The Crenation of Lipid Bilayers and of the Membrane of the Human Red Blood Cell

  • F. R. N. Nabarro
  • A. T. Quintanilha
  • K. Hanson
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 11)

Abstract

Phospholipid bilayers in an aqueous medium consist of two sheets of long phospholipid molecules, the polar heads in each sheet, usually negatively charged, being in contact with the aqueous medium, and the ends of the fatty-acid chains in one monolayer lying close to the corresponding ends in the other layer (e.g.[1]). The two layers may be identical, yielding a symmetrical bilayer, or different, yielding an asymmetric bilayer. Biological membranes are usually asymmetric, and contain much non-phospholipid material such as cholesterol (which is closely associated with the phospholipid molecules) and proteins which may be disposed in various ways with respect to the two phospholipid layers. In membranes with a high metabolic activity, these proteins are abundant, and probably contribute largely to the structural properties of the membrane. The red blood cell has a very low metabolic level (MARTIN and FUHRMAN [2] show an extremely low oxygen consumption, but the red cell also performs anaerobic glycolysis), and there is only one protein molecule for every 90 molecules of phospholipid or cholesterol (though the masses of protein and lipid are roughly equal) [3(p.27), 4]. The total number of phospholipid and cholesterol molecules in one membrane is about 5 × 108 (e.g.[5]). The protein spectrin, which is not found in other cells, forms some kind of network on the cytoplasmic side of the membrane [6,7].

Keywords

Cholesterol Entropy Glycerol Shrinkage Choline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.J.Quinn: The Molecular Biology of Cell Membranes (Macmillan, London 1976)Google Scholar
  2. 2.
    A.W.Martin and F.A.Fuhrman: Physiol.Zool. 28, 18–34 (1955)Google Scholar
  3. 3.
    A.C.Burton: Physiology and Biophysics of the Circulation, 2nd ed. (Year Book Medical Publishers, Chicago 1972)Google Scholar
  4. 4.
    R.B.Pennell: In The Red Blood Cell, ed. by D.McN.Surgenor, 2nd ed., Vol. 1 (Academic Press, New York 1974) pp.93–146Google Scholar
  5. 5.
    S.B.Shohet and S.E.Lux: In Hematology of Infancy and Childhood (W.B.Saunders Co., Philadelphia 1974) Chap. 6Google Scholar
  6. 6.
    V.T. Marchesi, E.Steers, T.W.Tillock and S.C.Marchesi: In Red Cell. Membrane, ed. by G.A. Jamieson and T.J.Greenwalt (J.B.Lippincott, Philadelphia 1969) pp.117–130.Google Scholar
  7. 7.
    R.S.Weinstein: ibid. pp.36–76Google Scholar
  8. 8.
    E.A.Evans and P.L.La Celle: Blood 45, 29–43 (1975)Google Scholar
  9. 9.
    E.A.Evans, R.Waugh and C.Melnik: Biophys.J. 16, b85–595 (1976)Google Scholar
  10. 10.
    E.A.Evans and R.M.Hochmuth: In Current Topics in Membranes and Transport, Vol.10 (Academic Press, New York) in the pressGoogle Scholar
  11. 11.
    W.Helfrich: Z.Naturforsch. 28c, 693–703 (1973)Google Scholar
  12. 12.
    F.Brochard and J.F.Lennon: J.Phys. (Paris) 36, 1035–1047 (1975)CrossRefGoogle Scholar
  13. 13.
    R.M.Servuss, W.Harbich and W.Helfrich: Biochim.Biophys.Acta 436, 900–903 (1976)CrossRefGoogle Scholar
  14. 14.
    E.Ponder: Hemolysis and Related Phenomena (Grune and Stratton, New York 1948)Google Scholar
  15. 15.
    G. Brecher and M.Bessis: Blood 40, 333–344 (1972)Google Scholar
  16. 16.
    B.Chailley, R.I.Weed, R.F Leblond and J.Maigné: Nouv.Rev.Franç. Hematol. 13, 71–87 (1973)Google Scholar
  17. 17.
    J.T.Penniston and D.E.Green: Arch.Biochem.Biophys. 128, 339–350 (1968)CrossRefGoogle Scholar
  18. 18.
    B.Deuticke: Biochim.Biophys.Acta 163, 494–500 (1968)CrossRefGoogle Scholar
  19. 19.
    M.P.Sheetz and S.J.Singer: Proc.Nat.Acad.Sci.USA 71, 4457–4461 (1974)ADSCrossRefGoogle Scholar
  20. 20.
    Y.E.Rahman, E.A.Cerny and C.Peraino: Biochim.Biophys.Acta 321, 526–535 (1973)Google Scholar
  21. 21.
    Y.E.Rahman, B.J.Wright and E.A.Cerny: Mech.Ageing Devel. 2, 151–162 (1973)CrossRefGoogle Scholar
  22. 22.
    L.Weiss: J.Biophys.Biochem.Cytology 3, 599–610 (1957)CrossRefGoogle Scholar
  23. 23.
    E.A. Evans: Biophys.J. 14, 923–931 (1974)ADSCrossRefGoogle Scholar
  24. 24.
    F.R.N.Nabarro and J.Kostlan: J.Appl.Phys. 49, 5445–5448 (1978)ADSCrossRefGoogle Scholar
  25. 25.
    W.Helfrich and H.J.Deuling: J.Phys. (Paris) 36-C1, 327–329 (1975)Google Scholar
  26. 26.
    P.Seeman: Pharmacolog.Revs. 24, 583–655 (1972)Google Scholar
  27. 27.
    N.Mohandas and C. Féo: Blood Cells 1, 375–384 (1975)Google Scholar
  28. 28.
    E.A.Evans: Biophys.J. 13, 941–954 (1973)ADSCrossRefGoogle Scholar
  29. 29.
    D.Allan and R.H.Michell: Nature, Lond. 258, 348–349 (1975)ADSCrossRefGoogle Scholar
  30. 30.
    D.Allan, M.M.Billah, J.B.Finean and R.H.Michell: Nature, Lond. 261, 58–60 (1976)ADSCrossRefGoogle Scholar
  31. 31.
    H.U.Lutz, Shin-Chan Lui and J.Palek: J.Cell.Biology 73, 548–560 (1977)CrossRefGoogle Scholar
  32. 32.
    E.A.Evans and P.F.Leblond: Biorheology 10, 393–404 (1973)Google Scholar
  33. 33.
    A.W.L.Jay: Biophys.J. 15, 205–222 (1975)ADSCrossRefGoogle Scholar
  34. 34.
    W.Helfrich: Z.Naturforsch. 29c, 510–515 (1974)Google Scholar
  35. 35.
    H.S.Hendrickson: J.Lipid Res. 17, 393–398 (1976)MathSciNetGoogle Scholar
  36. 36.
    J.R.Trudell: Biochim.Biophys.Acta 470, 509–510 (1977)CrossRefGoogle Scholar
  37. 37.
    H.J.Deuling and W.Helfrich: Blood Cells 3, 713–720 (1977)Google Scholar
  38. 38.
    Reuven Yagil: private communicationGoogle Scholar
  39. 39.
    B.Maggio and J.A.Lucy: Biochem.J. 149, 597–608 (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • F. R. N. Nabarro
    • 1
    • 2
  • A. T. Quintanilha
    • 1
  • K. Hanson
    • 1
  1. 1.Lawrence Berkeley LaboratoryUniversity of CaliforniaUSA
  2. 2.University of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations