Advertisement

Fluorescence Histochemistry of Biogenic Monoamines

  • Christine Heym

Abstract

Several aldehydes are capable of converting biogenic amines to intensely fluorescent derivates: fluorophores. This reaction, under defined conditions, can be used as a highly sensitive and specific method for the histochemical demonstration of biogenic monoamines at the cellular level.

Keywords

Biogenic Amine Cryostat Section Glyoxylic Acid Histochemical Demonstration Liquid Propane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghajanian GK, Kuhar MJ, Roth RH (1973) Serotonin-containing neuronal perikarya and terminals: differential effects of p-chloro-phenylalanine. Brain Res 54:85–101PubMedGoogle Scholar
  2. Agrup G, Björklund A, Falck B, Jakobsson S, Lindvall O, Rorsman H, Rosengren E (1977) Fluorescence histochemical demonstration of DOPA thioethers by condensation with gaseous formaldehyde. Histochemistry 52:179–186PubMedGoogle Scholar
  3. Ajelis V, Björklund A, Falck B, Lindvall O, Loren I, Walles B (1979) Application of the aluminum-formaldehyde (ALFA) histo-fluorescence method for demonstration of peripheral stores of catecholamines and indolamines in freeze-dried paraffin-embedded tissue, cryostat sections, and whole-mounts. Histochemistry 65:1–15PubMedGoogle Scholar
  4. Angelakos ET (1967) Demonstration of nerve terminals containing adrenalin by a new histochemical method. Nature 213:391–392PubMedGoogle Scholar
  5. Angelakos ET, King MP (1965) A new histochemical method for the specific demonstration of catecholamine (CA-containing structures. Fed Proc 24:389Google Scholar
  6. Axelsson S, Björklund A, Falck A, Lindvall B, Svensson LA (1973) Glyoxylic acid condensation: A new fluorescence method for the histochemical demonstration of biogenic monoamines. Acta Physiol Scand 87:57–62PubMedGoogle Scholar
  7. Axelsson S, Björklund A, Lindvall O (1972) Fluorescence histochemistry of biogenic monoamines. A study of the capacity of various carbonyl compounds to form fluoro-phores with biogenic monoamines in gas phase reactions. J Histochem Cytochem 20:435–444PubMedGoogle Scholar
  8. Azmitia EC, Henriksen SJ (1976) A modification of the Falck-Hillarp technique for 5-HT fluorescence employing hypertonic formaldehyde perfusion. J Histochem Cytochem 24:1286–1288PubMedGoogle Scholar
  9. Battenberg ELF, Bloom FE (1975) A rapid, simple, and more sensitive method for the demonstration of central catecholamine neurons and axons by glyoxylic acid-induced fluorescence. I. Specificity. Psychopharmacol Commun 1:3–13PubMedGoogle Scholar
  10. Baumgarten HG, Björklund A, Lachenmayer L, Rensch A, Rosengren E (1974) De-and regeneration of the bulbospinal serotonin neurons in the rat following 5, 6-or 5, 7-di-hydroxytryptamine treatment. Cell Tissue Res 152:271–281PubMedGoogle Scholar
  11. Björklund A, Ehinger B, Falck B (1968) A method for differentiating dopamin from noradrenaline in tissue sections by microspectro-fluorometry. J Histochem Cytochem 16:263–270PubMedGoogle Scholar
  12. Björklund A, Ehinger B, Falck B (1971) Analysis of fluorescence excitation peak ratios for the cellular identification of noradrenaline, dopamin, or their mixtures. J Histochem Cytochem 20:56–64Google Scholar
  13. Björklund A, Falck B, Owman Ch (1972 a) Fluorescence microscopic and microspectrofluorometric techniques for the cellular localization and characterization of biogenic amines. In: Rall JE, Kopin IJ (eds) Methods in investigative and diagnostic endocrinology: vol 1, The thyroid and catecholamines. Elsevier, Amsterdam, pp 318–363Google Scholar
