sammes PG (1975) Naturally occurring 2.5-dioxopiperazines and related compounds. Fortschr Chem Org Naturst 32: 51–118PubMedGoogle Scholar
  166. Sarkar N, Mukheijee PK, Langley D, Paulus H (1978) Regulation of bacterial sporulation by peptide antibiotics. Spores 7: 226–231Google Scholar
  167. Sarkar N, Langley D, Paulus H (1979) Studies on the mechanism and specificity of inhibition of ribonucleic acid polymerase by linear gramicidin. Biochemistry 18: 4536–4541PubMedGoogle Scholar
  168. Schazschneider B (1978) Sind Tyrocidin und Gramicidin genregulatorische Faktoren bei dem Bakterium Bacillus brevis Dissertation, Technische Universität BerlinGoogle Scholar
  169. Schimmel PR, Söll D (1979) Aminoacyl-TRNA synthetases: General features and recognition of transfer RNA s. Annu Rev Biochem 48: 601–648PubMedGoogle Scholar
  170. Seddon B, Nandi S (1978) Biochemical aspects of germination and outgrowth of Bacillus brevis Nagano and control by gramicidin S. Biochem Soc Trans 6: 412–413PubMedGoogle Scholar
  171. Sengupta S, Bose SK (1973) Stereoconfiguration of amino acids in peptides from a mycobacillin synthesizing cell-free system. Biochem J 131: 623–624PubMedGoogle Scholar
  172. Sengupta S, Bose SK (1974) Proline-dependent ATP-phosphorous-32-labeled inorganic phosphate exchange in Bacillus subtilis B 3 producing mycobacillin. Indian J Biochem Biophys 11: 335–336PubMedGoogle Scholar
  173. Seyama Y, Terasawa T, Yamashita S, Ishikawa N (1978) Study of iodocarnosine actions of monoand diidocarnosine on the smooth muscle. Yakugaku Zasshi 98: 1221–1228PubMedGoogle Scholar
  174. Shoji J (1978) Recent chemical studies on peptide antibiotics from the genus bacillus. Adv Appl Microbiol 24: 187–214PubMedGoogle Scholar
  175. Simon RD (1976) The biosynthesis of multi-L-arginyl-poly (L-aspartic acid) in the filamentous cyanobacterium Anabaena cylindrica. Biochim Biophys Acta 422: 407–418PubMedGoogle Scholar
  176. Skaper SD, Das S, Marshall FD (1973) Some properties of a homocarnosine-carnosine synthetase isolated from rat brain. J Neurochemistry 21: 1429–1445Google Scholar
  177. Soffer RL (1974) Aminoacyl-tRNA transferases. Adv Enzymol 40: 91–139PubMedGoogle Scholar
  178. Spector LB (1973) Covalent enzyme-substrate intermediates in transferase reactions. Bioorg Chem 2: 311–321Google Scholar
  179. Spector LB (1974) Covalent enzyme-substrate intermediates in carboxyl activation. In: Richter D (ed) Lipmann-Symposium. Gruyter, Berlin, pp 564–574Google Scholar
  180. Staudenbauer W, Strominger JL (1972) Activation of D-aspartic acid for incorporation into peptidoglycan. J Biol Chem 247: 5095–5102PubMedGoogle Scholar
  181. Staudenbauer W, Willoughby E, Strominger JL (1972) Further studies of the D-aspartic acid activating enzyme of Streptococcus faecalis and its attachment to the membrane. J Biol Chem 247: 5289–5296PubMedGoogle Scholar
  182. Steiner DF, Kemmler W, Tager HS, Rubenstein AH, Lernmark A, Zühlke H (1975) Proteolytic mechanisms in the biosynthesis of polypeptide hormones. In: Reich E, Rifkin DB, Shaw E (eds) Proteases and biological control. Cold Spring Harbor, pp 531–549Google Scholar
  183. Storm DR, Rosenthal KS, Swanson PE (1977) Polymyxin and related peptide antibiotics. Annu Rev Biochem 46: 723–763PubMedGoogle Scholar
  184. Suzukake K, Fujiyama T, Hayashi H, Hori M, Umezawa H (1979) Biosynthesis of leupeptin. II. Purification and properties of leupeptin acid synthetase. J Antibiot (Tokyo) 32: 523–530Google Scholar
  185. Suzuki A, Kanaoka M, Isogai A, Murakoshi M, Ichinoe M, Tamura S (1977) Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetr Lett 1977: 2167–2170Google Scholar
  186. Taber WT, Vining LC (1967) Amidomycin, a new antibiotic from a Streptomyces species, chemical structure. Can J Chem 35: 1109–1116Google Scholar
  187. Takita T (1978) Chemistry of bleomycin. In: Umezawa H, Takita T, Shiba T (eds) Bioactive peptides produced by microorganisms. Halsted Press Kodansha, pp 35–70Google Scholar
