Performance, Wall Dynamics and Coronary Function of the Left Ventricle in Hypertensive Heart Disease

  • B. E. Strauer
Conference paper
Part of the International Boehringer Mannheim Symposia book series (BOEHRINGER)


Arterial hypertension is the most frequent of left ventricular pressure load in man [1–4]. Its cardiac consequences closely depend on the degree of myocardial hypertrophy and on the progression of coronary artery disease [3, 4]. There have been relatively few reports [5, 6] on cardiac performance in human hypertension, in part because the disease in often asymptomatic and not thought to justify left ventricular catheterization. This study was, therefore, undertaken to investigate the cardiac manifestations of essential hypertension with special reference to left ventricular (LV) function, wall geometry, coronary hemodynamics, and myocardial energy demand. Moreover, the role of ventricular mass, volume, mass-to-volume ratio, and wall stress on the oxygen demand of the human LV myocardium has been studied in various clinical conditions of the chronic hypertrophic heart. The results indicate that systolic wall stress, as a consequence of the degree of ventricular hypertrophy, plays the predominant role in ventricular function and overall myocardial energy demand in chronic hypertrophic heart disease.


Essential Hypertension Aortic Stenosis Left Ventrieular Mass Wall Stress Coronary Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    World Health Organisation (1959) Hypertension and coronary heart disease: Classification and criteria for epidemiological studies. First report of the expert committee on cardiovascular diseases and hypertension. WHO Tech Rep Ser 168Google Scholar
  2. 2.
    World Health Organisation (1962) Arterial hypertension and ischemic heart disease, preventive aspects. Report of an expert committee. WHO Tech Rep Ser 231Google Scholar
  3. 3.
    Strauer BE (1977) Ventrikelfunktion und koronare Hämodynamik bei der essentiellen Hypertonie. Verh Dtsch Ges Kreislaufforsch 43: 41–55PubMedGoogle Scholar
  4. 4.
    Strauer BE (1979) Das Hochdurckherz. Springer, Berlin Heidelberg New YorkGoogle Scholar
  5. 5.
    Lund-Johansen P (1970) Physiological symptoms and signs of incipient cardiac insufficiency in arterial hypertension: Changes in the physiological data announcing failure. In: Symposium on incipient cardiac insufficiency, European Society of Cardiology. Locarno, Sandoz pp 119–125Google Scholar
  6. 6.
    Fröhlich ED, Tarazi RC, Dustan HP (1971) Clinical-physiological correlations in the development of hypertensive heart disease. Ciruculation 44: 446–455Google Scholar
  7. 7.
    Criteria Committee of the New York Heart Association (1973) Nomenclature and criteria for the diagnosis of diseases of the heart and great vessels, 7th edn. Little Brown, Boston p 286Google Scholar
  8. 8.
    Strauer BE, Beer K, Heitlinger K, Höfling B (1977) Left ventricular systolic wall stress as a primary determinant of myocardial oxygen consumption: Comparative studies in patients with normal left ventricular function, with pressure and volume overload and with coronary heart disease. Basic Res Cardiol 72: 306–313Google Scholar
  9. 9.
    Greene DG, Carlisle B, Grant C, Bunnell I (1967) Estimation of left ventricular volume by one-plane cineangiography. Circulation 35: 61–69PubMedGoogle Scholar
  10. 10.
    Hood WP (1971) Dynamics of hypertrophy in left ventricular wall of man. In: Alpert NR (ed) Cardiac hypertrophy. Academic Press, New York 445–452Google Scholar
  11. 11.
    Rackley CE, Dodge HT, Coble YD, Hay RE (1964) Method of determining left ventricular mass in man. Circulation 29: 666–671PubMedGoogle Scholar
  12. 12.
    Hood WP, Rackley CE, Rolett EL (1968) Wall stress in the normal and hypertrophied human left ventricle. Am J Cardiol 22: 550–558PubMedCrossRefGoogle Scholar
  13. 13.
    Sandler H, Dodge HT (1963) Left ventricular tension and stress in man. Circ Res 13: 91–104PubMedGoogle Scholar
  14. 14.
    Sandler H, Dodge HT (1968) The use of single plane angiocardiogram for the calculation of left ventricular volume in man. Am Heart J 55: 325–334CrossRefGoogle Scholar
  15. 15.
    Hugenholtz PG, Kaplan E, Bull E (1969) Determination of left ventricular wall thickness by angiocardiography. Am Heart J 78: 513–522PubMedCrossRefGoogle Scholar
  16. 16.
    Gaasch WH, Battle WE, Oboler HH, Banas JS, Levine HJ (1972) Left ventricular stress and compliance in man. Circulation 45: 746–762PubMedGoogle Scholar
  17. 17.
    Bretschneider HJ, Cott L, Hilgert G, Probst R, Rau G (1966) Gaschromatische Trennung und Analyse von Argon als Basis einer neuen Fremdgasmethode zur Durchblutungsmessung von Organen. Verh Dtsch Ges Kreislaufforsch 32: 267–273PubMedGoogle Scholar
  18. 18.
    Tauchert M (1973) Koronarreserve und maximaler Sauerstoffverbrauch des menschlichen Herzens. Basic Res Cardiol 68: 1–83CrossRefGoogle Scholar
  19. 19.
