Skip to main content

Biochemical Effects of Anxiolytics

  • Chapter
Psychotropic Agents

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 55 / 2))

Abstract

Anxiolytic drugs, also called “minor tranquillizers” or anti-anxiety drugs, are substances which reduce pathological anxiety, tension and agitation without therapeutic effects on cognitive or perceptual processes. Most of these drugs are also potent anticonvulsants, sedatives and hypnotics. Several classes (groups) of drugs possess anxiolytic properties. The most important group is the benzodiazepines, which are remarkably non-toxic, much less toxic than the barbiturates. Meprobamate is an anxiolytic drug much used in the 1950s and 1960s but without a known mechanism of action at the biochemical or synaptic level (Berger, 1975). Miscellaneous drugs, such as ß-blockers, and some neuroleptic and antidepressant drugs possess anxiolytic properties in some clinical situations, but are not considered true anxiolytic drugs. The present chapter will focus on the benzodiazepines and emphasis will be given to biochemical effects pertinent to their mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnt, J., Scheel-Krüger, J.: GABA-ergic and glycinergic mechanisms within the Substantia Nigra. Pharmacological specificity of dopamine dependent counterlateral turning behavior and interaction with other neurotransmitters. Psychopharmacology 62, 267–277 (1979)

    PubMed  CAS  Google Scholar 

  • Bartholini, G., Keller, H., Pieri, L., Pletscher, A.: Diazepam and cerebral dopamine. In: The benzodiazepines. Garattini, S., Mussini, E., Randall, L.O. (eds.), pp. 235–240. New York: Raven 1973

    Google Scholar 

  • Beaumont, K., Chilton, W., Yamamura, H.I., Enna, S.J.: Muscimol binding in rat brain: Association with synaptic GABA receptors. Brain Res. 148, 153–162 (1978)

    PubMed  CAS  Google Scholar 

  • Beer, B., Chasin, M., Clody, D.E., Vogel, J.R., Horovitz, Z.P.: Cyclic adenosine monophosphate phosphodiesterase in brain: Effect on anxiety. Science 176, 428–430 (1972)

    PubMed  CAS  Google Scholar 

  • Bennett, J.P., Snyder, S.H.: Stereospecific binding of D-lysergic acid diethylamide (LSD) to brain membranes: Relationship to serotonin receptors. Brain Res. 94, 523–544 (1975)

    PubMed  CAS  Google Scholar 

  • Berger, F.M.: The pharmacology of antianxiety (anxiolytic) agents. In: Psychopharmacological treatment. Denber, H.C.B. (ed.), pp. 135–156. New York: Dekker 1975

    Google Scholar 

  • Bernasconi, R., Martin, P.: Effects of diazepam and baclofen on the GABA turnover rate in various mouse brain regions. Arch. Pharmacol. [Suppl.] 302, R58 (1978)

    Google Scholar 

  • Biggio, G., Casu, M., Corda, M.G., Vernaleone, F., Gessa, G.L.: Effect of muscimol, a GABA-mimetic agent, on dopamine metabolism in the mouse brain. Life Sci. 21, 525–532 (1977 a)

    PubMed  CAS  Google Scholar 

  • Biggio, G., Guidotti, A.; Regulation of cyclic GMP in cerebellum by a striatal dopaminergic mechanism. Nature 265, 240–242 (1977)

    PubMed  CAS  Google Scholar 

  • Biggio, G., Brodie, B.B., Costa, E., Guidotti, A.: Mechanisms by which diazepam muscimol, and other drugs change the content of cGMP in cerebellar cortex. Proc. Natl. Acad. Sci. USA 74, 3592–3596 (1977 b)

    PubMed  CAS  Google Scholar 

  • Biggio, G., Corda, M.G., Casu, M., Gessa, G.L.: Kainic acid-induced lesion of dopaminergic target cells in the striatum: Consequences on the dynamics of cerebellar cGMP. Naunyn-Schmiedebergs Arch. Pharmacol. 304, 5–7 (1978)

    CAS  Google Scholar 

  • Billingsley, M.L., Kubena, R.K.: The effects of naloxone and Picrotoxin on the sedative and anticonflict effects of benzodiazepines. Life Sci. 22, 897–906 (1978)

    PubMed  CAS  Google Scholar 

  • Biswas, B., Carlsson, A.: On the mode of action of diazepam on brain catecholamine metabolism. Naunyn Schmiedebergs Arch. Pharmacol. 303, 73–78 (1978)

    CAS  Google Scholar 

  • Blanchard, J.C., Boireau, A., Jolon, L.: In Vitro and in Vivo Inhibition by zopiclone of benzodiazepine binding to rodent brain receptors. Life Sci. 24, 2417–2420 (1979)

    PubMed  CAS  Google Scholar 

  • Boakes, R.J., Martin, I.L., Mitchell, P.R.: Burst firing of cerebellar Purkinje neurones induced by benzodiazepines. Neuropharmacology 16, 711–713 (1977)

    PubMed  CAS  Google Scholar 

  • Bolme, P., Fuxe, K.: Possible involvement of GABA mechanisms in central cardiovascular and respiratory control. Studies on the interaction between diazepam, picrotoxin and Clonidine. Med. Biol. 55, 301–309 (1977)

    PubMed  CAS  Google Scholar 

  • Bosmann, H.B., Case, K.R., DiStefano, P.: Diazepam receptor characterization: specific binding of a benzodiazepine to macromolecules in various areas of rat brain. FEBS Lett. 82, 368–372 (1977)

    PubMed  CAS  Google Scholar 

  • Bosmann, H.B., Penney, D.P., Case, K.R., DiStefano, P., Averill, K.: Diazepam receptor: specific binding of [3H]diazepam and [3H]flunitrazepam to rat brain subfractions. FEBS Lett. 87, 199–202 (1978)

    PubMed  CAS  Google Scholar 

  • Bourgoin, S., Héry, F., Ternaux, J.P., Hamon, M.: Effects of benzodiazepines on the binding of tryptophan in serum. Consequences on 5-hydroxyindoles concentrations in the rat brain. Psychopharmacol. Commun. 1, 209–216 (1975)

    PubMed  CAS  Google Scholar 

  • Bowery, N.G., Dray, A.: Barbiturate reversal of amino acid antagonism produced by consul-sant agents. Nature 264, 276–278 (1976)

    PubMed  CAS  Google Scholar 

  • Bowery, N.G., Dray, A.: Reversal of the action of amino acid antagonists by barbiturates and other hypnotic drugs. Br. J. Pharmacol. 63, 197–215 (1978)

    PubMed  CAS  Google Scholar 

  • Braestrup, C., Squires, R.F.: Specific benzodiazepine receptor in rat brain characterized by high-affinity 3H-diazepam binding. Proc. Natl. Acad. Sci. USA 74, 3805–3809 (1977)

    PubMed  CAS  Google Scholar 

  • Braestrup, C., Albrechtsen, R., Squires, R.F.: High densities of benzodiazepine receptors in human cortical areas. Nature 269, 702–704 (1977)

    PubMed  CAS  Google Scholar 

  • Braestrup, C., Squires, R.F.: Pharmacological characterization of benzodiazepine receptors in the brain. Eur. J. Pharmacol. 78, 263–270 (1978 a)

    PubMed  CAS  Google Scholar 

  • Braestrup, C., Squires, R.F.: Brain specific benzodiazepine receptors. Br. J. Psychiatry 133, 249–260 (1978 b)

