Experimental Hypertension and Its Significance for Clinical Hypertension

  • F. Gross
Conference paper
Part of the International Boehringer Mannheim Symposia book series (BOEHRINGER)


Animal models which simulate human diseases are useful for two reasons: (1) to study the pathogenesis of the disorder and (2) to investigate means by which the pathological state can be controlled. Hypertension is one of the few human diseases that can be reproduced in experimental animals, and, as in man, high blood pressure may be the primary manifestation of a genetic disorder or the consequence of some other pathological event. Hence, we may distinguish also in animals between primary and secondary hypertension just as is done in cases of human hypertension.


High Blood Pressure Renal Artery Stenosis Secondary Hypertension Spontaneous Hypertension Renal Hypertension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bianchi G, Baer PG, Fox U, Duzzi L, Pagetti D, Giovannetti AM (1975) Changes in renin, water balance, and sodium balance during development of high blood pressure in genetically hypertensive rats. Circ Res [Suppl I] 36: 153–161Google Scholar
  2. 2.
    Byrom FB (1969) The hypertensive vascular crisis. An experimental study. Heinemann, LondonGoogle Scholar
  3. 3.
    Dahl LK, Heine M, Tassinari L (1962) Effects of chronic excess salt ingestion. Evidence that genetic factors play an important role in susceptibility to experimental hypertension. J Exp Med 115: 1173–1190Google Scholar
  4. 4.
    Dietz R, Schömig A, Haebara H, Mann JFE, Rascher W, Lüth JB, Grünherz N, Gross F (1978) Studies on the pathogenesis of spontaneous hypertension of rats. Circ Res [Suppl 1] 43: 98–106Google Scholar
  5. 5.
    Freis ED, Ragan D, Pillsbury H III, Mathews M (1972) Alteration of the course of hypertension in the spontaneously hypertensive rat. Circ Res 31: 1–7PubMedGoogle Scholar
  6. 6.
    Gaunt R, Melby JC, Dale SL, Grekin RJ, Brown RD (1973) Adrenal regeneration hypertension. In: Scow RO (ed) Endocrinology. Proceedings of the Fourth International Congress of Endocrinology 1972. Excerpta Me- dica, Amsterdam, pp 740–745Google Scholar
  7. 7.
    Green DM (1953) Experimental hypertension. Ann Intern Med 39: 333–344PubMedGoogle Scholar
  8. 8.
    Grimson KS (1941) The sympathetic nervous system in neurogenic and renal hypertension; experimental correlation and clinical consideration. Arch Surg 43: 284–305Google Scholar
  9. 9.
    Gross F (1977) Antihypertensive drugs. In: Gross F (ed) Antihypertensive agents. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, new series, vol 39 ), pp 1–11Google Scholar
  10. 10.
    Gross F, Dietz R, Mast GJ, Szokol M (1975) Salt loss as a possible mechanism eliciting an acute malignant phase in renal hypertensive rats. Clin Exp Pharmacol Physiol 2: 323–333PubMedCrossRefGoogle Scholar
  11. 11.
    Gross F, Dietz R, Lüth JB, Mann JFE (1977) Welche Rolle spielt das Renin-Angiotensin-System in der Pathogenese des Hochdruckes? Verh Dtsch Ges Kreislaufforsch 43: 177–187PubMedGoogle Scholar
  12. 12.
    Henry JP, Cassel JC (1969) Psychosocial factors in essential hypertension. Recent epidemiologic and experimental evidence. Am J Epidemiol 90: 171–200Google Scholar
  13. 13.
    Henry JP, Meehan JP, Stephens PM (1967) The use of psychosocial stimuli to induce prolonged systolic hypertension in mice. Psychosom Med 29: 408–432PubMedGoogle Scholar
  14. 14.
    Hepp R, Garbade K, Oster P, Gross F (1974) Arterial hypertension induced by 9a-fluorocortisol in rats. Acta Endocrinol (Copenh) 75: 539–549Google Scholar
  15. 15.
    Knowlton AI, Loeb EN, Stoerk HC, White JP, Heffernan JF (1952) Induction of arterial hypertension in normal and adrenalectomized rats given cortisone acetate. J Exp Med 96: 187–205PubMedCrossRefGoogle Scholar
  16. 16.
    Krieger EM (1964) Neurogenic hypertension in the rat. Circ Res 15: 511–521PubMedGoogle Scholar
  17. 17.
    Krieger EM (1967) Effect of sinoaortic denervation on cardiac output. Am J Physiol 213: 139–142PubMedGoogle Scholar
  18. 18.
    McConnell SD, Henkin RI (1973) NaCl preference in spontaneously hypertensive rats: Age and blood pressure effects. Am J Physiol 225: 624–627Google Scholar
  19. 19.
    Melby JC, Dale SL, Grekin RJ, Gaunt R, Wilson TE (1972) 18-Hydroxy-11-deoxycorticosterone (18-OH-DOC) secretion in experimental and human hypertension. Recent Prog Horm Res 28: 287–351Google Scholar
  20. 20.
    Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27: 282–293PubMedCrossRefGoogle Scholar
  21. 21.
    Okamoto K, Yamori Y, Nagaoka A (1973) Establishment of the stroke- prone spontaneously hypertensive rat (SHR). Circ Res [Suppl I] 34 /35: 143–153Google Scholar
  22. 22.
    Samizadeh A, Losse H, Wessel F (1977) Einfluß von Kochsalz und Beta- sympathikolytika auf den Blutdruckverlauf der erblichen spontanen Hypertonie der Ratte ( SH-Rattenstamm Münster ). Med Welt 28: 2050–2054Google Scholar
  23. 23.
    Selye H, Bois P (1957) The hormonal production of nephrosclerosis and Periarteriitis nodosa in the primate. Br Med J I: 183–186Google Scholar
  24. 24.
    Skelton FR (1959) Adrenal regeneration and adrenal-regeneration hypertension. Physiol Rev 39: 162–182PubMedGoogle Scholar
  25. 25.
    Smirk FH, Hall WH (1958) Inherited hypertension in rats. Nature 182: 727–728PubMedCrossRefGoogle Scholar
  26. 26.
    Terris JM, Berecek KH, Cohen EL, Stanley JC, Whitehouse WM Jr, Bohr DF (1976) Deoxycorticosterone hypertension in the pig. Clin Sei Mol Med [Suppl 3] 51: 303–305Google Scholar
  27. 27.
    Tobian L, Lange J, Azar S, Iwai J, Koop D, Coffee K, Johnson MA (1978) Reduction of natriuretic capacity and renin release in isolated, blood-perfused kidneys of Dahl hypertensionprone rats. Circ Res 43: 92–98Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • F. Gross

There are no affiliations available

Personalised recommendations