    Strauer BE, Brune I, Schenk H, Knoll D, Perings E (1976) Lupus cardiomyopathy: Cardiac mechanics, hemodynamics, and coronary blood flow in uncomplicated systemic lupus erythematosus. Am Heart J 92: 715–722Google Scholar
  20. 20.
    Strauer BE, Scherpe A (1976) Ventricular function and coronary hemodynamics after intravenous nitroglycerin in coronary artery disease. Am Heart J 95: 210–219CrossRefGoogle Scholar
  21. 21.
    Strauer BE (1977) Die quantitative Bestimmung der Koronarreserve in der Diagnostik koronarer Durchblutungsstörungen. Internist (Berlin) 18: 579–587Google Scholar
  22. 22.
    Strauer BE, Tauchert M, Cott L, Kochsiek K, Bretschneider HJ (1970) Simultane Bestimmung des Sauerstoffverbrauches und der Coronardurchblutung des linken Ventrikels bei Mitral- und Aortenklappenfehlern mit einem neuen hämodynamischen Parameter und der Argon-Fremdgasmethode. Verh Dtsch Ges Inn Med 76: 217–220Google Scholar
  23. 23.
    Strauer BE, Bürger SB (1977) Dynamic geometry of the left ventricle in essential hypertension (abstr). Circulation [Suppl III] 56: 118Google Scholar
  24. 24.
    Meerson FS (1969) Hyperfunktion, Hypertrophie und Insuffizienz des Herzens. Volk amp; Gesundheit, BerlinGoogle Scholar
  25. 25.
    Simon H, Krayenbühl HP, Rutishauser W, Preter B (1970) The contractile state of the hypertrophied left ventricular myocardium in aortic stensosis. Am Heart J 79: 587–602PubMedCrossRefGoogle Scholar
  26. 26.
    Spann JF, Buccino RA, Sonnenblick EH, Braunwald E (1967) Contractile state of cardiac muscle obtained from cats with experimentally produced ventricular hypertrophy and heart failure. Circ Res 21: 341–354PubMedGoogle Scholar
  27. 27.
    Biirger SB, Strauer BE (1977) Dynamics of left ventricular hypertrophy and contraction in spontaneously hypertensive rats (abstr). Circulation [Suppl III] 56: 234Google Scholar
  28. 28.
    Biirger SB, Strauer BE (1978) Left ventricular geometry and wall stress in various stages of hypertrophy due to spontaneous essential hypertension (abstr). Circulation [Suppl II] 57 /58: 158Google Scholar
  29. 29.
    Biirger SB, Meinardus A, Strauer BE (1978) Hypertrophiegrad und Dynamik des linken Ventrikels bei der spontanen essentiellen Hypertonie der Ratte. Klin Wochenschr 57: 207–209CrossRefGoogle Scholar
  30. 30.
    Weber KT, Janicki JS (1977) Instantaneous force-velocity-length relations: Experimental findings and clinical correlations. Am J Cardiol 40: 740–747Google Scholar
  31. 31.
    Strauer BE (1975) Dynamik, Koronardurchblutung und Sauerstoffverbrauch des normalen und kranken Herzens. Karger, Basel, pp 72–81Google Scholar
  32. 32.
    Johnson LL, Sciacca RR, Ellis K, Weiss MB, Cannon PJ (1978) Reduced left ventricular myocardial blood flow per unit mass in aortic stenosis. Cir–culation 57: 582–590Google Scholar
  33. 33.
    Braunwald E (1971) Control of myocardial oxygen consumption. Physiological and clinical considerations. Am J Cardiol 27: 416–432PubMedCrossRefGoogle Scholar
  34. 34.
    Bretschneider HJ (1967) Aktuelle Probleme der Koronardurchblutung und des Myokardstoffwechseis. Regensburger Aerztl Fortbild 1: 11Google Scholar
  35. 35.
    Kochsiek K, Heiss HW, Tauchert M, Strauer BE (1971) Koronarreserve und Sauerstoffverbrauch bei hypertrophischer obstruktiver Cardiomyopathie. Verh Dtsch Ges Inn Med 27: 880–883Google Scholar
  36. 36.
    Kochsiek K, Tauchert M, Cott L, Neubaur J (1970) Die Koronarreserve bei Patienten mit Aortenvitien. Ver Dtsch Ges Inn Med 76: 214–218Google Scholar
  37. 37.
    Kathke N (1955) Die Veränderungen der Koronararterienweige des Myokards bei Hypertonie. Beitr Pathol Anat 115: 405PubMedGoogle Scholar
  38. 37a.
    James TN (1977) Small arteries of the heart. Circulation 56: 11–114Google Scholar
  39. 38.
    Strauer BE, Heitlinger KH, Bürger SB (1977) Coronary hemodynamics and myocardial oxygen consumption in essential hypertension (abstr). Circulation [Suppl II] 56: III–818Google Scholar
  40. 39.
    Strauer BE (1979) Myocardial oxygen consumption in chronic heart disease: Role of wall stress, hypertrophy and coronary reserve. Am J Cardiol 44: 730–740PubMedCrossRefGoogle Scholar
  41. 40.
    Strauer BE (1980) Hypertensive heart disease. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  42. 41.
    Bretschneider HJ (1967) Aktuelle Probleme der Koronardurchblutung und des My okardstoff wechseis. Regensburg Aerztl Fortbild 15: 1–27Google Scholar
  43. 42.
    Strauer BE, Scherpe A (1975) Myocardial mechanics and oxygen consumption in experimental hyperthyroidism. In: Roy PE, Harris P (ed) The cardiac sarcoplasm. University Park Press, Baltimore, pp 495–502Google Scholar
  44. 43.
    Strauer BE, Scherpe A (1975) Experimental hyperthyroidism IV. Myocardial muscle mechanics and oxygen consumption in eu- and hyperthyroidism. Basic Res Cardiol 70: 246–255Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • B. E. Strauer

There are no affiliations available

Personalised recommendations