    PubMed  CAS  Google Scholar 

  • Braestrup, C., Squires, R.F., Bock, E., Torp Pedersen, C., Nielsen, M.: Benzodiazepine receptors: Cellular and subcellular localization in brain. Adv. Pharm. Ther. 7, 173–185 (1978 a)

    Google Scholar 

  • Braestrup, C., Nissen, C., Squires, R.F., Schousboe, A.: Lack of brain-specific benzodiazepine receptors on mouse primary astroglial cultures, which specifically bind haloperidol. Neurosci. Lett. 9, 45–49 (1978 b)

    PubMed  CAS  Google Scholar 

  • Braestrup, C., Nielsen, M.: Ontogenetic development of benzodiazepine receptors in the rat brain. Brain Res. 147, 170–173 (1978)

    PubMed  CAS  Google Scholar 

  • Braestrup, C., Nielsen, M., Squires, R.F.: No changes in rat benzodiazepine receptors after withdrawal from continuous treatment with lorazepam and diazepam. Life Sci. 24, 347–350 (1979 a)

    CAS  Google Scholar 

  • Braestrup, C., Nielsen, M., Squires, R.F.: Neuronal localization of benzodiazepine receptors in cerebellum. Neurosci. Lett. 13, 219–224, (1979 b)

    PubMed  CAS  Google Scholar 

  • Braestrup, C., Nielsen, M., Nielsen, E.B., Lyon, M.: Benzodiazepine receptors in brain are affected by several different experimental stresses, the changes are small and not unidirectional. Psychopharmacologia, 65, 273–277 (1979 c)

    CAS  Google Scholar 

  • Braestrup, C., Nielsen, M., Krogsgaard-Larsen, P., Falch, E.: Partial agonists for brain GABA/benzodiazepine receptor complex. Nature 280, 331–333 (1979 d)

    PubMed  CAS  Google Scholar 

  • Braestrup, C., Nielsen, M., Olsen, C-E.: Urinary and brain ß-carboline-3-carboxylates as potent inhibitors of brain benzodiazepine receptors. Proc. Natl. Acad. Sci. USA 77, 2288–2292 (1980)

    PubMed  CAS  Google Scholar 

  • Briley, M.S., Langer, S.Z.: Influence of GABA receptor agonists and antagonist on the binding of 3H-diazepam to the benzodiazepine receptor. Eur. J. Pharmacol. 52, 129–132 (1978)

    PubMed  CAS  Google Scholar 

  • Brodersen, R., Sjödin, T., Sjöholm, I.: Independent binding of ligands to human serum albumin. J. Biol. Chem. 252, 5067–5072 (1977)

    PubMed  CAS  Google Scholar 

  • Brown, D.A., Constanti, A.: Interaction of pentobarbitone and γ-aminobutyric acid on mammalian sympathetic ganglion cells. Br. J. Pharmacol. 63, 217–224 (1978)

    PubMed  CAS  Google Scholar 

  • Burt, D.R., Creese, I., Snyder, S.H.: Properties of [3H] haloperidol and [3H]dopamine binding associated with dopamine receptors in calf brain membranes. Mol. Pharmacol. 12,800–812 (1976)

    PubMed  CAS  Google Scholar 

  • Bylund, D., Snyder, S.H.: Beta adrenergic receptor binding in membrane preparations from mammalian brain. Mol. Pharmacol. 12, 568–580 (1976)

    PubMed  CAS  Google Scholar 

  • Chang, R.S.L., Snyder, S.H.: Benzodiazepine receptors: Labeling in intact animals with [3H]flunitrazepam. Eur. J. Pharmacol. 48, 213–218 (1978)

    PubMed  CAS  Google Scholar 

  • Chase, T.N., Katz, R.I., Kopin, I.J.: Effect of diazepam on fate of intracisternally injected serotonin-C14. Neuropharmacology 9, 103–108 (1970)

    PubMed  CAS  Google Scholar 

  • Chéramy, A., Nieoullon, A., Glowinski, J.: Blockade of the picrotoxin-induced in vivo release of dopamine in the cat caudate nucleus by diazepam. Life Sci. 20, 811–816 (1977)

    PubMed  Google Scholar 

  • Chéramy, A., Nieoullon, A., Glowinski, J.: Gabaergic processes involved in the control of dopamine release from nigrostriatal dopaminergic neurons in the cat. Eur. J. Pharmacol. 48, 281–295 (1978)

    PubMed  Google Scholar 

  • Chieu, T.H., Rosenberg, H.C.: Reduced diazepam binding following chronic benzodiazepine treatment. Life Sci. 23, 1153–1158 (1978)

    Google Scholar 

  • Chieu, T.H., Rosenberg, H.C.: GABA receptor-mediated modulation of 3H-diazepam binding in rat cortex. Eur. J. Pharmacol. 56, 337–345 (1979)

    Google Scholar 

  • Choi, D.W., Farb, D.H., Fischbach, G.D.: Chlordiazepoxide selectively augments GABA action in spinal cord cell cultures. Nature 269, 342–344 (1977)

    CAS  Google Scholar 

  • Consolo, S., Ladinsky, H., Peri, G., Garattini, S.: Effect of central stimulants and depressant on mouse brain acetylcholine and choline levels. Eur. J. Pharmacol. 18, 251–255 (1972)

    PubMed  CAS  Google Scholar 

  • Consolo, S., Ladinsky, H., Peri, G., Garattini, S.: Effect of diazepam on mouse whole brain and brain area acetylcholine and choline levels. Eur. J. Pharmacol. 27, 266–268 (1974)

    PubMed  CAS  Google Scholar 

  • Consolo, S., Garattini, S., Ladinsky, H.: Action of the benzodiazepines on the cholinergic system. In: Mechanism of action of benzodiazepines. Costa, E., Greengard, P. (eds.), pp. 63–80. New York: Raven 1975

    Google Scholar 

  • Consolo, S., Ladinsky, H., Bianchi, S., Ghezzi, D.: Apparent lack of a dopaminergic-cholinergic link in the rat nucleus accumbens septi-tuberculum olfactorium. Brain Res. 135, 255–263 (1977)

    PubMed  CAS  Google Scholar 

  • Cook, L., Sepinwall, J.: Behavioral analysis of the effects and mechanisms of action of benzodiazepines. In: Mechanism of action of benzodiazepines. Costa, E., Greengard, P. (eds.), pp. 1–28. New York: Raven 1975

    Google Scholar 

  • Cook, L., Sepinwall, J.: Relationship of anticonflict activity of benzodiazepines to brain receptor binding, serotonin, and GABA. ACNP December 1978

    Google Scholar 

  • Cooper, B., Handin, R.I., Young, L.H., Alexander, R.W.: Agonist regulation of the human platelet α-adrenergic receptor. Nature 274, 703–706 (1978)

    PubMed  CAS  Google Scholar 

  • Corrodi, H., Fuxe, K., Lidbrink, P., Olson, L.: Minor tranquillizers, stress and central catecholamine neurons. Brain Res. 29, 1–16 (1971)

    PubMed  CAS  Google Scholar 

  • Costa, E., Guidotti, A., Mao, C.C., Suria, A.: New concepts on the mechanism of action of benzodiazepines. Life Sci. 17, 167–186 (1975 a)

    Google Scholar 

  • Costa, E., Guidotti, A., Mao, C.C.: Diazepam, cyclic nucleotides and amino acid neurotransmitters in rat cerebellum. In: Neuropsychopharmacology. Boissier, J.R., Hippius, H., Pichot, P. (eds.), pp. 849–856. Amsterdam: Excerpta Medica 1975 b

