Advertisement

Biogenically Formed Aragonite Concretions in Marine Rivularia

  • S. Golubic
  • S. E. Campbell

Abstract

The recognition that many ancient stromatolites are organo-sedimentary structures of microbial origin established the validity of interpreting them by comparison with modern counterparts. The study of modern stromatolites from different environmental settings such as freshwater lakes and creeks (Irion and Müller 1968; Golubic and Fischer 1975), thermal springs (Walter et al. 1972; Doemel and Brock 1974), hypersaline lagoons (Davies 1970; Horodyski and Vonder Haar 1975; Horodyski 1977), and other freshwater and marine coastal environments (Monty 1965, 1967; Gebelein 1969; Golubic 1973, 1976; Golubic and Focke 1978) shows that several different models for ancient stromatolites exist today. Among other things, the characteristic lamination of stromatolites has been shown to result from the periodical binding of detrital particles, the periodical deposition of calcium carbonate, the periodical differentiation of microbial communities, periodical changes in growth pattern of the constitutive algae, etc. Scores of processes have been described to date, but very few have been studied in great detail. Our purpose is to document and discuss a most interesting case, that of the microstromatolites formed by monospecific populations of a filamentous photosynthetic (oxygenic) blue-green alga: Rivularia (Rivulariaceae, Nostocales, Cyanophyta).