  14. Björklund A, Lindvall O, Svensson LA (1972 b) Mechanisms of fluorophore formation in the histochemical glyoxylic acid method for monoamines. Histochemie 32:13–131Google Scholar
  15. Bloom FE, Battenberg ELF (1976) A rapid, simple, and more sensitive method for the demonstration of central catecholamine-con-taining neurons and axons by glyoxylic acid induced fluorescence. II. A detailed description of methodology. J Histochem Cytochem 24:561–571PubMedGoogle Scholar
  16. Chiba T, Hwang BH, Williams TH (1976) A method for studying glyoxylic acid-induced fluorescence and ultrastructure of monoamine neurons. Histochemistry 49:95–106PubMedGoogle Scholar
  17. Chiba T, Williams TH (1975) Histofluorescence characteristics and quantification of small intensely fluorescent (SIF) cells in sympathetic ganglia of several species. Cell Tissue Res 162:331–341PubMedGoogle Scholar
  18. Corrodi H, Hillarp NA (1963) Fluoreszenzmethoden zur histochemischen Sichtbarmachung von Monoaminen: I. Identifizierung der fluoreszierenden Produkte aus Modellversuchen mit 6, 7-Dimethoxyisochinolinderivaten und Formaldehyd. Helv Chim Acta 46:2425–2430.Google Scholar
  19. Corrodi H, Hillarp NA, Jonsson G (1964) Fluorescence methods for the histochemical demonstration of monoamines: 3. Sodium borohydride reduction of the fluorescent compounds as a specificity test. J Histochem Cytochem 12:582–586PubMedGoogle Scholar
  20. Corrodi H, Jonsson G (1965) Fluoreszenzmethoden zur histochemischen Sichtbarmachung von Monoaminen. 5. Identifizierung des fluoreszierenden Produktes aus Modellversuchen mit 5-Methoxy-tryptamin und Formaldehyd. Acta Histochem (Jena) 22:247–258Google Scholar
  21. Corrodi H, Jonsson G (1967) The formaldehyde fluorescence method for the histochemical demonstration of biogenic monoamines. A review on the methodology. J Histochem Cytochem 15:67–78Google Scholar
  22. Csillik B, Kaiman G (1967) Vacuumless freezing-drying: its application in catecholamine histochemistry. Histochemie 2:275–280Google Scholar
  23. Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. Acta Physiol Scand[Suppl] 62:232Google Scholar
  24. Ehinger B, Håkanson R, Owman Ch, Sporrong B (1968) Histochemical demonstration of histamine in paraffin sections by a fluorescence method. Biochem Pharmacol 17:1997–1998PubMedGoogle Scholar
  25. Ehinger B, Thunberg R (1976) Induction of fluorescence in histamine-containing cells. Exp Cell Res 47:116–122Google Scholar
  26. Ehinger B, Falck B (1969) Fluorescence microscopical demonstration of 5-hydroxy-dopa-mine in adrenergic nerves. Histochemie 18:1–7PubMedGoogle Scholar
  27. Enerbäck L (1969) Detection of histamine in mast cells by o-phthalaldehyde reaction after liquid fixation. J Histochem Cytochem 17:757–759Google Scholar
  28. Eränkö O (1951) On the histochemistry of the rat adrenal medulla. Acta Physiol Scand [Suppl] 25:89Google Scholar
  29. Eränkö O (1952) On the histochemistry of the adrenal medulla of the rat, with special reference to acid phosphatase. Acta Physiol Scand [Suppl] 16:17Google Scholar
  30. Eränkö O (1955) Histochemistry of noradrenaline in the adrenal medulla of rats and mice. Endocrinology 57:363–368PubMedGoogle Scholar
  31. Eränkö O (1967) The practical histochemical demonstration of catecholamines by formaldehyde-induced fluorescence. J R Microsc Soc 87:259–276PubMedGoogle Scholar
  32. Eränkö O, Eränkö L (1971) Small intensely fluorescent granule-containing cells in the sympathetic ganglion of the rat. Prog Brain Res 34:34–51Google Scholar
  33. Eränkö O, Hopsu V (1958) Effect of reserpine on the histochemistry and content of adrenaline and noradrenaline in the adrenal medulla of the rat and the mouse. Endocrinology 62:15–22PubMedGoogle Scholar