    Google Scholar 

  • Costa, E., Guidotti, A., Mao, C.C.: Evidence for involvement of GABA in the action of benzodiazepines. In: Mechanism of action of benzodiazepines. Costa, E., Greengard, P. (eds.), pp. 113–130. New York: Raven 1975c

    Google Scholar 

  • Costa, E., Guidotti, A., Toffano, G.: Molecular mechanisms mediating the action of diazepam on GABA receptors. Br. J. Psychiatry. 133, 239–248 (1978)

    PubMed  CAS  Google Scholar 

  • Costa, T., Rodbard, D., Pert, C.B.: The benzodiazepine receptor coupled to a chloride anionic channel. Nature 277, 315–317 (1979)

    PubMed  CAS  Google Scholar 

  • Curtis, D.R., Lodge, D., Johnston, G.A.R., Brand, S.J.: Central actions of benzodiazepines. Brain Res. 118, 344–347 (1976 a)

    Google Scholar 

  • Curtis, D.R., Game, C.J.A., Lodge, D.: Benzodiazepines and central glycine receptors. Br. J. Pharmacol. 56, 307–311 (1976 b)

    CAS  Google Scholar 

  • Curtis, D.R., Lodge, D.: Pentobarbitone enhancement of the inhibitory action of GABA. Nature 270, 543–544 (1977 a)

    Google Scholar 

  • Curtis, D.R., Lodge, D.: Effect of pentobarbitone on the inhibition of spinal interneurones, in the cat by glycine and GABA. J. Physiol. (Lond.) 272, 48P–49P (1977 b)

    Google Scholar 

  • DaPrada, M., Pletscher, A.: On the mechanism of chlorpromazine-induced changes of cerebral homovanillic acid levels. J. Pharm. Pharmacol. 18, 628–630 (1966)

    PubMed  Google Scholar 

  • Davidoff, R.A.: Diphenylhydantoin increases spinal presynaptic inhibition. Trans. Am. Neurol. Assoc. 97, 193–196 (1972)

    CAS  Google Scholar 

  • Davies, J., Polc, P.: Effect of a water soluble benzodiazepine on the responses of spinal neurones to acetylcholine and excitatory amino acid analogues. Neuropharmacology 17, 217–220 (1978)

    PubMed  CAS  Google Scholar 

  • DeBlas, A., Mahler, H.R.: Studies on nicotinic acetylcholine receptors in mammalian brain. Characterization of a microsomal subfraction enriched in receptor function for different neurotransmitters. J. Neurochem. 30, 563–577 (1978)

    PubMed  Google Scholar 

  • Deisz, R.A., Lux, H.D.: Diphenylhydantoin prolongs postsynaptic inhibition and ionto-phoretic GABA action in the crayfish stretch receptor. Neurosci. Lett. 5, 199–203 (1977)

    CAS  Google Scholar 

  • Dominic, J.A., Sinha, A.K., Barchas, J.D.: Effect of benzodiazepine compounds on brain amine metabolism. Eur. J. Pharmacol. 32, 124–127 (1975)

    PubMed  CAS  Google Scholar 

  • Domino, E.F., Wilson, A.E.: Psychotropic drug influcences on brain acetylcholine utilization. Psychopharmacology 25, 291–298 (1972)

    CAS  Google Scholar 

  • Doteuchi, M., Costa, E.: Pentylenetetrazol convulsions and brain catecholamine turnover rate in rats and mice receiving diphenylhydantoin or benzodiazepines. Neuropharmacology 12, 1059–1072 (1973)

    PubMed  CAS  Google Scholar 

  • Dray, A., Straughan, D.W.: Benzodiazepines: GABA and glycine receptors on single neurons in the rat medulla. J. Pharm. Pharmacol. 28, 314–315 (1976)

    PubMed  CAS  Google Scholar 

  • Eccles, J.C., Schmidt, R., Willis, W.D.: Pharmacological studies on presynaptic inhibition. J. Physiol. (Lond.) 168, 500–530 (1963)

    PubMed  CAS  Google Scholar 

  • Evans, R.H.: GABA-potentiating action of pentobarbitone on the isolated superior cervical ganglion of the rat. J. Physiol. (Lond.) 272, 49P-50P (1977)

    PubMed  CAS  Google Scholar 

  • Fennessy, M.R., Lee, J.R.: The effect of benzodiazepines on brain amines of the mouse. Arch. Int. Pharmacodyn. Ther. 197, 37–44 (1972)

    PubMed  CAS  Google Scholar 

  • Fernholm, B., Nielsen, M., Braestrup, C.,: Absence of brain specific benzodiazepine receptors in cyclostomes and elasmobranchs. Comp. Biochem. Pysiol. 62C, 209–211 (1979)

    CAS  Google Scholar 

  • Fernstrom, J.D., Shabshelowitz, H., Faller, D.V.: Diazepam increases 5-hydroxyindole concentrations in rat brain and spinal cord. Life Sci. 15, 1577–1584 (1974)

    PubMed  CAS  Google Scholar 

  • File, S.E., Hyde, J.R.G.: The effects of p-chlorophenylalanine and ethanolamine O-sulphate in an animal test of anxiety. J. Pharm. Pharmacol. 29, 735–738 (1977)

    PubMed  CAS  Google Scholar 

  • File, S.E., Velucci, S.V.: Studies on the role of ACTH and of 5-HT in anxiety using an animal model. J. Pharm. Pharmacol. 30, 105–110 (1978)

    PubMed  CAS  Google Scholar 

  • Fuxe, K., Agnati, L.F., Bolme, P., Hökfelt, T., Lidbrink, P., Ljungdahl, A, Mora, P. de la, Ögren, S.V.: The possible involvement of GABA mechanisms in the action of benzodiazepines on central catecholamine neurons. In: Mechanism of action of benzodiazepines. Costa, E., Greengard, P. (eds.), pp. 45–61. New York: Raven 1975

    Google Scholar 

  • Gähwiler, B.H.: Diazepam and chlordiazepoxide: powerful GABA antagonists in expiants of rat cerebellum. Brain Res. 107, 176–179 (1976)

    PubMed  Google Scholar 

  • Gale, K., Costa, E., Toffano, G., Hong, J.-S., Guidotti, A.: Evidence for a role of nigral γ-aminobutyric acid and substance P in the haloperidol-induced activation of striatal tyrosine hydroxylase. J. Pharmacol. Exp. Ther. 206, 29–37 (1978)

    PubMed  CAS  Google Scholar 

  • Gallager, D.W.: Benzodiazepines: Potentiation of a GABA inhibitory response in the dorsal raphe nucleus. Eur. J. Pharmacol. 49, 133–143 (1978)

    PubMed  CAS  Google Scholar 

  • Gallager, D.W., Thomas, J.W., Tallman, F.: Effect of GABAergic drugs on benzodiazepine binding site sensitivity in rat cerebral cortex. Biochem. Pharmac. 27, 2745–2749 (1978)

    CAS  Google Scholar 

  • Gey, K.F.: Effect of benzodiazepines on carbohydrate metabolism in rat brain. In: The Benzodiazepines. Garattini, S., Mussini, E., Randall, L.O. (eds.), pp. 243–255. New York: Raven 1973

    Google Scholar 

  • Giarman, N.J., Pepeu, G.: Drug-induced changes in brain acetylcholine. Br. J. Pharmacol. 19, 226–234 (1962)

    CAS  Google Scholar 

  • Govoni, S., Fresia, P., Spano, P.F., Trabucchi, M.: Effect of desmethyldiazepam and chlordes-methyldiazepam on 3′,5′-cyclic guanosine monophosphate levels in rat cerebellum. Psycho-pharmacology 50, 241–244 (1976)

    CAS  Google Scholar 

  • Guidotti, A.: Synaptic mechanisms in the action of benzodiazepines. In: Psychopharmacology: A Generation of Progress. Lipton, M.A., DiMascio, A., Killam, K.F. (eds.), pp. 1349–1357. New York: Raven 1978

    Google Scholar 

  • Guidotti, A., Toffano, G., Costa, E.: An endogenous protein modulates the affinity of GABA and benzodiazepine receptors in rat brain. Nature 275, 553–555 (1978 a)

    PubMed  CAS  Google Scholar 

  • Guidotti, A., Toffano, G., Costa, E.: A molecular mechanism for the action of benzodiazepines on GABA receptors. In: GABA-Neurotransmitters. Krogsgaard-Larsen, P., Scheel-Krü-ger, J., Kofod, H. (eds.), pp. 406–419, Copenhagen: Munksgaard 1978 b

    Google Scholar 

  • Haefely, W., Kulcsár, Möhler, Pieri, L., Polc, P., Schaffner, R.: Possible involvement of GABA in the central actions of benzodiazepines. In: Mechanism of action of benzodiazepines. Costa, E., Greengard, P. (eds.), pp. 131–151. New York: Raven 1975

    Google Scholar 

  • Haefely, W., Polc, P., Schaffner, R., Keller, H.H., Pieri, I., Möhler, H.: Facilitation of GABAergic transmission by drugs. In: GABA-Neutrotransmitters. The Alfred Benzon Symposium. Krogsgaard-Larsen, P., Scheel-Krü-ger, J., Kofod, H. (eds.), pp. 357–375. Copenhagen: Munksgaard 1978

    Google Scholar 

  • Harris, M., Hopkin, J. M., Neal, M.J.: Effect of centrally acting drugs on the uptake of γ-aminobutyric acid (GABA) by slices of rat cerebral cortex. Br. J. Pharmacol. 47, 229–239 (1973)

    PubMed  CAS  Google Scholar 

  • Henn, F.A., Henke, D.J., Cellular localization of [3H]-diazepam receptors. Neuropharmacology 17, 985–988 (1978)

    PubMed  CAS  Google Scholar 

  • Horovitz, Z.P., Beer, B., Clody, D.E., Vogel, J.R., Chasin, M.: Cyclic AMP and anxiety. Psy-chosomatics 13, 85–92 (1972)

    CAS  Google Scholar 

  • Hunt, P., Raynaud, J.-P.: Benzodiazepine activity: is interaction with the glycine receptor, as evidenced by displacement of strychnine binding, a useful criterion? J. Pharm. Pharmacol. 29, 442–444 (1979)

    Google Scholar 

  • Iversen, L.L., Johnston, G.A.R.: GABA uptake in rat central nervous system: comparison of uptake in slices and homogenates and the effects of some inhibitors. J. Neurochem. 18, 1939–1950 (1971)

    PubMed  CAS  Google Scholar 

  • Jenner, P., Chadwick, D., Reynolds, E.H., Marsden, C.D.: Altered 5-HT metabolism with clonazepam, diazepam and dipenylhydantoin. J. Pharm. Pharmacol. 27, 707–710 (1975)

    PubMed  CAS  Google Scholar 

  • Juhasz, L., Dairman, W.: Effect of sub-acute diazepam administration in mice on the subsequence ability of diazepam to protect against metrazol and bicuculline induced convulsions. Fed. Proc. 36, 377 (1977)

    Google Scholar 

  • Karasawa, T., Furukawa, K., Ochi, Y., Shimizu, M.: Monoamine metabolites as indicators of the effect of centrally acting drugs on monoamine release in rat brain. Arch. int. Pharma-codyn. 231, 261–273 (1978)

    CAS  Google Scholar 

  • Karobath, M., Lippitsch, M.: THIP and isoguvacine are partial agonists of GABA-stimulated benzodiazepine receptor binding. Eur. J. Pharmacol. 58, 485–488 (1979)

    PubMed  CAS  Google Scholar 

  • Karobath, M., Sperk, G.: Stimulation of benzodiazepine receptor binding by y-aminobutyric acid. Proc. Natl. Acad. Sci. USA 76, 1004–1006 (1979)

    PubMed  CAS  Google Scholar 

  • Karobath, M., Placheta, P., Lippitsch, M., Krogsgaard-Larsen, P.: Is stimulation of benzodiazepine receptor binding mediated by a novel GABA receptor? Nature 278, 748–749 (1979)

    PubMed  CAS  Google Scholar 

  • Keller, H.H., Schaffner, R., Haefely, W.: Interaction of benzodiazepines with neuroleptics at central dopamine neurons. Naunyn-Schmiedebergs Arch. Pharmacol. 294, 1–7 (1976)

    CAS  Google Scholar 

  • Kozhechkin, S.N., Ostrovskaya, R.U.: Are benzodiazepines GABA antagonists? Nature 269, 72–73 (1977)

    PubMed  CAS  Google Scholar 

  • Ladinsky, H., Consolo, S., Peri, G., Garattini, S.: Increase in mouse and rat brain acetylcholine levels by diazepam. In: The Benzodiazepines. S. Garattini, E. Mussini, Randall, L.O. (eds.), pp. 241–242. New York: Raven Press 1973

    Google Scholar 

  • Ladinsky, H., Consolo, S., Bellantuono, C, Garattini, S.: Interaction of benzodiazepines and chemical mediators in the brain. To be published in Handbook of Biological Psychiatry, Rafaelsen and Lader (eds.) New York: Marcel Dekker, Inc. 1979 (in press).

    Google Scholar 

  • Lidbrink, P., Corrodi, H., Fuxe, K., Olson, L.: Barbiturates and meprobamate: decreases in catecholamine turnover of central dopamine and noradrenaline neuronal systems and the influcence of immobilization stress. Brain Res. 45, 507–524 (1972)

    PubMed  CAS  Google Scholar 

  • Lidbrink, P., Corrodi, H., Fuxe, K., Olson, L.: The effects of benzodiazepines meprobamate, and barbiturates on central monoamine neurons: In: The Benzodiazepines, pp. 203–220. Garattini, S., Mussini, E., Randall, L.O. (eds.). New York: Raven Press 1973

    Google Scholar 

  • Lidbrink, P., Corrodi, H., Fuxe, K.: Benzodiazepines and barbiturates: Turnover changes in central 5-hydroxytryptamine pathways. Eur. J. Pharmacol. 26, 35–40 (1974)

    PubMed  CAS  Google Scholar 

  • Lingjaerde, O.: Effect of benzodiazepines on uptake and efflux of serotonin in human blood patelets in vitro. In: The benzodiazepines. Garattini, S., Mussini, E., Randall, L.O. (eds.), pp. 225–233. New York: Raven 1973

    Google Scholar 

  • Lippa, A.S., Regan, B.: Additional studies on the importance of glycine and GABA in mediating the actions of benzodiazepines. Life Sci. 21, 1779–1784 (1977)

    PubMed  CAS  Google Scholar 

  • Lippa, A.S., Critchett, D., Sano, M.C., Kiepner, C.A., Greenblatt, E.N., Coupet, J., Beer, B.: Benzodiazepine Receptors: Cellular and Behavioral Characteristics. Pharmacol. Biochem. Behav. 10, 831–843 (1979)

    PubMed  CAS  Google Scholar 

  • Lippa, A.S., Sano, M.C., Coupet, J., Beer, B.: Evidence that benzodiazepine receptors reside on cerebellar purkinje cells: Studies with “nervous” mutant mice. Life Sci. 23, 2213–2218 (1978)

    PubMed  CAS  Google Scholar 

  • Löscher, W., Frey, H.-H.: Effect of convulsant and anticonvulsant agents on level and metabolism of y-aminobutyric acid in mouse brain. Naunyn-Schmiedebergs Arch. Pharmacol. 296, 263–269 (1977)

    Google Scholar 

  • Lundy, P.M., Magor, G.F.: Cyclic GMP concentrations in cerebellum following organophos-phate administration. J. Pharm. Pharmacol. 30, 251–252 (1978)

    PubMed  CAS  Google Scholar 

  • MacDonald, R., Barker, J.L.: Benzodiazepines specifically modulate GABA-mediated postsynaptic inhibition in cultured mammalian neurones. Nature 277, 563–564 (1978)

    Google Scholar 

  • Mackerer, C.R., Kochman, R.L.: Effects of cations and anions on the binding of [3H]-diazepam to rat brain. Proc. Soc. Exp. Biol. Med. 158, 393–397 (1978)

    PubMed  CAS  Google Scholar 

  • Mackerer, C.R., Kochman, R.L., Bierschenk, A., Bremner, S.S.: The binding of [3H] diazepam to rat brain. J. Pharmacol. Exp. Ther. 206, 405–413 (1978)

    PubMed  CAS  Google Scholar 

  • Mailman, R.B., Frye, G.D., Mueller, R.A., Breese, G.R.: Thyrotropin-releasing hormone reversal of ethanol-induced decrease in cerebellar cGMP. Nature 272, 832–833 (1978)

    PubMed  CAS  Google Scholar 

  • Maisov, N.I., Tolmacheva, N.S., Raevsky, K.S.: Liberation of 3H-gamma-aminobutyric acid (3H-GABA) from isolated nerve endings of the rat’s brain under the effect of psychotropic substances (in Russian). Farmakol. Toksikol. 39, 517–520 (1976)

    CAS  Google Scholar 

  • Mao, C.C., Guidotti, A., Costa, E.: The regulation of cyclic guanosine monophosphate in rat cerebellum: possible involvement of putative amino acid neurotransmitters. Brain Res. 79, 510–514 (1974a)

    PubMed  CAS  Google Scholar 

  • Mao, C.C., Guidotti, A., Costa, E.: Interactions between y-aminobutyric acid and guanosine cyclic 3′,5′-monophosphate in rat cerebellum. Mol. Pharmacol. 10, 736–745 (1974b)

    CAS  Google Scholar 

  • Mao, C.C., Guidotti, A., Costa,: Inhibition by diazepam of the tremor and the increase of cerebellar cGMP content elicited by harmaline. Brain Res. 83, 516–519 (1975 a)

    Google Scholar 

  • Mao, C.C., Guidotti, A., Costa, E.: Evidence for an involvement of GABA in the mediation of the cerebellar cGMP decrease and the anticonvulsant action of diazepam. Naunyn-Schmiedebergs Arch. Pharmacol. 289, 369–378 (1975 b)

    PubMed  CAS  Google Scholar 

  • Mao, C.C., Marco, E., Revuelta, A., Bertilsson, L., Costa, E.: The turnover rate of y-amino-butyric acid in the nuclei of telencephalon: Implications in the pharmacology of antipsychotics and of a minor tranquilizer. Biol. Psychiatry 12, 359–371 (1977)

    PubMed  CAS  Google Scholar 

  • Martin, I.L., Candy, J.M.: Facilitation of benzodiazepine binding by sodium chloride and GABA. Neuropharmacology 17, 993–998 (1978)

    PubMed  CAS  Google Scholar 

  • Maruyama, S., Kawasaki, T.: Further electrophysiological evidence of the GABA-like effect of droperidol in the purkinje cells of the cat cerebellum. Jpn. J. Pharmacol. 26, 765–767 (1976)

    PubMed  CAS  Google Scholar 

  • Mattsson, H., Brandt, K., Heilbronn, E.. Bicyclic phosphorus esters increase the cyclic GMP level in rat cerebellum. Nature 268, 52–53 (1977)

    PubMed  CAS  Google Scholar 

  • Maurer, R.: The GABA agonist THIP, a muscimol analogue, does not interfere with the benzodiazepine binding site on rats cortical membranes. Neurosci. Lett. 12, 65–68 (1979)

    PubMed  CAS  Google Scholar 

  • Mitchell, P.R., Martin, I.L.: The effects of benzodiazepines of K+-stimulated release of GABA. — Neuropharmacology 17, 317–320 (1978)

    PubMed  CAS  Google Scholar 

  • Miyahara, J.T., Esplin, D.W., Zablocka, B.: Differential effects of depressant drugs on presynaptic inhibition. J. Pharmacol. Exp. Ther. 154, 119–127 (1966)

    PubMed  CAS  Google Scholar 

  • Mori, A., Ohkusu, H., Kohsaka, M., Kurono, M.: Isolation of hypoxanthine from calf brain. J. Neurochem. 20, 1291–1292 (1973)

    PubMed  CAS  Google Scholar 

  • Möhler, H., Okada, T.: Properties of 3H-diazepam binding to benzodiazepine receptors in the rat cerebral cortex. Life Sci. 20, 2101 (1977 a)

    PubMed  Google Scholar 

  • Möhler, A., Okada, T.: Benzodiazepine receptor: Demonstration in the central nervous system. Science 198, 848–851 (1977b)

    Google Scholar 

  • Möhler, A., Okada, T.: GABA receptor binding with 3H(+) bicuculline-methiodide in rat CNS. Nature 267, 65–67 (1977 c)

    Google Scholar 

  • Möhler, H., Okada, T.: The benzodiazepine receptor in normal and pathological human brain. Br. J. Psychiatry 133, 261–268 (1978)

    PubMed  Google Scholar 

  • Möhler, H., Okada, T., Heitz, Ph., Ulrich, J.: Biochemical identification of the site of action of benzodiazepines in human brain by 3H-diazepam binding. Life Sci. 22, 985–996 (1978 a)

    Google Scholar 

  • Möhler, H., Okada, T., Enna, S.J.: Benzodiazepine and neurotransmitter receptor binding in rat brain after chronic administration of diazepam or phenobarbital. Brain Res. 156, 391 – 395 (1978 b)

    PubMed  Google Scholar 

  • Möhler, H., Polc, P., Cumin, R., Pieri, L., Kettler, R.: Nicotinamide is a brain constituent with benzodiazepine-like actions. Nature 278, 563–565 (1979)

    PubMed  Google Scholar 

  • Müller, W., Wollert, U.: Characterization of the binding of benzodiazepines to human serum albumin. Naunyn-Schmiedebergs Arch. Pharmacol. 280, 229–237 (1973)

    Google Scholar 

  • Müller, W., Wollert, U.: High stereospecificity of the benzodiazepine binding site on human serum albumin. Mol. Pharmacol. 11, 52–60 (1975 a)

    PubMed  Google Scholar 

  • Müller, W., Wollert, U.: Benzodiazepines: Specific competitors for the binding of 1-tryptophan to human serum albumin. Naunyn-Schmiedebergs Arch. Pharmacol. 288, 17–27 (1975 b)

    PubMed  Google Scholar 

  • Müller, W., Wollert, U.: Interaction of benzodiazepine derivates with bovine serum albumin. J. Biochem. Pharmacol. 25, 141–145 (1976)

    Google Scholar 

  • Müller, W., Schläfer, U., Wollert, U.: Benzodiazepine receptor binding in rat spinal cord membranes. Neurosci. Lett. 9, 239–243 (1978)

    PubMed  Google Scholar 

  • Nahorski, S.R.: Biochemical effects of the anticonvulsants trimethadione, ethosuximide and chlordiazepoxide in rat brain. J. Neurochem. 19, 1937–1946 (1972)

    PubMed  CAS  Google Scholar 

  • Nakamura, K., Nakamura, K.: Interaction of benzodiazepine drugs with striatal dopaminergic neurons in the brain. Jpn. J. Pharmacol. [Suppl.] 26, 101P (1976)

    Google Scholar 

  • Nakamura, M., Fukushima, H.: Effect of benzodiazepines on central serotonergic neuron systems. Psychopharmacology 53, 121–126 (1977)

    PubMed  CAS  Google Scholar 

  • Nelson-Krause, D.C., Howard, B.D.: Release of glycine and gamma aminobutyric acid from synaptosomes prepared from rat central nervous tissue. Fed. Proc. 35, 543 (1976)

    Google Scholar 

  • Nicoll, R.A.: The effects of anesthetics on synaptic excitation and inhibition in the olfactory bulb. J. Physiol. (Lond.) 223, 803–814 (1972)

    CAS  Google Scholar 

  • Nicoll, R.A.: Presynaptic action of barbiturates in the frog spinal cord. Proc. Natl. Acad. Sci. USA 72, 1460–1463 (1975 a)

    Google Scholar 

  • Nicoll, R.A.: Pentobarbital: action on frog motoneurons. Brain Res. 96, 119–123 (1975 b)

    PubMed  CAS  Google Scholar 

  • Nicoll, R.A.: Pentobarbital: Differential postsynaptic actions on sympathetic ganglion cells. Science 199, 451–452 (1978)

    PubMed  CAS  Google Scholar 

  • Nielsen, M., Braestrup, C., Squires, R.F.: Evidence for a late evolutionary appearance of brain-specific benzodiazepine receptors: an investigation of 18 vertebrate and 5 invertebrate species. Brain Res. 141, 342–346 (1978)

    PubMed  CAS  Google Scholar 

  • Nielsen, M., Nielsen, E.B., Ellison, G., Braestrup, C.: Modification of dopamine receptors in brain by continuous amphetamine administrations to rats. IInd World Congress of Biol. Psychiatry. Barcelona 1979 to be published, a

    Google Scholar 

  • Nielsen, M., Gredal, O., Braestrup, C.: Some properties of 3H-diazepam displacing activity from human urine. Life Sci. 25, 679–686 (1979 b)

    PubMed  CAS  Google Scholar 

  • Olsen, R.W., Lamar, E.E., Bayless, J.D.: Calcium-induced release of γ-aminobutyric acid from synaptosomes: Effects of tranquilizer drugs. J. Neurochem. 28, 299–305 (1977)

    PubMed  CAS  Google Scholar 

  • Olsen, R.W., Greenlee, D., Ness, P. van, Ticku, M.K.: Studies on the gammaaminobutyric acid receptor/ionophore proteins in mammalian brain. In: Amino acids as neurotransmitter. Fonnum, F. (ed.), pp. 467–486. New York: Plenum 1978 a

    Google Scholar 

  • Olsen, R.W., Ticku, M.K., Ness, P. van, Greenlee, D.: Effects of drugs on γ-aminobutyric acid receptors, uptake, release and synthesis in vitro. Brain Res. 139, 277–294 (1978 b)

    PubMed  CAS  Google Scholar 

  • Olsen, R.W., Ticku, M.K., Greenlee, D., Ness, P. van: GABA receptor and ionophore binding sites: Interaction with various drugs. In: GABA-Neurotransmitters. Alfred Benzon Symposium. Krogsgaard-Larsen, P., Scheel-Krüger, J., Kofod, H. (eds.), p. 28. Copenhagen: Munkgsgaard 1978 c

    Google Scholar 

  • Opmeer, F.A., Gumulka, S.W., Dinnendahl, V., Schönhöfer, P.S.: Effects of stimulatory and depressant drugs on cyclic guanosine 3′,5′-monophosphate and adenosine 3′,5′-monophos-phate levels in mouse brain. Naunyn Schmiedebergs Arch. Pharmacol. 292, 259–265 (1976)

    CAS  Google Scholar 

  • Ostrovskaya, R.U., Molodavkin, G.M.: A study of the GABA-ergic action mechanism of diazepam on the cortical neurons (in Russian). Byul. Eksp. Bil. Med. 82, 1073–1076 (1976)

    CAS  Google Scholar 

  • Ostrovskaya, R.U., Voronina, T.A.: Antagonistic effects of bicuculline and thiosemicarbazide on diazepam tranquilizing action (in Russian). Byul. Eksp. Biol. Med. 83, 293–295 (1977)

    CAS  Google Scholar 

  • Paul, S.M., Skolnick, P.: Rapid changes in brain benzodiazepine receptors after experimental seizures. Science 202, 892–894 (1978)

    PubMed  CAS  Google Scholar 

  • Pericic, D., Walters, J.R., Chase, T.N.: Effects of diazepam and pentobarbital on amino-oxyacetic acid-induced accumulation of GABA. J. Neurochem. 29, 839–846 (1977)

    PubMed  CAS  Google Scholar 

  • Persson, T., Waldeck, B.: A reduced rate of turnover of brain noradrenaline during pentobarbitone anaesthesia. J. Pharm. Pharmacol. 23, 377–378 (1971)

    PubMed  CAS  Google Scholar 

  • Pieri, L., Haefely, W.: The effect of diphenylhydantoin, diazepam and clonazepam on the activity of purkinje cells in the rat cerebellum. Naunyn Schmiedebergs Arch. Pharmacol. 296, 1–4 (1976)

    CAS  Google Scholar 

  • Pletscher, A.: Biochemistry and psychosomatic medicine: The effects of psychotropic drugs on neurohumoral transmitters. In: Psychotropic drugs in internal medicine. Pletscher, A., Marino, A., Pinkerton, P. (eds.), pp. 1–15. Amsterdam: Excerpta Medica 1969

    Google Scholar 

  • Polc, P., Möhler, H., Haefely, W.: The effect of diazepam on spinal cord activities, possile sites and mechanisms of action. Naunyn Schmiedebergs Arch. Pharmacol. 284, 319–337 (1974)

    CAS  Google Scholar 

  • Polc, P., Haefely, W.: Effects of two benzodiazepines, phenobarbitone, and baclofen on synaptic transmission in the cat cuneate nucleus. Naunyn Schmiedebergs Arch. Pharmacol. 294, 121–131 (1976)

    CAS  Google Scholar 

  • Polzin, R., Barnes, C.D.: The effect of diazepam and Picrotoxin on brainstem evoked dorsal root potentials. Neuropharmacology 15, 133–137 (1976)

    PubMed  CAS  Google Scholar 

  • Pugsley, T.A., Lippmann, W.: Effects of pyrroxan and chlordiazepoxide on biogenic amine metabolism in the rat brain. Psychopharmacology 50, 113–118 (1976)

    PubMed  CAS  Google Scholar 

  • Raabe, W., Ayala, G.F.: Diphenylhydantoin increases cortical postsynaptic inhibition. Brain Res. 105, 597–601 (1976)

    PubMed  CAS  Google Scholar 

  • Raff, M.: Self regulation of membrane receptors. Nature 259, 265–266 (1976)