Keywords

Lower Cambrian Carbonate Precipitation Carbonate Concretion Calcareous Tube Aragonite Needle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey A, Bisalputra T (1970) A preliminary account of the application of thin sectioning, freeze-etching, and scanning electron microscopy to the study of coralline algae. Phycologia 9: 83–101CrossRefGoogle Scholar
  2. Böhm EL (1973) Composition and calcium binding properties of the water soluble polysaccharides in the calcareous alga Halimeda opuntia (L.) (Chlorophyta, Udoteaceae). Int Rev Gesamten Hydrobiol 58: 117–126CrossRefGoogle Scholar
  3. Böhm EL, Goreau TF (1973) Rates of turnover and net accretion of calcium and the role of calcium binding polysaccharides during calcification in the calcareous alga Halimeda opuntia (L.). Int Rev Gesamten Hydrobiol 58: 723–740CrossRefGoogle Scholar
  4. Böhm L, Fütterer D, Kaminski E (1978) Algal calcification in some Codiaceae (Chlorphyta): ultra-structure and location of skeletal deposits. J Phycol 14: 486–493CrossRefGoogle Scholar
  5. Bornet E, Flahault C (1886) Revision des nostocacées hétérocystées. Ann Sci Nat Bot 7: 2, 323–373. Reprinted 1959, HR Engelmann, Weinheim/BergstraßeGoogle Scholar
  6. Borowitzka MA, Larkum AWD (1977) Calcification in the green alga Halimeda. I. An ultrastructure study of thallusdevelopment. J Phycol 13: 6–16Google Scholar
  7. Borowitzka MA, Larkum AWD, Nockolds CE (1974) A scanning electron microscope study of the structure and organization of the calcium carbonate deposits in algae. Phycologia 13: 195–203CrossRefGoogle Scholar
  8. Davies GR (1970) Algal-laminated sediments, Gladstone Embayment, Shark Bay, Western Australia. In: Logan BW (ed) Carbonate sedimentation and environments, Shark Bay, Western Australia. Am Assoc Petr Geol Mem 13: 169–205Google Scholar
  9. Degens ET (1976) Molecular mechanisms on carbonate, phosphate, and silica deposition in the living cell. Top Curr Chem 64: 1–112CrossRefGoogle Scholar
  10. Doemel WN, Brock TD (1974) Bacterial stromatolites: origin of laminations. Science 184: 1083–1085CrossRefGoogle Scholar
  11. Doolittle WF (1979) The cyanobacterial genome, its expression, and the control of that expression. In: Morris G, Rose JA (eds) Advances in microbial physiology, vol 20. Academic Press, London New York, pp 1–102Google Scholar
  12. Edhorn ASt (1973) Further investigations of fossils from the Animikie, Thunder Bay, Ontario. Proc Geol Assoc Can 25: 37–66Google Scholar
  13. Edhorn ASt, Anderson MM (1977) Algal remains in the Lower Cambrian Bonavista Formation, Conception Bay, Southeastern Newfoundland. In: Flügel E (ed) Fossil algae. Springer, Berlin Heidelberg New YorkGoogle Scholar
  14. Fay P (1973) The heterocyst. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell Scientific Publications, Oxford, pp 238–259Google Scholar
  15. Flajs G (1977) Skeletal structures of some calcifying algae. In: Flügel E (ed) Fossil algae. Springer, Berlin Heidelberg New York, pp 225–231Google Scholar
  16. Frémy P (1934) Cyanophycées des côtes d’Europe. Mem Soc Nat Sci Nat Mat Cherbourg 41: 1–234Google Scholar
  17. Freytet P, Plaziat JC (1965) Importance des constructions algaires dues à des Cyanophycées dans les formations continentales du Crétacé supérieur et de l’Éocène du Languedoc. Soc Géol Fr Bull 7: 679–694Google Scholar
  18. Gebelein CD (1969) Distribution, morphology, and accretion rate of Recent subtidal algal stromatolites, Bermuda. J Sediment Petrol 39: 49–69Google Scholar
  19. Geitler L (1932) Cyanophyceae. Rabenh Kryptogamenfl, vol 14. Akad Verlagsges, Leipzig, pp 1–1196. Reprinted 1971, Johnson Reprint Corp, New York LondonGoogle Scholar
  20. Geitler L (1960) Schizophyceen. In: Zimmermann W, Ozenda P (eds) Handbuch der Pflanzenanatomie, vol VI/1. Borntraeger, Berlin Stuttgart, pp 1–131Google Scholar
  21. Golubic S (1973) The relationship between blue-green algae and carbonate deposits. In: Carr N, Whitton BA (eds) The biology of blue-green algae. Blackwell Scientific Publications, Oxford, pp 434–472Google Scholar
  22. Golubic S (1976) Organisms that build stromatolites. In: Walter MR (ed) Stromatolites, developments in sedimentology, vol 20. Elsevier, Amsterdam Oxford New York, pp 113–126Google Scholar
  23. Golubic S, Awramik SM (1974) Microbial comparison of stromatolite environments: Shark Bay, Persian Gulf, and the Bahamas. Geol Soc Am Abstr Progr, 1974 Annu Meet 6: 7, 759–760Google Scholar
  24. Golubic S, Baghoorn ES (1977) Interpretation of microbial fossils with special reference to the Precambrian. In: Flügel E (ed) Fossil algae. Springer, Berlin Heidelberg New York, pp 1–14Google Scholar
  25. Golubic S, Fischer AG (1975) Ecology of calcareous nodules forming in Little Connestoga Creek near Lancaster, Pennsylvania. Verh Int Ver Limnol 19: 2315–2323Google Scholar
  26. Golubic S, Focke JW (1978) Phormidium hendersonii Howe: identity and significance of a modern stromatolite building microorganism. J Sediment Petrol 48: 751–764Google Scholar
  27. Golubic S, Marcenko E (1965) Über Konvergenzerscheinungen bei Standortsformender Blaualgen unter extremen Lebensbedingungen. Schweiz Z Hydrol 27: 207–217CrossRefGoogle Scholar