  34. Eränkö O, Räisinen L (1966) Demonstration of catecholamines in adrenergic nerve fibers by fixation in aqueous formaldehyde solution and fluorescence microscopy. J Histochem Cytochem 14:690–691PubMedGoogle Scholar
  35. Falck B (1962) Observations on the possibilities of the cellular localization of monoamines by a fluorescence method. Acta Physiol Scand [Suppl]56:197Google Scholar
  36. Falck B (1964) Cellular localization of monoamines. Prog Brain Res 8:28–44Google Scholar
  37. Falck B, Hillarp NA, Thieme G, Torp A (1962) Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354Google Scholar
  38. Falck B, Torp A (1961) A fluorescence method for histochemical demonstration of noradrenaline in the adrenal medulla. Med Exp 5:429–432Google Scholar
  39. Falck B, Owman Ch (1965) A detailed methodological description of the fluorescence method for the cellular demonstration of biogenic monoamines. Acta Univ Lund Sect 2, 7:6–23Google Scholar
  40. Furness JB, Costa M (1962) The use of glyoxylic acid for the fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354Google Scholar
  41. Furness JB, Costa M (1975) The use of glyoxylic acid for the fluorescence histochemical demonstration of peripheral stores of noradrenaline and 5-hydroxytryptamine in whole mounts. Histochemistry 41:335–352PubMedGoogle Scholar
  42. Furness JB, Costa M, Blessing WW (1977 a) Simultaneous fixation and production of catecholamine fluorescence in central nervous tissue by perfusion with aldehydes. Histochem J 9:745–750PubMedGoogle Scholar
  43. Furness JB, Costa M, Wilson AJ (1977 b) Water-stable fluorophores, produced by reaction with aldehyde solutions, for the histochemical localization of catechol-and indolethylamines. Histochemistry 52:159–170PubMedGoogle Scholar
  44. Furness JB, Heath JW, Costa M (1979) Aqueous aldehyde (FAGLU) methods for the fluorescence histochemical localization of catecholamines and for ultrastructural studies of central nervous tissue. Histochemistry 57:285–295Google Scholar
  45. Fuxe K, Hökfelt T, Jonsson G, Ungerstedt U (1970) Fluorescence microscopy in neuroanatomy. In: Nauta WJ, Ebbesson SO (eds) Contemporary research methods in neuroanatomy. Springer, Berlin Heidelberg New York, pp 275–314Google Scholar
  46. Fuxe K, Jonsson G (1967) A modification of the histochemical fluorescence method for the improved localization of 5-HT. Histochemie 11: 161–166PubMedGoogle Scholar
  47. Fuxe K, Jonsson G (1973) The histochemical fluorescence method for the demonstration of catecholamines. J Histochem Cytochem 21:293–311PubMedGoogle Scholar
  48. Geyer M, Dawsey W, Mandell J (1979) Fading: a new cytofluorimetric measure quantifying serotonin in the presence of catecholamines in the cellular level in brain. J Pharmacol Exp Ther 207:650–667Google Scholar
  49. Gonzalez C, Fidone S, Obeso A (1979) Tris buffer: effects on catecholamine synthesis. J Neurochemistry 32:1143–1145Google Scholar
  50. Grillo MA, Comroe TH Jr, Jacobs L (1974) A combined fluorescence histochemical and electron microscopic method for studying special monoamine-containing cells (SIF cells). J Comp Neurol 153:1–14PubMedGoogle Scholar
  51. Hå kanson R, Juhlin L, Owman C, Sporrong B (1970) Histochemistry of histamine: microspectrofluorometric characterization of the fluorophores induced by o-phthaldialdehyde. J Histochem Cytochem 18:93–99PubMedGoogle Scholar
  52. Håkanson R, Lilja B, Owman C (1969) Cellular localization of histamine and monoamines in the gastric mucosa of man. Histochemie 18:74–86PubMedGoogle Scholar
  53. Håkanson R, Owman C (1967) Concomittant histochemical demonstration of histamine and catecholamines in enterochromaffin-like cells of the gastric mucosa. Life Sci 6:759–766PubMedGoogle Scholar
  54. Håkanson R, Sundler F (1974) Formaldehyde condensation at reduced temperature. Increased sensitivity and specificity of the fluorescence microscopic method for demonstrating primary catecholamines. J Histochem Cytochem 22:887–894PubMedGoogle Scholar
  55. Hamberger B (1967) Reserpine-resistant uptake of catecholamines in isolated tissues of the rat. Acta Physiol Scand [Suppl] 71:295Google Scholar
  56. Hamberger B, Norberg K (1964) Histochemical demonstration of catecholamines in fresh frozen sections. J Histochem Cytochem 12:48–49PubMedGoogle Scholar
  57. Harrison F (1975) A simple method for the intracytoplasmic localization of biogenic monoamines in the anterior lobe of the pituitary gland. Histochemistry 44:119–121Google Scholar
  58. Heene R (1968) Histochemischer Nachweis von Katecholaminen und 5-Hydroxytryptamin am Kryostatschnitt. Histochemie 14:324–327PubMedGoogle Scholar
  59. Hess A (1978) A simple procedure for distinguishing dopamine from noradrenaline in peripheral nervous structures in the fluorescence microscope. J Histochem Cytochem 26:141–144PubMedGoogle Scholar
  60. Hökfelt T (1965) A modification of the histo-chemical fluorescence method for the demonstration of catecholamines and 5-hydroxy-tryptamine using araldite as embedding medium. J Histochem Cytochem 13:518–520PubMedGoogle Scholar
  61. Hökfelt T, Ljungdahl A (1972) Modification of the Falck-Hillarp fluorescence method using the vibratome. Simple, rapid, and sensitive localization of catecholamines in sections of unfixed or formalin-fixed brain tissue. Histo-chemie 29:315–339Google Scholar
  62. Hoyt RF, Bartlett RA, Sorokin SP (1979) A simple fluorescence method for serotonin-containing endocrine cells in plastic-embedded lung, gut, and thyroid gland. J Histochem Cytochem 27:721–727PubMedGoogle Scholar
  63. Jonsson G (1967) Fluorescence methods for the histochemical demonstration of monoamines. 7. Fluorescence studies on biogenic monoamines and related compounds condensed with formaldehyde. Histochemie 8:288–296PubMedGoogle Scholar
  64. Jonsson G (1971) Quantitation of fluorescence of biogenic monoamines. Prog Histochem Cytochem 2:299–334Google Scholar
  65. Jonsson G, Sandler M (1969) Fluorescence of indolylethylamines condensed with formaldehyde. Histochemie 17:207–212PubMedGoogle Scholar
  66. Juhlin L, Shelley WB (1966) Detection of histamine by a new fluorescent o-phthalalde-hyde stain. J Histochem Cytochem 14:525–528PubMedGoogle Scholar
  67. King MP, Angelakos ET (1973) Differentiation of noradrenaline and adrenaline-containing cells in the adrenal medulla by the trihy-droxyindole histochemical reaction. Acta Histochem 45:61–70PubMedGoogle Scholar
  68. Koe BK, Weissman A (1966) P-chlorophenylala-nine: a specific depletor of brain serotonin. J Pharmacol Exp Ther 154:499–516PubMedGoogle Scholar
  69. Kyösola K (1979) Comparative formaldehydeinduced and glyoxylic acid-induced fluorescence histochemical studies on the intrinsic innervation of the intestines and the liver of normal and vagotomized cats. Acta Histochem 62:188–199Google Scholar
  70. Laties AM, Jakobowitz D, Lund R (1967) A simplified method for the histochemical localization of cardial catecholamine-containing nerve fibers. J Histochem Cytochem 15:535–541PubMedGoogle Scholar
  71. Lindvall O, Björklund A (1974) The glyoxylic acid fluorescence histochemical method: A detailed account of the methodology for the visualization of central catecholamine neurons. Histochemistry 39:97–127PubMedGoogle Scholar
