Stochastic Methods in Non-Equilibrium Thermodynamics

  • Robert Graham
Part of the Springer Series in Synergetics book series (SSSYN, volume 8)


The thermodynamics of non-equilibrium steady states [1] and of equilibrium states should be closely related. Just how close this relationship can be made on a formal level will be the subject of this talk. Thermodynamics is, of course, only applicable to macroscopic systems, i.e. systems which can be described by a well defined set of macroscopic variables qν (ν=1…n), widely separated in time scale from all other microscopic variables. For simplicity of notation, only discrete variables are considered in this talk.


Thermodynamic Potential Hamilton Jacobi Equation Macroscopic System Driving Field Deterministic Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Groot, S.R., Mazur, P., ‘Nonequilibrium thermodynamics’ ,Amsterdam, North Holland 1962Google Scholar
  2. 2.
    Green, M.S., J. Chem. Phys. 20, 1281 (1952)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Grabert, H., Green, M.S., Phys. Rev. A19, 1747 (1979)MathSciNetADSGoogle Scholar
  4. 4.
    Grabert, H., Graham, R., Green, M.S., Phys. Rev. A21, 2136 (1980)MathSciNetADSGoogle Scholar
  5. 5.
    Onsager, L., Phys. Rev. 37, 405 (1931); 38, 2265 (1931)ADSMATHCrossRefGoogle Scholar
  6. 6.
    Graham, R., in ’Coherence and Quantum Optics’ ,ed. L. Mandel, E. Wolf, Plenum, New York 1973, p. 851Google Scholar
  7. 7.
    Kubo, R., Matsuo, K., Kitahara, K., J. Stat. Phys. 9 ,51 (1973)ADSCrossRefGoogle Scholar
  8. 8.
    Tomita, K., Tomita, H., Progr. Theor. Phys. 51, 1731 (1974)ADSCrossRefGoogle Scholar
  9. 9.
    Graham, R., “Statistical Theory of Instabilities in Stationary Non-equilibrium Systems with Applications to Lasers and Nonlinear Optics”, in Quantum Statistics, Springer Tracts in Modern Physics, Vol. 66, Springer, Berlin, Heidelberg, New York 1973Google Scholar
  10. 10.
    Graham, R., in ’Fluctuations, Instabilities and Phase Transitions;, ed. T. Riste, Plenum, New York 1975, p. 215Google Scholar
  11. 11.
    Ventsel, A.D., Freidlin, M.I., Usp. Mat. Nauk. 25, 3 (1970)Google Scholar
  12. 12.
    Ludwig, D., SIAM Rev. 17., 605 (1975)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Graham, R., Haken, H., Z. Physik 243, 289 (1971); 245, 141 (1971)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Graham, R., Schenzle, A., in Proceedings of the International Optical Bistability Conference, Asheville, USA, 1980, to be published Graham, R., Schenzle, A., Phys. Rev. A, to be publishedGoogle Scholar
  15. 15.
    Gradshteyn, I.S., Ryzhik, I.M., ’Table of Integrals, Series, and Products’, Academic Press, New York 1965Google Scholar
  16. 16.
    Onsager, L., Machlup, S., Phys. Rev. 91, 1505 (1953)MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Graham, R., “Path-Integral Methods in Nonequilibrium Thermodynamics and Statistics” in ’Stochastic Processes in Non-equilibrium Systems’, ed. by L. Garrido, P. Seglar, P.J. Shepherd, Lecture Notes in Physics, Vol. 84, Springer, Berlin, Heidelberg, New York 1978, p. 82CrossRefGoogle Scholar
  18. 18.
    Graham, R., in Proceedings of the Workshop on Functional Integration, Louvain, Belgium 1979, ed. J.P. Antoine, to be publishedGoogle Scholar
  19. 19.
    Kitahara, K., Adv. Chem. Phys. 29, 85 (1975)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Robert Graham
    • 1
  1. 1.Fachbereich PhysikUniversität Essen -GHSEssenFed. Rep. of Germany

Personalised recommendations