  28. Golubic S, Schneider J (1979) Carbonate dissolution. In: Trudinger PA, Swaine DJ (eds) Biogeo-chemical cycling of mineral-forming elements. Studies in environmental sciences, 3. Elsevier, Amsterdam Oxford New York, pp 107–129CrossRefGoogle Scholar
  29. Golubic S, Krumbein WE, Schneider J (1979) The carbon cycle. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier, Amsterdam Oxford New York, pp 29–45CrossRefGoogle Scholar
  30. Grüninger W (1965) Rezente Kalktuffbildung im Bereich der Uracher Wasserfalle. Abh Karst-Höhlenk,Reihe E 2: 1–113Google Scholar
  31. Horodyski RJ (1977) Lyngbya mats at Laguna Mormona, Baja California, Mexico: comparison with Proterozoic stromatolites. J Sediment Petrol 47: 1305–1320Google Scholar
  32. Horodyski RJ, Vonder Haar SP (1975) Recent calcareous stromatolites from Laguna Mormona (Baja California) Mexico. J Sediment Petrol 45: 894–906Google Scholar
  33. Irion G, Müller G (1968) Mineralogy, petrology, and chemical composition of some calcareous tufa from the Schwäbische Alb, Germany. In: Müller G, Friedman GM (eds) Carbonate sedimentology in central europe. Springer, Berlin Heidelberg New York, pp 157–171Google Scholar
  34. Jones FG, Wilkinson BH (1978) Structure and growth of lacustrine pisoliths from Recent Michigan marl lakes. J Sediment Petrol 48: 1103–1110Google Scholar
  35. Korde KB (1958) Systematic of fossil cyanophytes. Mater Osnov Paleont SSSR 2: 99–111 (in Russian)Google Scholar
  36. Lucas WC, Smith FA (1973) The formation of alkaline and acid regions at the surface of Chora corallina cells. J Exp Bot 24: 1–14CrossRefGoogle Scholar
  37. Manton I, Sutherland J, McCully M (1976) Fine structural observations on coccolithophorids from South Alaska in the genus Pappisphaera Tangen and Pappomonas Manton & Oates. Br Phycol J 11:225–238CrossRefGoogle Scholar
  38. Monty CLV (1965) Recent algal stromatolites in the Windward Lagoon, Andros Islands, Bahamas. Ann Soc Geol Belg Bull 88: 269–276Google Scholar
  39. Monty CLV (1967) Distribution and structure of Recent stromatolitic algal mats, eastern Andros Island, Bahamas. Ann Soc Geol Belg Bull 90: 55–100Google Scholar
  40. Monty CLV (1972) Recent algal stromatolitic deposits, Andros Island, Bahamas. Prelim Rep Geol Rundsch 61: 2, 742–783CrossRefGoogle Scholar
  41. Monty CLV (1973) Precambrian background and Phanerozoic history of stromatolitic communities, an overview. Ann Soc Geol Belg Bull 96: 585–624Google Scholar
  42. Monty CLV (1976) The origin and development of cryptalgal fabrics. In: Walter MR (ed) Stromatolites, development in sedimentology, vol 20. Elsevier, Amsterdam Oxford New York, pp 193–249Google Scholar
  43. Monty CLV, Hardie LA (1976) The geological significance of the freshwater blue-green algal calcareous marsh. In: Walter MR (ed) Stromatolites, development in sedimentology, vol 20. Elsevier, Amsterdam Oxford New York, pp 447–477Google Scholar
  44. Pentecost A (1978) Calcification and photosynthesis in Corallina officinalis L. using the 14CO2 method. Br Phycol J 13: 383–390CrossRefGoogle Scholar
  45. Pienaar RN (1969) The fine structure of Hymenomonas (Cricosphaera) cart erne. II. Observations on scale and coccolith production. J Phycol 5: 321–331CrossRefGoogle Scholar
  46. Riding R (1977) Skeletal stromatolites. In: Flügel E (ed) Fossil algae. Springer, Berlin Heidelberg New York, pp 57–60Google Scholar
  47. Schneider J (1977) Carbonate construction and decomposition by epilithic and endolithic microorganisms in salt- and freshwater. In: Flügel E (ed) Fossil algae. Springer, Berlin Heidelberg New York, pp 248–260Google Scholar
  48. Schopf JW (1968) Microflora of the Bitter Springs Formation, Late Precambrian, central Australia. J Paleontol 42: 651–688Google Scholar
  49. Schopf JW, Black JM (1971) New microorganisms from the Bitter Springs Formation (Late Precambrian) of the North-central Amadeus Basin, Australia. J Paleontol 45: 925–961Google Scholar
  50. Stanier RY, Cohen-Baziere G (1977) Phototrophic prokaryotes: the Cyanobacteria. Ann Rev Microbiol 31: 224–274CrossRefGoogle Scholar
  51. Vologdin AG, Korde KB (1965) Several species of ancient Cyanophyta and their coenoses. Dokl Akad Nauk SSSR 164: 429–432Google Scholar
  52. Wallner J (1935) Zur Kenntnis der Kalkbildung in der Gattung Rivularia. Beih Bot Zentralbl B 54: 151–155Google Scholar
  53. Walter MR, Bould J, Brock TD (1972) Siliceous algal and bacterial stromatolites in hot spring and geyser effluents of Yellowstone National Park. Science 178: 402–405CrossRefGoogle Scholar
  54. Weiner S, Hood L (1975) Soluble protein of the organic matrix of mollusc shells: a potential template for shell formation. Science 190: 987–989CrossRefGoogle Scholar
  55. Wilbur KM, Collinvaux LH, Watabe N (1969) Electron microscope study of calcification in the alga Halimeda (order Siphonales) Phycologia 8: 27–35CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • S. Golubic
  • S. E. Campbell
    • 1
  1. 1.Department of BiologyBoston UniversityBostonUSA

Personalised recommendations