  72. Lindvall O, Björklund A, Hökfelt T, Ljungdahl A (1973) Application of the glyoxylic acid method to vibratome sections for improved visualization of central catecholamine neurons. Histochemie 35:31–38PubMedGoogle Scholar
  73. Lindvall O, Björklund A, Svensson LA (1974) fluorophore formation from catecholamines and related compounds in the glyoxylic acid fluorescence histochemical method. Histochemie 39:197–225Google Scholar
  74. Lorén J, Björklund A, Falck B, Lindvall O (1976) An improved histofluorescence procedure for freeze-dried paraffin-embedded tissue based on combined formaldehyde-glyoxylic acid perfusion with high magnesium content and acid pH. Histochemistry 49:177–192PubMedGoogle Scholar
  75. Lorén J, Björklund A, Lindvall O (1977) Magnesium ions in catecholamine fluorescence histochemistry. Application to the cryostat and vibratome techniques. Histochemistry 52:223–239PubMedGoogle Scholar
  76. Lorén J, Björklund A, Falck B, Lindvall O (1980) The aluminum-formaldehyde (ALFA) histofluorescence method for improved visualization of catecholamines and indolamines. Application on the central nervous system. J Neurosci Methods 2:277–300PubMedGoogle Scholar
  77. Nairn RC (1969) Fluorescence microscopy and photomicrography. In: Nairn RC (ed) Fluorescent protein tracing. Livingstone, Edinburgh London, pp 68–108Google Scholar
  78. Nelson JS, Wakefield PL (1968) The cellular localization of catecholamines in frozen-dried, cryostat sections of the brain and autonomic nervous system. J Neuropathol Exp Neurol 27:221–233PubMedGoogle Scholar
  79. Norberg KA, Ritzen M, Ungerstedt U (1966) Histochemical studies on a special catecholamine-containing cell type in sympathetic ganglia. Acta Physiol Scand 67:260–270PubMedGoogle Scholar
  80. Pearse AGE (1972) Biogenic amines. In: Pearse AGE (ed) Histochemistry. Theoretical and applied, vol 2. Churchill Livingstone, Edinburgh London, pp 1101–1127Google Scholar
  81. Penttilä A (1968) Effect of incubation in Krebs-Ringer solution or humid air on the amine content, fluorescence, and staining characteristics of the duodenal enterochromaffin and dopamine cells. Virchows Arch B 1:269–282Google Scholar
  82. Ploem JS (1969) Ein neuer Illuminator-Typ für die Auflicht-Fluoreszenzmikroskopie. Leitz Mitt Wiss Tech IV: 225–238Google Scholar
  83. Ritzén M (1969) Quantitative fluorescence microspectrophotometry of catecholamine-formaldehyde products. Model experiments. Exp Cell Res 44:505–520Google Scholar
  84. Sakharova AV, Sakharov DA (1971) Visualization of intraneuronal monoamines by treatment with formaline solutions. Prog Brain Res 34:11–25Google Scholar
  85. Shore PA, Burkhalter A, Cohn VH Jr (1959) A method for the fluorometric assay of histamine in tissues. J Pharmacol Exp Ther 127:182–186PubMedGoogle Scholar
  86. Sparring H, Grube D (1977) Die aldehydinduzierte Fluoreszenz-Methode und Anwendungsbereiche. Leitz Mitt Wiss Tech VII:6–11Google Scholar
  87. Thoenen H, Tranzer JP (1968) Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Naunyn Schmiedebergs Arch Pharmacol 261:271–288Google Scholar
  88. Torre De la JC (1980) Standardization of the SPG histofluorescence method for tissue monoamines. J Neurosci Meth 3:1–5Google Scholar
  89. Torre De la JC, Surgeon JW (1976 a) A methodological approach to rapid and sensitive monoamine histofluorescence using a modified glyoxylic acid technique: the SPG method. Histochemistry 49:81–93PubMedGoogle Scholar
