Advertisement

Beeinflussung nozizeptiver Mechanismen auf spinaler Ebene

  • I. Jurna
Conference paper

Zusammenfassung

Eine Gewebsschädigung, beispielsweise eine Verletzung der Haut, ruft eine Vielzahl von Reaktionen hervor, die unter Beteiligung des Zentralnervensystems Zustandekommen. Folge der schädigenden Reizungen sind Änderungen des Wachzustandes und vegetativer Funktionen (Blutdruck, Herzfrequenz, Atmung, Schweißsekretion etc.), Flucht-oder nozizeptive Reflexe, zu denen auch die Schonhaltungen zu zählen sind, und nicht zuletzt die Schmerzempfindung. Die Gewebsschädigung löst einen Einstrom repetitiver Impulse über afferente Nervenfasern (A-δ- und C-Fasern) aus, die über die Hinterwurzeln (oder entsprechende Hirnnerven) bestimmte Interneurone im Rückenmark (bzw. in der Medulla oblongata) erreichen. Im Rückenmark erfolgt eine synaptische Überleitung der einlaufenden Impulse auf die nachgeschalteten Neurone (Abb. 1). Die Impulsüberleitung kann segmental-spinal innerhalb motorischer Reflexbögen erfolgen, wobei ipsilateral Flexormotoneurone, und kontralateral Extensormotoneurone aktiviert werden. Die Aktivierung der beiden Motoneuronentypen bildet die Grundlage der nozizeptiven Reflexe, die der Vermeidung weiterer Schäden dienen. Die Impulsüberleitung erfolgt außerdem auf Interneurone, die ihre Axone hirnwärts senden. Hierbei handelt es sich vor allem um Interneurone vom sog. Lamina-V-Typ.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Akil H, Mayer DJ (1972) Antagonism of stimulation-produced analgesia by p-CPA, a serotonin synthesis inhibitor. Brain Res 44: 692PubMedCrossRefGoogle Scholar
  2. 2.
    Atweh SF, Kuhar MJ (1977) Autoradiographic localization of opiate receptors in rat brain. I. Spinal cord and lower medulla. Brain Res 124: 53PubMedCrossRefGoogle Scholar
  3. 3.
    Besson JM, Le Bars D, Oliveras JL (1978) L’Analgésie morphinique: données neurobiologiques. Ann Anesth Franc 19: 343Google Scholar
  4. 4.
    Cuello A, Polak JM, Pearse AGE (1976) Substance P: a naturally occurring transmitter in human spinal cord. Lancet II: 1054Google Scholar
  5. 5.
    Deakin JFW, Dostrovsky JO (1978) Involvement of the periaqueductal grey matter and spinal 5-hydroxytryptaminergic pathways in morphine analgesia: effects of lesioning and 5-hydroxytryptamine depletion. Br J Pharmacol 63: 159PubMedGoogle Scholar
  6. 6.
    Dickenson AH, Oliveras JL, Besson JM(1979) Role of the nucleus raphé magnus in opiate analgesia as studied by the microinjection technique in the rat. Brain Res 170: 95PubMedCrossRefGoogle Scholar
  7. 7.
    Grossmann W, Jurna I (1974) Depression by morphine of activity in the ventrolateral tract evoked from cutaneous A-fibres. Eur J Pharmacol 29: 171PubMedCrossRefGoogle Scholar
  8. 8.
    Grossmann W, Jurna I, Nell T, Theres C (1973) The dependence of the antinociceptive effect of morphine and other analgesic agents on spinal motor activity after central monoamine depletion. Eur J Pharmacol 24: 67PubMedCrossRefGoogle Scholar
  9. 9.
    Henry JL (1976) Effects of substance P on functionally identified units in cat spinal cord. Brain Res 114: 439PubMedCrossRefGoogle Scholar
  10. 10.
    Herz A, Albus K, Metyš J, Schubert P, Teschemacher HJ (1970) On the central sites for the antinociceptive action of morphine and fentanyl. Neuropharmacology 9: 539PubMedCrossRefGoogle Scholar
  11. 11.
    Herz A, Metyš J, Schöndorf N, Hoppe S (1968) Über den Angriffspunkt der analgetischen Wirkung von Morphin. Naunyn-Schmiedebergs Arch Pharmacol 260: 143Google Scholar
  12. 12.
    Hökfelt T, Eide R, Johansson O, Luft R, Nilsson G, Arimura A (1976) Immunohisto-chemical evidence for separate populations of somatostatin-containing and substance- P-containing primary afferent neurons in the rat. Neuroscience 1: 131PubMedCrossRefGoogle Scholar
  13. 13.
    Hökfelt T, Kellerth JO, Nilsson G, Pernow B (1975a) Experimental immunohisto-chemical studies on the localization and distribution of substance P in cat primary sensory neurons. Brain Res 100: 235PubMedCrossRefGoogle Scholar
  14. 14.
    Hökfelt T, Kellerth JO, Nilsson G, Pernow B (1975b) Substance P: Localization in the central nervous system and in some primary sensory neurons. Science 190: 889PubMedCrossRefGoogle Scholar
  15. 15.
    Holzer P, Jurna I, Gamse R, Lembeck F (1979) Nociceptive threshold after neonatal capsaicin treatment. Eur J Pharmacol 58: 511PubMedCrossRefGoogle Scholar
  16. 16.
    Jessell TM, Iversen LL (1977) Opiate analgesics inhibit substance P release from rat trigeminal nucleus. Nature (Lond) 268: 549CrossRefGoogle Scholar
  17. 17.
    Jessell TM, Iversen LL, Cuello AC (1978) Capsaicin-induced depletion of substance P from primary sensory neurones. Brain Res 152: 183PubMedCrossRefGoogle Scholar
  18. 18.
    Jurna I, Grossmann W (1976) The effect of morphine on the activity evoked in ventrolateral tract axons in the cat spinal cord. Exp Brain Res 24: 473PubMedCrossRefGoogle Scholar
  19. 19.
    Jurna I, Heinz G (1979) Differential effects of morphine and opioid analgesics on A and C fibre-evoked activity in ascending axons of the rat spinal cord. Brain Res 171: 573PubMedCrossRefGoogle Scholar
  20. 20.
    Jurna I, Heinz G, Blinn G, Nell T (1978) The effect of substantia nigra stimulation and morphine on α-motoneurones and the tail-flick response. Eur J Pharmacol 51: 239PubMedCrossRefGoogle Scholar
  21. 21.
    Le Bars D, Guilbaud G, Jurna I, Besson JM (1976) Differential effects of morphine on responses of dorsal horn lamina V type cells elicited by A and C fibre stimulation in the spinal cat. Brain Res 115: 518PubMedCrossRefGoogle Scholar
  22. 22.
    Lembeck F (1953) Zur Frage der zentralen Übertragung afferenter Impulse. III. Mitteilung. Das Vorkommen und die Bedeutung der Substanz P in den dorsalen Wurzeln des Rückenmarkes. Naunyn-Schmiedebergs Arch Pharmacol 219: 197Google Scholar
  23. 23.
    Lembeck F, Zetler G (1971) Substance P. In: Walker JM (ed) International Encyclopaedia of Pharmacology and Therapeutics, Section 72. Pergamon Press, Oxford, p 29Google Scholar
  24. 24.
    Oliveras JL, Guilbaud G, Besson JM (1979) A map of serotoninergic structures involved in stimulation producing analgesia in unrestrained freely moving cats. Brain Res 164: 317PubMedCrossRefGoogle Scholar
  25. 25.
    Oliveras JL, Hosobuchi Y, Guilbaud G, Besson JM (1978) Analgetic electrical stimulation of the feline nucleus raphe magnus: development of tolerance and its reversal by 5-HTP. Brain Res 146: 404PubMedCrossRefGoogle Scholar
  26. 26.
    Otsuka M, Konishi S (1976) Release of substance P like immunoreactivity from isolated spinal cord of newborn rat. Nature (Lond) 264: 83CrossRefGoogle Scholar
  27. 27.
    Randić M, Miletić V (1977) Effect of substance P in cat dorsal horn neurones activated by noxious stimuli. Brain Res 128: 164PubMedCrossRefGoogle Scholar
  28. 28.
    Reynolds DV (1969) Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 164: 444PubMedCrossRefGoogle Scholar
  29. 29.
    Sternbach RA, Janowsky DS, Huey LY, Segal DS (1976) Effects of altering brain serotonin activity on human chronic pain. In: Bonica JE, Albe-Fessard D (eds) Advances in Pain Research and Therapy, Vol. 1. Raven Press, New York, p 601Google Scholar
  30. 30.
    Takahashi T, Konishi S, Powell D, Leeman SE, Otsuka M (1974) Identification of the motoneuron-depolarizing peptide in bovine dorsal root as hypothalamic substance P. Brain Res 73: 59PubMedCrossRefGoogle Scholar
  31. 31.
    Takahashi T, Otsuka M (1975) Regional distribution of substance P in the spinal cord and nerve roots of the cat and the effect of dorsal root section. Brain Res 87: 1PubMedCrossRefGoogle Scholar
  32. 32.
    Tsou K, Jang CS (1964) Studies on the sites of analgesic action of morphine by intracerebral micro-injection. Sci Sin 13: 1099PubMedGoogle Scholar
  33. 33.
    Webster KE (1977) Somaesthetic pathways. Br Med Bull 33: 113PubMedGoogle Scholar
  34. 34.
    Yaksh TL, Yeung JC, Rudy TA (1976) Systematic examination in the rat of brain sites sensitive to the direct application of morphine: observation of differential effects within the periaqueductal grey. Brain Res 114: 83PubMedCrossRefGoogle Scholar
  35. 35.
    Zieglgänsberger W, Tulloch IF (1979) Effects of substance P on neurones in the dorsal horn of the spinal cord of the cat. Brain Res 166: 273PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • I. Jurna

There are no affiliations available

Personalised recommendations