  188. Tanaka N (1975) Mikamycin. In: Gottlieb D, Shaw PD (eds) Antibiotics, vol HI. Springer, Berlin Heidelberg New York, pp 487–497Google Scholar
  189. Tardy M, Rolland B, Bardakdjian J, Gonnard P (1978) Action of homocarnosine, carnosine and anserine on uptake and metabolism of GABA in different subcellular fractions of rat brain. Experimentia 34: 823–824Google Scholar
  190. Thiebe R (1975) A new active intermediate in the aminoacylation of tRNA. Febs Lett 60: 342–345PubMedGoogle Scholar
  191. Thomas DW, Ito T (1969) The revised structure of the peptide antibiotic esperin, established by mass spectrometry. Tetrahedron 25: 1985–1990PubMedGoogle Scholar
  192. Titlestad K (1971) Cleavage of linear tetrapeptides into two cyclic dipeptides. Chem Commun 1971: 1527–1529Google Scholar
  193. Troonen H, Roelants P, Boon B (1976) RIT 2214, a new biosynthetic penicillin produced by a mutant of Cephalosorium acremonium. J Ant 29: 1258–1267Google Scholar
  194. Troy FA II (1979) The chemistry and biosynthesis of selected bacterial capsular polymers. Annu Rev Microbiol 33: 519–560PubMedGoogle Scholar
  195. Umezawa H (1977) Recent advances in bioactive microbial secondaiy metabolites. Jpn J Antibiot 30: S138–S163Google Scholar
  196. Vagelos PR (1976) Vitamins and their carrier proteins in fatty acid synthesis. Harvey Lect 1974–1975: 21–56Google Scholar
  197. Vasantha N, Balakrishnan R, Kaur S, Jayaraman K (1980) Biosynthesis of polymyxin by Bacillus polymyxa. I. The status of the biosynthetic multienzyme complex during active antibiotic synthesis and sporulation. Arch Biochem Biophys 200: 40–44PubMedGoogle Scholar
  198. Vater J, Kleinkauf H (1976) Gramicidin S synthetase. A further characterization of phenylalanine racemase, the light enzyme of gramicidin S synthetase. Biochim Biophys Acta 429: 1062–1072PubMedGoogle Scholar
  199. Vazquez D (1975) The streptogramin family of antibiotics. In: Corcoran JW, Hahn FE (eds) Mechanism of action of antimicrobial and antitumor agents. Springer, Berlin Heidelberg New York. (Antibiotics, vol III, pp 521–534)Google Scholar
  200. Vining LC, Wright JLC (1977) Biosynthesis of oligopeptides. In: Biosynthesis, vol 5. Chemical Society, London, pp 240–305Google Scholar
  201. Vypiyach AN, Egoron NS, Zharikova GG (1970) Effect of ß-phenyl-ß-alanine on the biosynthesis of gramicidin S by Bacillus brevis. Antibiotiki 5: 392–395Google Scholar
  202. Wehmeyer G, von der Haar F, Cramer F (1979) Interaction of isoleucine and ATP with free isoleucyl-tRNA synthetase and with the corresponding enzyme-tRNA complex. Hoppe Seylers Z Physiol Chem 360: 396–397Google Scholar
  203. Wetlaufer DB (1973) Nucleation, rapid folding, and globular intrachain regions in proteins. Proc Natl Acad Sci USA 70: 697–701PubMedGoogle Scholar
  204. Zähner H (1978) The search for new secondary metabolites. In: Hütter R, Leisinger T, Nüesch J, Wehrli W (eds) Antibiotics and other secondary metabolites. Academic Press, London, pp 1–17Google Scholar
  205. Zharikova GG, Myaskovskaya SP, Silaev AB (1972) Antibiotic gratizin derived from the cells of the mutant Bacillus brevis strain Y-33. Vestn Mosk Univ Biol Pochvoved 27: 110–112Google Scholar
  206. Zharikova GG, Zarubina AP, Kherat DM, Myaskovskaya SP, Maksimov VN (1975) Formation of polypeptide antibiotics by spontaneous and induced mutants of Bacillus brevis var G.-B. In: Silaev AB (ed) Antibiot Ikh Produtsenty. Nauka, Moskau, pp 163–186Google Scholar
  207. Zocher R, Kleinkauf H (1978) Biosynthesis of enniatin B; Partial purification and characterization of the synthesizing enzyme and studies of the biosynthesis. Biochem Biophys Res Commun 81: 1162–1167PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • H. Kleinkauf
    • 1
  • H. von Döhren
    • 1
  1. 1.Institut für Biochemie und Molekulare BiologieTechnische Universität BerlinGermany

Personalised recommendations