  90. Torre De la JC, Surgeon JW (1976 b) Histo-chemical fluorescence of tissue and brain monoamines: results in 18 min using the sucrose-phosphate-glyoxylic acid (SPG) method. Neuroscience 1:451–454PubMedGoogle Scholar
  91. Udenfriend S (1969) Principles of fluorescence. In: Fluorescence assay in biology and medicine, vol II. Academic Press, New York, pp 1–41Google Scholar
  92. Ungerstedt U (1968) 6-hydroxydopamine-induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107–110PubMedGoogle Scholar
  93. Ungerstedt U, Butcher LL, Butcher SG, Anden NE, Fuxe K (1969) Direct chemical stimulation of dopaminergic mechanisms in the neostriatum of rats. Brain Res 14:461–471PubMedGoogle Scholar
  94. Winkler J (1970 a) Kontrollierte Gefriertrocknung von Kryostatschnitten. Histochemie 22: 234–240Google Scholar
  95. Winkler J (1970 b) Zum Einfrieren von Gewebe in Stickstoff-gekühltem Propan. Histochemie 23:44–50Google Scholar
  96. Young MR (1961) Principles and techniques of fluorescence microscopy. Q J Microsc Sci 102:419–449Google Scholar

Bibliography for Microspectro-fluorometry, Cytofluorometry, Microfluorometric Quantitation, and Fluorescence Cytophotometry

  1. Agnati LF, Benfenati F, Cortelli P, D’Allesandro R (1978) A new method to quantify catecholamine stores visualized by means of the Falck-Hillarp technique. Neurosci Lett 10:11–17PubMedGoogle Scholar
  2. Agrup G, Björklund A, Falck B, Jacobsson S, Lindvall O, Rorsman H, Rosengren E (1977) Fluorescence histochemical demonstration of DOPA thioethers by condensation with gaseous formaldehyde. Histochemistry 52:179–186PubMedGoogle Scholar
  3. Björklund A, Ehinger B, Falck B (1968) A method for differentiating dopamine from noradrenaline in tissue sections by micro-spectrofluorometry. J Histochem Cytochem 16:263–270PubMedGoogle Scholar
  4. Björklund A, Ehinger B, Falck B (1972 a) Analysis of fluorescence excitation peak ratios for the cellular identification of noradrenaline, dopamine, or their mixtures. J Histochem Cytochem 20:56–64PubMedGoogle Scholar
  5. Björklund A, Falck B (1973) Cytofluorometry of biogenic monoamines in the Falck-Hillarp method. Structural identification by spectral analysis. In: Thaer AA, Sernetz M (eds) Fluorescence techniques in cell biology. Springer, Berlin Heidelberg New York, pp 171–181Google Scholar
  6. Björklund A, Falck B, Owman Ch (1972 b) Fluorescence microscopic and microspectro-fluorometric techniques for the cellular localization and characterization of biogenic amines. In: Rall JG, Kopin IJ (eds) The thyroid and biogenic amines. North-Holland, Amsterdam, pp 318–368Google Scholar
  7. Björklund A, Lindvall O, Svensson LA (1972 c) Mechanisms of fluorophore formation in the histochemical glyoxylic acid method for monoamines. Histochemie 32:113–131PubMedGoogle Scholar
  8. Chang CC (1964) A sensitive method for spectrophotofluorometric assay of catecholamines. Int J Neuropharmacol 3:643–649PubMedGoogle Scholar
  9. Corrodi H, Hillarp NA (1964) Fluoreszenzmethoden zur histochemischen Sichtbarmachung von Monoaminen. 2. Identifizierung des fluoreszierenden Produktes aus Dopamin und Formaldehyd. Helv Chim Acta 47: 911–918Google Scholar
  10. Enerbäck L, Gustafsson B, Mellblom L (1977) Cytofluorometric quantitation of 5-hydroxy-tryptamine in mast cells: an improved technique for the formaldehyde condensation reaction. J Histochem Cytochem 25:32–41PubMedGoogle Scholar
  11. Fukuda M, Böhm N, Fujita S (1978) Cytophotometry and its biological application. Prog Histochem Cytochem 11:1–119PubMedGoogle Scholar
  12. Håkanson R, Owman Ch, Sjölund K (1974) Cytospectrofluorometric characterization of OPT-induced fluorescence in rat pinealocytes. Histochemistry 42:323–331PubMedGoogle Scholar