    Google Scholar 

  • Randall, L.O., Schallek, W., Sternbach, L.H., Ning, R.Y.: Chemistry and pharmacology of the 1,4-benzodiazepines. In: Psychoharmacological agents. Gordon, M. (ed.), Vol. 3, pp. 175 – 281. New York: Academic Press 1974

    Google Scholar 

  • Rastogi, R.B., Agarwal, R.A., Lapierre, Y.D., Singhai, R.L.: Effects of acute diazepam and clo-bazam on spontaneous locomotor activity and central amino metabolism in rats. Eur. J. Pharmacol. 43, 91–98 (1977)

    PubMed  CAS  Google Scholar 

  • Reisine, T.D., Wastek, G.J., Yamamura, H.I.: Alterations in benzodiazepine binding sites in Huntington’s disease. Pharmacologist 20, 240 (1978)

    Google Scholar 

  • Rutishauser, M.: Beeinflussung des Kohlenhydratstoffwechsels des Rattenhirns durch Psychopharmaka mit sedativer Wirkung. Naunyn Schmiedebergs Arch. Pharmacol. 245, 396–413 (1963)

    CAS  Google Scholar 

  • Saad, S.F.: Effect of diazepam on γ-aminobutyric acid (GABA) content of mouse brain. J. Pharm. Pharmacol. 24, 839–840 (1972)

    PubMed  CAS  Google Scholar 

  • Saad, S.F., El Masry, A.M., Scott, P.M.: Influence of certain anticonvulsants on the concentration of γ-aminobutyric acid in the cerebral hemispheres of mice. Eur. J. Pharmacol. 17, 386–392 (1972)

    PubMed  CAS  Google Scholar 

  • Sawaya, M.C., Horton, R.W., Meldrum, B.S.: Effects of anticonvulsant drugs on the cerebral enzymes metabolizing GABA. Epilepsia 16, 649–655 (1975)

    PubMed  CAS  Google Scholar 

  • Schaffner, R., Haefely, W.: The effects of diazepam and bicuculline on the striato-nigral evoked potential. Experientia 31, 732 (1975)

    Google Scholar 

  • Scheel-Krüger, J., Arnt, J., Braestrup, C., Christensen, V., Magelund, G.: Development of new animal models for GABA-ergic actions using muscimol as a tool. In: GABA-Neurotrans-mitters. The Alfred Benzon Symposium. Kofod, H., Krogsgaard-Larsen, P., Scheel-Krüger, J. (eds.), pp. 447–464. Copenhagen: Munksgaard 1978

    Google Scholar 

  • Schlosser, W.: Action of diazepam on the spinal cord. Arch. Int. Pharmacodyn. Ther. 194, 93–102 (1971)

    PubMed  CAS  Google Scholar 

  • Schmidt, R.F., Vogel, M.E., Zimmermann, M.: Die Wirkung von Diazepam auf die präsynaptische Hemmung und andere Rückenmarksreflexe. Naunyn Schmiedebergs Arch. Pharmacol. 258, 69–82 (1967)

    CAS  Google Scholar 

  • Seeman, P., Chau-Wong, M., Tedesco, J., Wong, K.: Brain receptors for antipsychotic drugs and dopamine: Direct binding assays. Proc. Natl. Acad. Sci. USA 72, 4376–4380 (1975)

    PubMed  CAS  Google Scholar 

  • Sethy, V.H.: Effect of hypnotic and anxiolytic agents on regional concentration of acetylcholine in rat brain. Naunyn Schmidebergs Arch. Pharmacol. 301, 157–161 (1978)

    CAS  Google Scholar 

  • Setoguchi, M., Takehara, S., Nakajima, A., Tsumagari, T., Takigawa, Y.: Effects of 6-(o-Chlorophenyl)-8-ethyl-l-methyl-4H-s-triazolo [3,4-c]thieno [2,3-e] [l,4]diazepine (Y-7,131) on the metabolism of biogenic amines in brain. Arzneim. Forsch. 28, 1165–1173 (1978)

    CAS  Google Scholar 

  • Sharman, D.F.: Changes in the metabolism of 3,4-dihydroxyphenylethylamine (dopamine) in the striatum of the mouse induced by drugs. Br. J. Pharmacol. 28, 153–163 (1966)

    CAS  Google Scholar 

  • Shekoldina, T.G., Vatolkina, O.E., Libinzon, R.E.: Effect of psychotropic preparations on the activity of cAMP phosphodiesterase in brain cortex (in Russian). Vopr. Med. Khim. 24, 166–169 (1978)

    Google Scholar 

  • Shibuya, T.: Effects of benzodiazepines on brain monoamines. Jpn. J. Pharmacol. [Suppl.] 26, 102P (1976)

    Google Scholar 

  • Skolnick, P., Marangos, P.J., Goodwin, P.K., Edwards, M., Paul, S.: Identification of inosine and hypoxanthine as endogenous inhibitors of 3H diazepam in the central nervous system. Life Sci. 23, 1473–1480 (1978)

    PubMed  CAS  Google Scholar 

  • Soubrié, P., Simon, P., Boissier, J.R.: Antagonism of diazepam against central anticholinergic drug-induced hyperactivity in mice: involvement of a GABA mechanism. Neuropharmacology 15, 773–776 (1976)

    PubMed  Google Scholar 

  • Speth, R.C., Wastek, G.J., Johnson, P.C., Yamamura, H.I.: Benzodiazepine binding in human brain: Characterization using 3H flunitrazepam. Life Sci. 22, 859–866 (1978)

    PubMed  CAS  Google Scholar 

  • Squires, R.F., Braestrup, C.: Benzodiazepine receptors in rat brain. Nature 266, 732–734 (1977)

    PubMed  CAS  Google Scholar 

  • Squires, R., Naquet, R., Riche, D., Braestrup, C.: Increased thermolability of benzodiazepine receptors in cerebral cortex of a baboon with spontaneous seizures. Epilepsia 20, 215–221, (1979 a)

    PubMed  CAS  Google Scholar 

  • Squires, R.F., Beer, B., Benson, D.I., Coupet, J., Kiepner, CA., Lippa, A.S., Myers, V.: Some evidence for two or more brain-specific benzodiazepine receptors. Pharmacol. Biochem. Behav. 10, 825–830 (1979 b)

    PubMed  CAS  Google Scholar 

  • Stein, L. Wise, C.D., Berger, B.D.: Antianxiety action of benzodiazepines. Drecrease in activity of serotonin neurons in the punishment system. In: The Benzodiazepines. Garattini, S., Mussini, E., Randall, L.O. (eds.), 299–326. New York: Raven 1973

    Google Scholar 

  • Stein, L., Wise, C.D., Belluzzi, J.D.: Effects of benzodiazepines on central serotonergic mechanisms. In: Mechanism of action of benzodiazepines. Costa, E., Greengard, P. (eds.), pp. 29–44. New York: Raven 1975

    Google Scholar 

  • Stein, L., Beluzzi, J.D., Wise, C.D.: Benzodiazepines: Behavioral and neurochemical mechanism. Am J. Psychiatry 134, 665–669 (1977)

    PubMed  CAS  Google Scholar 

  • Steiner, F.A., Felix, D.: Antagonistic effects of GABA and benzodiazepines on vestibular and cerebellar neurones. Nature 260, 346–347 (1976)

    PubMed  CAS  Google Scholar 

  • Stone, W.E., Javid, M.J.: Benzodiazepines and phenobarbital as antagonists of dissimilar chemical convulsants. Epilepsia 19, 361–368 (1978)