  13. Håkanson R, Owman Ch, Sundler F (1971) Fluorescence histochemical and microspectro-fluorometric evidence of tryptophyl peptides in thyroid C cells of cat and pig. J Histochem Cytochem 20:205–210Google Scholar
  14. Jonsson G (1973) Quantitation of biogenic monoamines demonstrated with the formaldehyde fluorescence method. In: Thaer AA, Semetz M (eds) Fluorescence techniques in cell biology. Springer, Berlin Heidelberg New York, pp 191–197Google Scholar
  15. Jonsson G, Sachs Ch (1970) Microspectrofluo-rometric identification of m-hydroxyphenyl-ethylamines (m-tyramines) in central and peripheral monoamine neurons. Histochemie 25:208–216Google Scholar
  16. Knyazev GG, Spiridonov VK (1979) Quantitative estimation of the fluorescence of catecholamines, detected by Falck’s method. Neurosci Behav Physiol 9:244–247Google Scholar
  17. Lindvall O, Björklund A, Falck B, Svensson LA (1975 a) New principles for microspectrofluo-rometric differentiation between DOPA, dopamine, and noradrenaline. J Histochem Cytochem 23:697–701PubMedGoogle Scholar
  18. Lindvall O, Björklund A, Falck B, Svensson LA (1975 b) Combined formaldehyde and glyoxylic acid reactions. I. New possibilities for microspectrofluorometric differentiation between phenylethylamines, indolylethylamines, and their precursor amino acids. Histochemistry 46:27–52Google Scholar
  19. Lindvall O, Björklund A, Svensson LA (1974) Fluorophore formation from catecholamines and related compounds in the glyoxylic acid fluorescence histochemical method. Histochemie 39:197–225Google Scholar
  20. Loefström A, Fuxe K, Jonsson G (1976 a) Microfluorimetric quantitation of catecholamine fluorescence in rat median eminence. I. Aspects on the distribution of dopamine and noradrenaline nerve terminals. J Histochem Cytochem 24:415–429Google Scholar
  21. Loefström A, Fuxe K, Jonsson G, Wiesel FA (1976 b) Microfluorimetric quantitation of catecholamine fluorescence in rat median eminence. II. Turnover changes in hormonal states. J Histochem Cytochem 24:430–442Google Scholar
  22. Paul E, Hartwig HG, Illig L, Möller W (1976) Fluorescenzhistochemische Untersuchungen und mikrofluorometrische Analysen an Pigmentbildenden Tumoren der Haut. Arch Dermatol Res 253-125-144Google Scholar
  23. Ritzén M (1966) Quantitative fluorescence microspectrophotometry of catecholamine-formaldehyde products. Exp Cell Res 44:505–520PubMedGoogle Scholar
  24. Ritzén M (1973) Microfluorimetric quantitation of biogenic monoamines. In: Thaer AA, Sernetz M (eds) Fluorescence techniques in cell biology. Springer, Berlin Heidelberg New York, pp 184–189Google Scholar
  25. Schipper J (1979) A scanning microfluorimetric study on noradrenergic neurotransmission. PhD Dissertation, University of AmsterdamGoogle Scholar
  26. Schipper J, Ploem JS, Tilders FJH (1978) Microfluorimetric scanning of sympathetic nerve fibers. An improved method to quantitate formaldehyde-induced fluorescence of biogenic amines. J Histochem Cytochem 26:1057–1066PubMedGoogle Scholar
  27. Sprenger E, Böhm N (1971) Qualitative and quantitative Fluoreszenzmikrospektrographie mit dem Leitz-Mikrospektrographen. Histochemie 25:163–176PubMedGoogle Scholar
  28. Thiessen G, Thiessen H (1977) Microspectro-photometric cell analysis. Prog Histochem Cytochem 9:1–158PubMedGoogle Scholar
  29. Vern B, Schuette WH, Whitehouse WC (1975) Sodium fluorescein: a new reference for NADH fluorometry. Brain Res 98:405–409PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Christine Heym

There are no affiliations available

Personalised recommendations