    PubMed  CAS  Google Scholar 

  • Stratten, W.P., Barnes, C.D.: Diazepam and presynaptic inhibition. Neuropharmacology 10, 685–696 (1971)

    PubMed  CAS  Google Scholar 

  • Sullivan, J.W., Sepinwall, J., Cook, L.: Anticonflict evaluation of muscimol, a GABA receptor agonist, alone and in combination with diazepam. Faseb 1978

    Google Scholar 

  • Syapin, P.J., Skolnick, P.: Characterization of benzodiazepine binding sites in cultured cells of neural origin. J. Neurochem. 32, 1047–1051 (1979)

    PubMed  CAS  Google Scholar 

  • Tallman, J.F., Thomas, J.W., Gallager, D.W.: GAB Aergic modulation of benzodiazepine binding site sensitivity. Nature 274, 383–384 (1978)

    PubMed  CAS  Google Scholar 

  • Tarver, J., Bautz, G., Horst, W.D.: A new method for the determination of γ-aminobutyric acid (GABA) in brain. Fed. Proc. 34 (1975)

    Google Scholar 

  • Tata, J.R.: Hormonal regulation of hormone receptors. Nature 257, 740–741 (1975)

    Google Scholar 

  • Taylor, K.M., Laverty, R.: The effect of chlordiazepoxide, diazepam and nitrazepam on catecholamine metabolism in regions of the rat brain. Eur. J. Pharmacol. 8, 296–301 (1969)

    PubMed  CAS  Google Scholar 

  • Taylor, K.M., Laverty, R.: The interaction of chlordiazepoxide, diazepam, and nitrazepam with catecholamine and histamine in regions of the rat brain. In: The Benzodiazepines. Garattini, S., Mussini, E., Randall, L.O. (eds.), pp. 191–202. New York: Raven 1973

    Google Scholar 

  • Thiebot, M.H., Jobert, A., Soubrie, P.: Effects compares du muscimol et du diazepam sur les inhibitions du comportements induite chez le rat par la nouveaute la punition et le nonrein-forcement. Psychopharmacology 61, 85–89 (1979)

    PubMed  CAS  Google Scholar 

  • Toffano, G., Guidotti, A., Costa, E.: Purification of an endogenous protein inhibitor of the high affinity binding of γ-aminobutyric acid to synaptic membranes of rat brain. Proc. Natl. Acad. Sci. USA 75, 4024–4028 (1978)

    PubMed  CAS  Google Scholar 

  • Tonkopy, V.D., Sofronov, G.A., Alexandriiskaya, I.E., Brestkina, L.M.: Study of the mechanism of diazepam influence on acetylcholine level in the mouse brain (in Russian). Byul. Eksp. Biol. Med. 86, 38–40 (1978)

    Google Scholar 

  • Tsuchiya, T., Fukushima, H.: Effects of benzodiazepines and pentobarbitone on the GABA-ergic recurrent inhibition of hippocampal neurons. Eur. J. Pharmacol. 48, 421–424 (1978)

    PubMed  CAS  Google Scholar 

  • Volicer, L., Puri, S.K., Choima, P.: Cyclic GMP and GABA levels in rat striatum and cerebellum during morphine withdrawal: Effect of apomorphine. Neuropharmacology 16, 791 – 794 (1977)

    Google Scholar 

  • Waddington, J.L.: Behavioral evidence for GAB Aergic activity of the benzodiazepine fluraze-pam. Europ. J. Pharmacol. 51, 417–422 (1978)

    CAS  Google Scholar 

  • Waddington, J.L., Owen, F.: Stereospecific benzodiazepine receptor binding by the en-antiomers of oxazepam sodium hemisuccinate. Neuropharmacology 17, 215–216 (1978)

    PubMed  CAS  Google Scholar 

  • Wastek, G.J., Speth, R.C., Reisine, T.D., Yamamura, H.I.: The effect of γ-aminobutyric acid on 3H-flunitrazepam binding in rat brain. Eur. J. Pharmacol. 50, 445–447 (1978)

    PubMed  CAS  Google Scholar 

  • Westerink, B.H.C., Lejeune, B., Korf, J., Praag, H.M. van: On the significance of regional dopamine metabolism in the rat brain for the classification of centrally acting drugs. Eur. J. Pharmacol. 42, 179–190 (1977)

    PubMed  CAS  Google Scholar 

  • Williams, M., Risley, E.A.: Enhancement of the binding of 3H-diazepam to rat brain membranes in vitro by SQ 20,009 a novel anxiolytic, γ-aminobutyric acid (GABA) and muscimol. Life Sci., 24, 833–842 (1979)

    PubMed  CAS  Google Scholar 

  • Wise, D.C., Berger, B.D., Stein, L.: Benzodiazepines: Anxiety-reducing activity by reduction of serotonin turnover in the brain. Science 177, 180–183 (1972)

    PubMed  CAS  Google Scholar 

  • Wolf, P., Haas, H.L.: Effects of diazepines and barbiturates on hippocampal recurrent inhibition. Naunyn-Schmidebergs Arch. Pharmacol. 299, 211–218 (1977)

    CAS  Google Scholar 

  • Wood, J.D., Peesker, S.J., Gorecki, D.K.J., Tsui, D.: Effect of L-cycloserine on brain GABA metabolism. Can. J. Physiol. Pharmacol. 56, 62–68 (1978)

    PubMed  CAS  Google Scholar 

  • Yamamura, H.I., Snyder, S.H.: Muscarinic cholinergic binding in rat brain. Proc. Natl. Acad. Sci. USA 71, 1725–1729 (1974)

    PubMed  CAS  Google Scholar 

  • Yamamura, H.I., Speth, R.C., Reisine, T.D., Wastek, G.J., Chen, F.M., Kobayashi, R.M.: Biochemical characterization of 3H-flunitrazepam binding to benzodiazepine receptors in the rat brain. 7th Intern. Congr. Pharmacol., Paris 1978 a

    Google Scholar 

  • Yamamura, H.I., Enna, S.J., Kuhar, M.J.: Neurotransmitter receptor binding. New York: Raven 1978 b

    Google Scholar 

  • Young, A.B., Zukin, S.R., Snyder, S.H.: Interaction of benzodiazepines with central nervous glycine receptors: Possible mechanism of action. Proc. Natl. Acad. Sci. USA 6, 2246–2250 (1974)

    Google Scholar 

  • Zakusov, V.V., Ostrovskaya, R.U., Kozhechkin, S.N., Markovich, V.V., Molodavkin, G.M., Voronina, T.A.: Further evidence for GABA-ergic mechanisms in the action of benzodiazepines. Arch. Int. Pharmacodyn. Ther. 229, 313–326 (1977)

    PubMed  CAS  Google Scholar 

  • Zsilla, G., Cheney, D.L., Costa, E.: Regional changes in the rate of turnover of acetylcholine in rat brain following diazepam or muscimol. Naunyn-Schmiedebergs Arch. Pharmacol. 294, 251–255 (1976)

    CAS  Google Scholar 

  • Zukin, S.R., Young, A.B., Snyder, S.H.: Gamma-aminobutyric acid binding to receptor sites in the rat central nevous system. Proc. Natl. Acad. Sci. USA 71, 4802–4807 (1974)

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Braestrup, C. (1981). Biochemical Effects of Anxiolytics. In: Hoffmeister, F., Stille, G. (eds) Psychotropic Agents. Handbook of Experimental Pharmacology, vol 55 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67767-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67767-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67769-4

  • Online ISBN: 978-3-642-67767-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics