Skip to main content

Rhythms and Their Relations to Hormones

  • Chapter
Hormonal Regulation of Development III

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 11))

Abstract

The physical environment in which plants generally grow and develop is not constant. There are fluctuations in the environment, many of which do not occur solely as random or sporadic events. Rather, these changes appear at regular and predictable intervals. For example, each day as the earth rotates on its axis, plants growing out of doors are subjected to alternating spans of light and darkness. Furthermore, depending on the season of the year, the duration of each span changes predictably in relation to the inclination of the planetary axis. This single feature of solar radiation involving the lengths of light and dark spans is but one of many physical events that occur in rhythmic cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles FB, Craker LE, Leather GR (1971) Abscission: The phytogerontological effects of ethylene. Plant Physiol 47: 7–9

    PubMed  CAS  Google Scholar 

  • Alford DK, Tibbitts TW (1971) Endogenous short-period rhythms in the movements of unifoliate leaves of Phaseolus angularis Wight. Plant Physiol 47: 68–70

    PubMed  CAS  Google Scholar 

  • Andersen RN, Koukkari WL (1978) Response of velvetleaf to bentazon as affected by leaf orientation. Weed Sci 26: 393–395

    CAS  Google Scholar 

  • Andersen RN, Koukkari WL (1979) Rhythmic leaf movements of some common weeds. Weed Sci 27: 401–414

    Google Scholar 

  • Arnal C (1953) Recherches sur la nutation des coléoptiles. I. Nutation et croissance. Ann Univ Saraviensis. Scientia 2: 92–105

    Google Scholar 

  • Aschoff J, Klotter K, Wever R (1965) Circadian clocks. In: Aschoff J (ed) Proceedings of the Feldafing summer school. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 10–17

    Google Scholar 

  • Audus LJ (1976) Herbicides. Physiology, biochemistry, ecology, vol I. 2nd edn. Academic Press, London New York

    Google Scholar 

  • Avery GS Jr (1935) Differential distribution of a phytohormone in the developing leaf of Nicotiana, and its relation to polarized growth. Bull Torrey Bot Club 62:313–330

    Google Scholar 

  • Baillaud L (1953) Action de la température sur la période de nutation des tiges volubiles de cuscute. CR Acad Sci (Paris) 236:1986–1988

    Google Scholar 

  • Baillaud L, Monnier Y (1960) La circumnutation de la tige d’un Phaseolus rendu volubile par l’acide gibbérellique. CR Acad Sci (Paris) 250: 4032–4034

    CAS  Google Scholar 

  • Ball NG, Dyke IJ (1954) An endogenous 24-hour rhythm in the growth rate of the Avena coleoptile. J Exp Bot 5: 421–433

    Google Scholar 

  • Ball NG, Dyke IJ (1956) The effects of indole-3-acetic acid and 2,4-dichlorophenoxy acetic acid on the growth rate and endogenous rhythm of intact Avena coleoptiles. J Exp Bot 7: 25–41

    CAS  Google Scholar 

  • Ball NG, Dyke IJ (1957) The effects of decapitation, lack of oxygen, and low temperature on the endogenous 24-h rhythm in the growth-rate of the Avena coleoptile. J Exp Bot 8: 323–338

    CAS  Google Scholar 

  • Ball NG, Dyke I J, Wilkins MB (1957) The occurrence of endogenous rhythms in the coleoptiles in various cereal genera. J Exp Bot 8: 339–347

    CAS  Google Scholar 

  • Becker T (1953) Wuchsstoff und Säureschwankungen bei Kalanchöe blossfeldiana in verschiedenen Licht-Dunkel wechseln. Planta 43: 1–24

    CAS  Google Scholar 

  • Behrens R (1977) Influence of dew on the effectiveness of foliar herbicide treatments. Abstract 1977 Meet Weed Sci Soc Am, p 12

    Google Scholar 

  • Behrens R, Elakkad M (1976) Influence of simulated rainfall on the effectiveness of foliar herbicide treatments. Abstract. 1976 Meet Weed Sci Soc Am, p 1

    Google Scholar 

  • Biale JB, Young RE, Olmstead AJ (1954) Fruit respiration and ethylene production. Plant Physiol 29:168–174

    Google Scholar 

  • Black FS, Wilson HP (1969) Performance of herbicide adjuvant-sprays as affected by the time of day, by the ratio of herbicide to adjuvant, and by the chemical type of the adjuvant. Abstract. 1969 Meet Weed Sci Soc Am, p 1

    Google Scholar 

  • Böger P, Beese B, Miller R (1977) Long-term effects of herbicides on the photosynthetic apparatus. II. Investigations on bentazone inhibition. Weed Res 17: 61–67

    Google Scholar 

  • Bornkamm R (1966) Ein Jahresrhythmus des Wachstums bei Lemna minor L. Planta 69: 178–186

    Google Scholar 

  • Bose JC (1927) Plant autographs and their revelations. Longmans, Green & Co, London New York Toronto

    Google Scholar 

  • Bovey RW, Haas RH, Meyer RE (1972) Daily and seasonal response of Huisache and Macartney rose to herbicides. Weed Sci 20: 557–580

    Google Scholar 

  • Brauner L, Arslan N (1951) Experiments on the auxin reactions of the pulvinus of Phaseolus multiflorus. Rev Fac Sci Univ Istanbul 16 B: 257–300

    Google Scholar 

  • Bray WC (1921) A periodic reaction in homogeneous solution and its relation to catalysis. J Am Chem Soc 43: 1262–1267

    CAS  Google Scholar 

  • Briggs TS, Rauscher WC (1973) An oscillating iodine clock. J Chem Educ 50:496

    CAS  Google Scholar 

  • Bünning E (1956) Endogenous rhythms in plants. Annu Rev Plant Physiol 7: 71–90

    Google Scholar 

  • Bünning E (1960) Opening address: biological clocks. Cold Spring Harbor Symp Quant Biol 25:1–9

    Google Scholar 

  • Bünning E (1962) Mechanism in circadian rhythms: functional and pathological changes resulting from beats and from rhythm abnormities. Ann NY Acad Sci 98: 901–915

    PubMed  Google Scholar 

  • Bünning E (1969) The adaptive value of circadian leaf movements. In: Menaker M (ed) Biochronometry. Natl Acad Sci, Washington, DC, pp 203–211

    Google Scholar 

  • Bünning E (1973) The physiological clock, revised 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bünning E (1979) Circadian rhythms, light, and photoperiodism: A re-evaluation. Bot Mag (Tokyo) 92: 89–103

    Google Scholar 

  • Bünning E, Chandrashekaran MK (1975) Pfeffer’s views on rhythms. Chronobiologia 2: 160–167

    PubMed  Google Scholar 

  • Bünning E, Moser I (1969) Interference of moonlight with the photoperiodic measurement of time by plants, and their adaptive reaction. Proc Natl Acad Sci USA 62: 1018–1022

    PubMed  Google Scholar 

  • Bünning E, Moser I (1972) Influence of valinomycin on circadian leaf movements of Phaseolus. Proc Natl Acad Sei USA 69: 2732–2733

    Google Scholar 

  • Bünning E, Müller D (1961) How do organisms measure lunar cycles? Z Naturforsch 16b (6): 391–395

    Google Scholar 

  • Bünning E, Müssle L (1951) Der Verlauf der endogenen Jahresrhythmik in Samen unter dem Einfluß verschiedenartiger Außenfaktoren. Z Naturforsch 6b: 108–112

    Google Scholar 

  • Campiranon S, Koukkari WL (1976) Circadian periodic response of Phaseolus vulgaris L. to 2,4-dichlorophenoxyacetic acid. Chronobiologia 3: 137–148

    PubMed  CAS  Google Scholar 

  • Caulder J, Fletchall OH (1970) Response of Johnson grass to dalapon applied at different times of day. Abstr Weed Sci Soc Am, p 73

    Google Scholar 

  • Chance B, Ghosh AK, Pye EK, Hess B (1973) Biological and biochemical oscillators. Academic Press, London New York

    Google Scholar 

  • Chia-Looi A, Cumming BG (1972) Circadian rhythms of dark respiration, flowering, net photosynthesis, chlorophyll content, and dry weight changes in Chenopodium rubrum. Can J Bot 50: 2219–2226

    Google Scholar 

  • Chorney W, Rakosnik E Jr, Dipert MH, Dedolph RR (1970) Rhythmic-flowering response in cocklebur. Bioscience 20: 31–32

    Google Scholar 

  • Cohen AS, Cumming BG (1974) Endogenous rhythmic activity of nitrate reductase in a selection of Chenopodium rubrum. Can J Bot 52: 2351–2360

    CAS  Google Scholar 

  • Cooke DO (1977) Homogeneous oscillating reactions. Educ Chem 14:53–56

    Google Scholar 

  • Cumming BG (1967) Circadian rhythmic flowering responses in Chenopodium rubrum: Effects of glucose and sucrose. Can J Bot 45: 2173–2193

    CAS  Google Scholar 

  • Cumming BG (1969) Circadian rhythms of flower induction and their significance in photoperiodic response. Can J Bot 47: 309–324

    Google Scholar 

  • Cumming BG, Wagner E (1968) Rhythmic processes in plants. Annu Rev Plant Physiol 19: 381–416

    Google Scholar 

  • Cumming BG, Hendricks SB, Borthwick HA (1965) Rhythmic flowering responses and phytochrome changes in a selection of Chenopodium rubrum. Can J Bot 43: 825–853

    Google Scholar 

  • Darwin C, Darwin F (1881) The power of movement in plants. Appleton amp; Co, New York

    Google Scholar 

  • Datko AH, Maclachlan GA (1968) Indoleacetic acid and the synthesis of glucanases and pectic enzymes. Plant Physiol 43: 735–742

    PubMed  CAS  Google Scholar 

  • DeCoursey PJ (1960) Phase control of activity in a rodent. Cold Spring Harbor Symp Quant Biol 25: 49–55

    PubMed  CAS  Google Scholar 

  • DeHaan I (1969) Oscillations in the redistribution of the growth substance naphthylacetic acid after phototropic induction. Acta Bot Neerl 18: 84–94

    CAS  Google Scholar 

  • Deitzer GF, Haertle U, Wagner E (1974 a) Frequency patterns of enzyme activities reflecting metabolic control of photoperiodic timing. J Interdiscipl Cycle Res 5: 187–198

    CAS  Google Scholar 

  • Deitzer GF, Kempf O, Fischer S, Wagner E (1974b) Endogenous rhythmicity and energy transduction. IV. Rhythmic control of enzymes involved in the tricarboxylic-acid cycle and the oxidative pentose-phosphate pathway in Chenopodium rubrum L. Planta 117: 29–41

    CAS  Google Scholar 

  • Doran DL, Andersen RN (1976) Effectiveness of bentazon applied at various times of the day. Weed Sci 24: 567–570

    CAS  Google Scholar 

  • Driessche Vanden T (1970) Circadian variation in ATP content in the chloroplasts of Acetabularia mediterranea. Biochim Biophys Acta 205: 526–528

    Google Scholar 

  • Driessche Vanden T (1975a) Circadian rhythm in the Hill reaction of Acetabularia. In: Avron M (ed) Proceedings of the Third International Congress on Photosynthesis, Vol I. Elsevier, Amsterdam, pp 745–751

    Google Scholar 

  • Driessche Vanden T (1975 b) Chloroplast functions are influenced by morphactins. Bio-chem Physiol Pflanz 168:543–551

    Google Scholar 

  • Driessche Vanden T (1975 c) Circadian rhythms and molecular biology. BioSystems 6:188–201

    Google Scholar 

  • Driessche Vanden T (1979) Phase-shifting effect of IAA on the photosynthetic circadian rhythm of Acetabularia. In: Bonotto S, Kefeli V, Puiseux-Dao S (eds) Developmental biology of Acetabularia. Elsevier/North-Holland Biomedical Press Amsterdam New York, pp 195–204

    Google Scholar 

  • Driessche Vanden T, Delegher-Langohr V (1975) Presence of an auxin-like substance in Acetabularia. Protoplasma 83: 181

    Google Scholar 

  • Driessche Vanden T, Glory M (1979) Plant growth regulators as circadian rhythm synchronizers. Chronobiologia 6: 167

    Google Scholar 

  • Duke SH, Koukkari WL (1975) Ultradian oscillations in the activity of two mitochondrial enzymes, glutamate dehydrogenase and malate dehydrogenase, extracted from Pisum roots. XII Int Conf Int Soc Chronobiol. Publishing House Washington DC, pp 705–710

    Google Scholar 

  • Duke SH, Friedrich JW, Schräder LE, Koukkari WL (1978) Cyclic activities of enzymes of nitrate reduction and ammonia assimilation in Glycine max and Zea mays. Physiol Plant 42: 269–276

    CAS  Google Scholar 

  • El-Beltagy AS, Hall MA (1974) Effect of water stress upon endogenous ethylene levels in Viciafaba. New Phytol 73: 47–60

    CAS  Google Scholar 

  • El-Beltagy AS, Kapuya JA, Madkour MA, Hall MA (1976) A possible endogenous rhythm in internal ethylene levels in the leaves of Ly coper sic on esculentum Mill. Plant Sci Lett 6: 175–180

    CAS  Google Scholar 

  • Engelmann W, Schrempf M (1980) Membrane models for circadian rhythms. Photochem Photobiol Rev 5: 49–86

    CAS  Google Scholar 

  • Enright JT (1971a) Heavy water slows biological timing processes. Z Vergl Physiol 72: 1–16

    Google Scholar 

  • Enright JT (1971b) The internal clock of drunken isopods. Z Vergl Physiol 75: 332–346

    Google Scholar 

  • Erismann KH, Fankhouser M (1967) Change in content of starch, protein and RNA of Lemna minor L. under the influence of kinetin (6-furfurylaminopurine). Experientia 23: 621–622

    PubMed  CAS  Google Scholar 

  • Feng KA (1974) Changes of onion epidermal cell permeability due to the treatment with alanap. Physiol Plant 32: 311–314

    CAS  Google Scholar 

  • Ferri MG, De Camargo LV (1950) Influence of growth substances on the movement of the pulvini of the primary leaves of bean plants. Acad Bras Cienc An 22: 161–170

    Google Scholar 

  • Fondeville JC, Borthwick HA, Hendricks SB (1966) Leaflet movements of Mimosa pudica L. indicative of phytochrome action. Planta 69: 357–364

    Google Scholar 

  • Frosch S, Wagner E, Cumming BG (1973) Endogenous rhythmicity and energy transduction. I. Rhythmicity in adenylate kinase, NAD- and NADP-linked glycer aldehyde-3- phosphate dehydrogenase in Chenopodium rubrum. Can J Bot 51: 1355–1367

    Google Scholar 

  • Galston AW, Dalberg LY (1954) The adaptive formation and physiological significance of indoleacetic acid oxidase. Am J Bot 41: 373–380

    CAS  Google Scholar 

  • Galston AW, Tuttle AA, Penny PJ (1964) A kinetic study of growth movements and photomorphogenesis in etiolated pea seedlings. Am J Bot 51: 853–858

    Google Scholar 

  • Garner WW, Allard HA (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res 18: 553–606

    Google Scholar 

  • Goldbeter A, Caplan SR (1976) Oscillatory enzymes. Annu Rev Biophys Bioeng 5: 449–476

    PubMed  CAS  Google Scholar 

  • Goldsmith MHM (1968) The movement of plant-growth regulators. Annu Rev Plant Physiol 19: 347–360

    CAS  Google Scholar 

  • Goldsmith MHM (1977) The polar transport of auxin. Annu Rev Plant Physiol 28: 439–478

    CAS  Google Scholar 

  • Gordon WR, Koukkari WL (1972) The effect of cytokinins and auxins on phytochrome mediated nyctinasty in Albizzia julibrissin. Plant Physiol 49 (Suppl) 53

    Google Scholar 

  • Gordon WR, Koukkari WL (1978) Circadian rhythmicity in the activities of phenylalanine ammonia-lyase from Lemna perpusilla and Spirodela polyrhiza. Plant Physiol 62: 612–615

    PubMed  CAS  Google Scholar 

  • Gosselink JG, Standifer LC (1967) Diurnal rhythm of sensitivity of cotton seedlings to herbicides. Science 158: 120–121

    PubMed  CAS  Google Scholar 

  • Gossett BJ, Rieck C (1970) Performance of chloroxuron as influenced by spray additives, spray volumes, and early morning versus late afternoon applications. Proc Southern Weed Sci Soc 23: 163

    Google Scholar 

  • Greathouse DC, Laetsch WM, Phinney BO (1971) The shoot-growth rhythm of a tropical tree, Theobroma cacao. Am J Bot 58: 281–286

    Google Scholar 

  • Halaban R (1968) The circadian rhythm of leaf movement of Coleus blumei x C.frederici, a short day plant. I. Under constant light conditions. Plant Physiol 43: 1883–1886

    PubMed  CAS  Google Scholar 

  • Halberg E (1959) Physiologic 24-hour-periodicity; general and procedural considerations with reference to the adrenal cycle. Z Vitamin-Hormon Fermentforsch 10: 225–296

    PubMed  CAS  Google Scholar 

  • Halberg F (1964) Organisms as circadian systems; temporal analysis of their physiologic and pathologic responses, including injury and death. In: Walter Reed Army Inst Res Symp. Medical aspects of stress in the military climate, pp 1–36

    Google Scholar 

  • Halberg F (1969) Chronobiology. Annu Rev Physiol 31: 675–725

    PubMed  CAS  Google Scholar 

  • Halberg F, Katinas GS (1973) Chronobiologic glossary of the international society for the study of biologic rhythms. Int J Chronobiol 1: 31–63

    PubMed  CAS  Google Scholar 

  • Hamner KC (1960) Photoperiodism and circadian rhythms. Cold Spring Harbor Symp Quant Biol 25: 269–277

    PubMed  CAS  Google Scholar 

  • Hamner KC (1969) Glycine max (L.) Merill. In: Evans LT (ed) The induction of flowering. Cornell Univ Press, Ithaca, NY, pp 62–89

    Google Scholar 

  • Hastings JW, Sweeney BM (1957) On the mechanism of temperature independence in a biological clock. Proc Natl Acad Sci USA 43: 804–811

    PubMed  CAS  Google Scholar 

  • Hastings JW, Astrachan L, Sweeney BM (1961) A persistent daily rhythm in photosynthesis. J Gen Physiol 45: 69–76

    PubMed  CAS  Google Scholar 

  • Hawkins MD, Smith H, Square K (1975) Oscillating chemical reactions. Educ Chem 12: 144–146

    CAS  Google Scholar 

  • Heathcote DG (1966) A new type of rhythmic plant movement: micronutation. J Exp Bot 17: 690–695

    Google Scholar 

  • Henson IE, Algarswamy G, Mahalakshmi V, Bidinger FR (1982) Diurnal changes in endogenous abscisic acid in leaves of pearl millet (.Pennisetum americanum L. Leeke) under field conditions. J Exp Bot 33: 416–425

    CAS  Google Scholar 

  • Henssen A (1954) Die Dauerorgane von Spirodela polyrrhiza (L.) Schleid. in physiolo-gischer Betrachtung. Flora 141: 529–566

    Google Scholar 

  • Hertel R, Flory R (1968) Auxin movement in corn coleoptiles. Planta 82: 123–144

    CAS  Google Scholar 

  • Hess B (1977) Oscillating reactions. Trends Biochem Sci 2: 193–195

    CAS  Google Scholar 

  • Hess B, Boiteux A (1971) Oscillatory phenomena in biochemistry. Annu Rev Biochem 40: 237–258

    PubMed  CAS  Google Scholar 

  • Hewett EW, Wareing PF (1973) Cytokinins in Populus x robusta Schneid: Light effects on endogenous levels. Planta 114: 119–129

    CAS  Google Scholar 

  • Hillman WS (1956) Injury of tomato plants by continuous light and unfavorable photoperiodic cycles. Am J Bot 43: 89–96

    Google Scholar 

  • Hillman WS (1964) Endogenous circadian rhythms and the response of Lemna perpusilla to skeleton photoperiods. Am Nat 98: 323–328

    Google Scholar 

  • Hillman WS (1970) Carbon dioxide output as an index of circadian timing in Lemna photoperiodism. Plant Physiol 45: 273–279

    PubMed  CAS  Google Scholar 

  • Hillman WS (1971) Entrainment of Lemna C02 output through phytochrome. Plant Physiol 48: 770–774

    PubMed  CAS  Google Scholar 

  • Hillman WS (1976) Biological rhythms and physiological timing. Annu Rev Plant Physiol 27: 159–179

    CAS  Google Scholar 

  • Hillman WS, Koukkari WL (1967) Phytochrome effects in the nyctinastic leaf movements of Albizzia julibrissin and some other legumes. Plant Physiol 42: 1413–1418

    PubMed  CAS  Google Scholar 

  • Hull HM, Went FW, Yamada N (1954) Fluctuations in sensitivity of the Avena test due to air pollutants. Plant Physiol 29: 182–187

    PubMed  CAS  Google Scholar 

  • Jaffe MJ, Galston AW (1967) Phytochrome control of rapid nyctinastic movements and membrane permeability in Albizzia julibrissin. Planta 77: 135–141

    CAS  Google Scholar 

  • Jaffe MJ, Galston AW (1968) The physiology of tendrils. Annu Rev Plant Physiol 19: 412–434

    Google Scholar 

  • Janardhan KV, Yasudeva N, Gopel NH (1973) Diurnal variation of endogenous auxin in arabica coffee leaves. J Plant Crops 1 (Suppl): 93–95

    Google Scholar 

  • Jenkinson IS (1962a) Bioelectric oscillations of bean roots: Further evidence for a feedback oscillator. II. Intracellular plant root potentials. Aust J Biol Sci 15: 101–114

    CAS  Google Scholar 

  • Jenkinson IS (1962b) Bioelectric oscillations of bean roots: Further evidence for a feedback oscillator. III. Excitation and inhibition of oscillations by osmotic pressure, auxins, and antiauxins. Aust J Biol Sci 15: 115–125

    CAS  Google Scholar 

  • Jenkinson IS, Scott BIH (1961) Bioelectric oscillations of bean roots: Further evidence for a feedback oscillator. I. Extracellular response to oscillations in osmotic pressure and auxin. Aust J Biol Sci 14: 231–247

    CAS  Google Scholar 

  • Johnsson A (1973) Oscillatory transpiration and water uptake of Avena plants. I. Prelimi¬nary observations. Physiol Plant 28: 40–50

    Google Scholar 

  • Johnsson A (1979) Growth movements not directed primarily by external stimuli. In: Haupt W, Feinleib ME (eds) Physiology of movements. Encyclopedia of plant physiology, new ser vol 7. Springer, Berlin Heidelberg New York, pp 627–646

    Google Scholar 

  • Kamiya N, Nakajima H (1955) Some aspects of rhythmicity of the protoplasmic streaming in the myxomycete Plasmodium. Jpn J Bot 15: 49–55

    Google Scholar 

  • Kapuya JA, Hall MA (1977) Diurnal variations in endogenous ethylene levels in plants. New Phytol 79: 233–237

    CAS  Google Scholar 

  • Karve AD, Salanki AS (1964) A feedback oscillation of a relatively high frequency in hypocotyls of Carthamus tinctorius L. Z Pflanzenphysiol 52: 98–102

    Google Scholar 

  • Kasamo K, Yamaki T (1974) Effect of auxin on Mg+ +-activated and -inhibited ATPases from mung bean hypocotyls. Plant Cell Physiol 15: 965–970

    CAS  Google Scholar 

  • Kinet JM, Bernier G, Bodson M, Jacqmard A (1973) Circadian rhythms and the induction of flowering in Sinapis alba. Plant Physiol 51: 597–600

    Google Scholar 

  • King RW (1975) Multiple circadian rhythms regulate photoperiodic flowering responses in Chenopodium rubrum. Can J Bot 53: 2631–2638

    Google Scholar 

  • Knypl JS (1973) Synergistic induction of nitrate reductase activity by nitrate and benzyl-aminopurine in detached cucumber cotyledons. Z Pflanzenphysiol 70: 1–11

    CAS  Google Scholar 

  • Kögl F, Haagen-Smit AJ, Hulssen CJ van (1936) Über den Einfluss unbekannter äusserer Faktoren bei Versuchen mit Avena sativa. Z Physiol Chem 241: 17–33

    Google Scholar 

  • Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sei USA 68: 2112–2116

    CAS  Google Scholar 

  • Koukkari WL (1974) Rhythmic movements of Albizzia julibrissin pinnules. In: Scheving LE, Halberg F, Pauly JE (eds) Chronobiology. Igaku Shoin, Toyko, pp 676–678

    Google Scholar 

  • Koukkari WL, Duke SH (1973) Regulating the growth of an aquatic plant: Lemna perpusilla. J Minn Acad Sci 39: 12–14

    Google Scholar 

  • Koukkari WL, Hillman WS (1968) Pulvini as the photoreceptors in the phytochrome effect on nyctinasty in Albizzia julibrissin. Plant Physiol 43: 698–704

    PubMed  CAS  Google Scholar 

  • Koukkari WL, Johnson MA (1979) Oscillations of leaves of Abutilon theophrasti (velvet- leaf) and their sensitivity to bentazon in relation to low and high humidity. Physiol Plant 47: 158–162

    CAS  Google Scholar 

  • Koukkari WL, Soulen TK (1981) Circadian time structure of vascular flowering plants. In: Kaiser HE (ed) Neoplasms - comparative pathology of growth in animals, plants, and man. Williams & Wilkins, Baltimore, pp 175–184

    Google Scholar 

  • Koukkari WL, Halberg F, Gordon SA (1973) Quantifying rhythmic movements oi Albizzia julibrissin pinnules. Plant Physiol 51: 1084–1088

    PubMed  CAS  Google Scholar 

  • Koukkari WL, Duke SH, Halberg F, Lee JK (1974) Circadian rhythmic leaflet movements: Student exercise in chronobiology. Chronobiologia 1: 281–302

    PubMed  CAS  Google Scholar 

  • Kraatz GW, Andersen RN (1978) Response of velvetleaf and sicklepod to herbicide applications at various time of the day. North Centr Weed Conf Proc 33: 33

    Google Scholar 

  • Kyriacou CP, Hall JC (1980) Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male’s courtship song. Proc Natl Acad Sei USA 77: 6729–6733

    CAS  Google Scholar 

  • Lang A (1965) Physiology of flower initiation. In: Ruhland W (ed) Encyclopedia of plant physiology Vol XV/1. Springer, Berlin Göttingen Heidelberg, pp 1380–1536

    Google Scholar 

  • Lecoq C, Koukkari WL, Brenner ML (1983) Rhythmic changes in abscisic acid (ABA) content of soybean leaves. Plant Physiol 72 (Suppl) 52

    Google Scholar 

  • Lee OY, Stadelmann EJ (1972) Light as a factor in water permeability changes in Pisum parenchyma. Plant Physiol 49 (Suppl 62

    Google Scholar 

  • Lee-Stadelmann OY, Stadelmann EJ (1979) Protoplasmic aspects of drought resistance in Pisum sativum: The development of protoplasmic tolerance. In: Goodin JR, North-ington DK (eds) Arid land plant resources. Cent Arid Semi-Arid Land Stud, Texas Tech Univ, pp 501–528

    Google Scholar 

  • Ludwig H, Hinze E, Junges W (1982) Endogene Rhythmen des Keimverhaltens der Samen von Kartoffeln, insbesondere von Solanum acaule. Seed Sei Technol 10: 77–86

    Google Scholar 

  • Lüttge U, Bauer K, Köhler D (1968) Früh Wirkungen von Gibberellinsäure auf Membrantransporte in jungen Erbsenpflanzen. Biochim Biophys Acta 150: 452–459

    PubMed  Google Scholar 

  • McComb AJ (1962) An effect of gibberellic acid on circumnutation. New Phytol 61: 128–131

    Google Scholar 

  • McDaniel M, Sulzman FM, Hastings JW (1974) Heavy water slows the Gonyaulax clock: A test of the hypothesis that D20 affects circadian oscillations by diminishing the apparent temperature. Proc Natl Acad Sci USA 71: 4389–4391

    PubMed  CAS  Google Scholar 

  • McEvoy RC, Koukkari WL (1972) Effects of ethylenediaminetetraacetic acid, auxin, and gibberellic acid on phytochrome-controlled nyctinasty in Albizzia julibrissin. Physiol Plant 26: 143–147

    CAS  Google Scholar 

  • McMichael BL, Hanny BW (1977) Endogenous levels of abscisic acid in water-stressed cotton leaves. Agron J 69: 979–982

    CAS  Google Scholar 

  • Miller CS (1975) Short interval leaf movements of cotton. Plant Physiol 55: 562–566

    PubMed  CAS  Google Scholar 

  • Morgan PW, Bauer JR (1970) Involvement of ethylene in picloram-induced leaf movement response. Plant Physiol 46: 655–659

    PubMed  CAS  Google Scholar 

  • Newman IA (1963) Electric potentials and auxin translocation in Avena. Aust J Biol Sci 16: 629–646

    CAS  Google Scholar 

  • Nicolis G, Portnow J (1973) Chemical oscillations. Chem Rev 73: 365–384

    CAS  Google Scholar 

  • Njus D, Sulzman FM, Hastings JW (1974) Membrane model for the circadian clock. Nature 248: 116–120

    PubMed  CAS  Google Scholar 

  • Noyes RM, Field RJ (1974) Oscillatory chemical reactions. Annu Rev Phys Chem 25: 95–119

    CAS  Google Scholar 

  • Overbeek von J, Mason MIR (1968) Dormin and cytokinin: growth regulation of Lemna. Acta Bot Neerl 17: 441–444

    Google Scholar 

  • Page JZ, Kingsbury JM (1968) Culture studies on the marine green alga Halicystis parvula- Derbesia tenuissima. II. Synchrony and periodicity in gamete formation and release. Am J Bot 55: 1–11

    Google Scholar 

  • Page JZ, Sweeney BM (1968) Culture studies on the marine green alga Halicystis parvula- Derbesia tenuissima. III. Control of gamete formation by an endogenous rhythm. J Phycol 4: 253–260

    Google Scholar 

  • Pallas JE Jr, Samish YB, Willmer CM (1974) Endogenous rhythmic activity of hotosynthesis, transpiration, dark respiration, and carbon dioxide compensation point of peanut leaves. Plant Physiol 53: 907–911

    PubMed  CAS  Google Scholar 

  • Parkash V (1972) Synergism between cytokinins and nitrate in induction of nitrate reductase activity in fenugreek cotyledons. Planta 102: 372–373

    CAS  Google Scholar 

  • Pavlidis T (1969) Populations of interacting oscillators and circadian rhythms. J Theor Biol 22: 418–436

    PubMed  CAS  Google Scholar 

  • Pavlidis T (1971) Populations of biochemical oscillators as circadian clocks. J Theor Biol 33: 319–338

    PubMed  CAS  Google Scholar 

  • Pavlidis T (1973) Biological oscillators: their mathematical analysis. Academic Press, London New York

    Google Scholar 

  • Pavlidis T, Kauzmann W (1969) Toward a quantitative biochemical model for circadian oscillators. Arch Biochem Biophys 132: 338–348

    PubMed  CAS  Google Scholar 

  • Pfeffer W (1906) The physiology of plants. In: Ewart AJ (ed) A treatise upon the metabolism and sources of energy in plants, vol III. Clarendon, Oxford Phillips IDJ ( 1971 ) The biochemistry and physiology of plant growth hormones. McGraw-Hill, New York

    Google Scholar 

  • Pirson A, Gollner E (1953) Beobachtungen zur Entwicklungsphysiologie der Lemna minor L. Flora 140: 485–498

    Google Scholar 

  • Pittendrigh CS (1954) On temperature independence in the clock system controlling emergence time in Drosophila. Proc Natl Acad Sci USA 40: 1018–1029

    PubMed  CAS  Google Scholar 

  • Pittendrigh CS, Bruce VG, Rosensweig NS, Rubin ML (1959) Growth patterns in Neuro-spora. Nature 184: 169–170

    Google Scholar 

  • Posner HB (1967) Aquatic vascular plants. In: Wilt FH, Wessells NK (eds) Methods in developmental biology. Crowell, New York, pp 301–317

    Google Scholar 

  • Putnam AR, Ries SK (1968) Factors influencing the phytotoxicity and movement of paraquat in quackgrass. Weed Sci 16: 80–83

    CAS  Google Scholar 

  • Pye EK (1969) Biochemical mechanisms underlying the metabolic oscillations in yeast. Can J Bot 47: 271–285

    CAS  Google Scholar 

  • Queiroz O (1974) Circadian rhythms and metabolic patterns. Annu Rev Plant Physiol 25: 115–134

    CAS  Google Scholar 

  • Racusen R, Satter RL (1975) Rhythmic and phytochrome-regulated changes in ransmembrane potential in Samanea pulvini. Nature 255: 408–410

    PubMed  CAS  Google Scholar 

  • Rama Das VS, Rao JVS, Rao KR (1964) Endogenous auxin and its diurnal rhythm in leaves. Indian J Plant Physiol 7: 25–29

    Google Scholar 

  • Raska Z, Hladik F (1969) Diurnal dynamics of natural growth substances in peach leaves and shoots. Biol Plant 11: 60–67

    CAS  Google Scholar 

  • Raven JA (1975) Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74: 163–172

    CAS  Google Scholar 

  • Reinberg A (1971) La chronobiologie. Recherche 2: 242–250

    CAS  Google Scholar 

  • Retzlaff G, Fischer A (1973) Die Beeinflussung der Assimilation verschiedener Pflanzen durch Bentazon im Vergleich zur Selektivität. Mitt Biol Bundesanst Land-Forst- wirtsch 151: 179–180

    Google Scholar 

  • Rikin A, Chalutz E, Anderson JD (1983 a) Rhythmical changes in cotton (Gossypium hirsutum L.) seedlings: ethylene biosynthesis and cotyledon movement. Plant Physiol 72 (Suppl) 53

    Google Scholar 

  • Rikin A, St John JB, Wergin WP, Anderson JD (1983 b) Rhythmical changes in cotton (Gossypium hirsutum L.) seedlings: sensitivity to herbicides. Plant Physiol 72 (Suppl) 175

    Google Scholar 

  • Rubery PH, Sheldrake AR (1973) Effect of pH and surface charge on cell uptake of auxin. Nature New Biol 244: 285–288

    PubMed  CAS  Google Scholar 

  • Rubery PH, Sheldrake AR (1974) Carrier-mediated auxin transport. Planta 118: 101–121

    CAS  Google Scholar 

  • Sandberg G, Oden P, Dunberg A (1982) Population variation and diurnal changes in the content of indole-3-acetic acid of pine seedlings ( Pinus sylvestris L.) grown in a controlled environment. Physiol Plant 54: 375–380

    CAS  Google Scholar 

  • Satter RL (1979) Leaf movements and tendril curling. In: Haupt W, Feinleib ME (eds) Physiology of movements. Encyclopedia of plant physiology, new ser Vol 7. Springer, Berlin Heidelberg New York, pp 442–484

    Google Scholar 

  • Satter RL, Galston AW ( 1971 a) Phytochrome-controlled nyctinasty in Albizzia julibrissin. III. Interactions between endogenous rhythm and phytochrome in control of potassi-um flux and leaflet movement. Plant Physiol 48: 740–746

    PubMed  CAS  Google Scholar 

  • Satter RL, Galston AW (1971b) Potassium flux: a common feature of Albizzia leaflet movement controlled by phytochrome or endogenous rhythm. Science 174: 518–519

    PubMed  CAS  Google Scholar 

  • Satter RL, Galston AW (1973) Leaf movements: Rosetta stone of plant behavior? Bioscience 23: 407–416

    CAS  Google Scholar 

  • Satter RL, Marinoff P, Galston AW (1970 a) Phytochrome-controlled nyctinasty in Albizzia julibrissin. II. Potassium flux as a basis for leaflet movement. Am J Bot 57: 916–926

    CAS  Google Scholar 

  • Satter RL, Sabnis D, Galston AW (1970 b) Phytochrome-controlled nyctinasty in Albizzia julibrissin. I. Anatomy and fine structure of the pulvinule. Am J Bot 57: 374–381

    Google Scholar 

  • Satter RL, Marinoff P, Galston AW (1972) Phytochrome-controlled nyctinasty in Albizzia julibrissin. IV. Auxin effects on leaflet movement and K flux. Plant Physiol 50: 235–241

    PubMed  CAS  Google Scholar 

  • Satter RL, Applewhite PB, Kreis DJ Jr, Gaston AW (1973) Rhythmic leaflet movement in Albizzia julibrissin. Plant Physiol 52: 202–207

    PubMed  CAS  Google Scholar 

  • Satter RL, Applewhite PB, Galston AW (1974 a) Rhythmic potassium flux in Albizzia. Effect of aminophylline, cations, and inhibitors of respiration and protein synthesis. Plant Physiol 54: 280–285

    PubMed  CAS  Google Scholar 

  • Satter RL, Geballe GT, Applewhite PB, Galston AW (1974 b) Potassium flux and leaf movement in Samanea saman. I. Rhythmic Movement. J Gen Physiol 64: 413–430

    PubMed  CAS  Google Scholar 

  • Satter RL, Geballe GT, Galston AW (1974c) Potassium flux and leaf movement in Samanea saman. II. Phytochrome-controlled movement. J Gen Physiol 64: 431–442

    PubMed  CAS  Google Scholar 

  • Schrempf M (1980) The action of abscisic acid on the circadian petal movement of Kalanchoe blossfeldiana. Z Pflanzenphysiol 100: 397–407

    CAS  Google Scholar 

  • Schuster JL (1970) Plains prickly pear control by night applications of phenoxy herbicides. Proc Southern Weed Sei Soc 23: 245–249

    Google Scholar 

  • Schwintzer CR (1971) Energy budgets and temperatures of nyctinastic leaves on freezing nights. Plant Physiol 48: 203–207

    PubMed  CAS  Google Scholar 

  • Scott BIH (1957) Electric oscillations generated by plant roots and a possible feedback mechanism responsible for them. Aust J Biol Sci 10: 164–179

    Google Scholar 

  • Scott BIH (1962) Feedback-induced oscillations of five-minute period in the electrical field of the bean root. Ann NY Acad Sci 98: 890–900

    PubMed  CAS  Google Scholar 

  • Scott BIH, Martin DW (1962) Bioelectric fields of bean roots and their relation to salt accumulation. Aust J Biol Sci 15: 83–100

    CAS  Google Scholar 

  • Scott BIH, McAulay AL, Jeyes P (1955) Correlation between the electric current generated by a bean root growing in water and the rate of elongation of the root. Aust J Biol Sci 8: 36–46

    CAS  Google Scholar 

  • Seifriz W (1950) Gregarious flowering of Chusquea. Nature 165: 635–636

    PubMed  CAS  Google Scholar 

  • Seitmann H, Peedin GF (1972) Application time during the day influences chemical sucker control. Tobacco Sci 16: 88

    Google Scholar 

  • Shen-Miller J (1973 a) Rhythmicity in the basipetal transport of indoleacetic acid through coleoptiles. Plant Physiol 51:615–619

    Google Scholar 

  • Shen-Miller J (1973 b) Rhythmic differences in the basipetal movement of indoleacetic acid between separated upper and lower halves of geotropically stimulated corn cole- optiles. Plant Physiol 52:166–170

    Google Scholar 

  • Shen-Miller J, Morris L (1967) Reciprocity in the geotropic response of gravity-compensated Avena coleoptiles. Argonne Nat Lab Biol Med Res Div Annu Rep, ANL-7409, pp 102–104

    Google Scholar 

  • Shen-Miller J, Noack NG, Baker JE (1970) Kinetics and periodicity of auxin transport, geotropic curvature and growth. Argonne Nat Lab Biol Med Res Div Annu Rep, ANL-7770, pp 108–110

    Google Scholar 

  • Sheriff DW (1974) A model of plant hydraulics under non-equilibrium conditions. Stems J Exp Bot 25: 552–561

    Google Scholar 

  • Shetty GP (1969) Effect of cotyledon injury upon geotropically induced oscillations in hypocotyls of Carthamus tinctorius L. Indian J Plant Physiol 11: 132–140

    Google Scholar 

  • Shibaoka H, Yamaki T (1959) Studies on the growth movement of sunflower plant. Sci Pap Coll Gen Educ, Univ Tokyo 9: 105–126

    Google Scholar 

  • Simon E, Satter RL, Galston AW (1976) Circadian rhythmicity in excised Samanea pulvini. I. Sucrose-white light interactions. Plant Physiol 58: 417–420

    PubMed  CAS  Google Scholar 

  • Skoog F, Broyer TC, Grossenbacher KA (1938) Effects of auxin on rates, periodicity, and osmotic relations in exudation. Am J Bot 25: 749–759

    CAS  Google Scholar 

  • Skrove D, Rinnan T, Johnsson A (1982) Effect of abscisic acid on the circadian leaf movements of Oxalis regnellii. Physiol Plant 55: 221–225

    CAS  Google Scholar 

  • Smith AP (1974) Bud temperature in relation to nyctinastic leaf movement in an Andean giant rosette plant. Biotropica 6: 263–266

    Google Scholar 

  • Spurny M (1968) Spiral oscillations of the growing radicle in Pisum sativum L. Naturwissenschaften 55: 46

    Google Scholar 

  • Stahlberg R, Polevoi VV (1979) Nature of rhythmic oscillations of the membrane potential in corn coleoptile cells. Dokl Acad Nauk USSR 247: 1022–1024

    Google Scholar 

  • Stälfelt MG (1946) The influence of light upon the viscosity of protoplasm. Ark Bot 33: 1–17

    Google Scholar 

  • Stälfelt MG (1965) The relation between the endogenous and induced elements of the stomatal movements. Physiol Plant 18: 177–184

    Google Scholar 

  • Steer BT (1976) Rhythmic nitrate reductase activity in leaves of Capsicum annuum L. and the influence of kinetin. Plant Physiol 57: 928–932

    PubMed  CAS  Google Scholar 

  • Steveninck van RFM (1976) Effect of hormones and related substances on ion transport. In: Lüttge U, Pitman MG (eds) Transport in plants II: tissues and organs. Encyclopedia of plant physiology new ser Vol 2/B. Springer, Berlin Heidelberg New York, pp 307–342

    Google Scholar 

  • Sulzman FM, Edmunds LN (1972) Persisting circadian oscillations in enzyme activity in non-dividing cultures of Euglena. Biochem Biophys Res Commun 47: 1338–1344

    PubMed  CAS  Google Scholar 

  • Sweeney BM (1963) Biological clocks in plants. Annu Rev Plant Physiol 14:411–440 Sweeney BM ( 1969 ) Rhythmic phenomena in plants. Academic Press, London New York

    Google Scholar 

  • Sweeney BM (1974a) A physiological model for circadian rhythms derived from the Acetabularia rhythm paradoxes. Int J Chronobiol 2: 25–33

    PubMed  CAS  Google Scholar 

  • Sweeney BM (1974b) The potassium content of Gonyaulax polyedra and phase changes in the circadian rhythm of stimulated bioluminescence by short exposure to ethanol and valinomycin. Plant Physiol 53: 337–342

    PubMed  CAS  Google Scholar 

  • Sweeney BM (1974c) The temporal regulation of morphogenesis in plants, hourglass and oscillator. In: Basic mechanisms in plant morphogenesis. Brookhaven Symp Biol 25: 95–110

    Google Scholar 

  • Sweeney BM (1979) Endogenous rhythms in the movement of plants. In: Haupt W, Feinleib ME (eds) Physiology of movements. Encyclopedia of plant physiology, new ser vol 7. Springer, Berlin Heidelberg New York, pp 71–93

    Google Scholar 

  • Sweeney BM, Haxo FT (1961) Persistence of a photosynthetic rhythm in enucleated Acetabularia. Science 134: 1361–1363

    PubMed  CAS  Google Scholar 

  • Takimoto A, Hamner KC (1964) Effect of temperature and preconditioning on photoperiodic response of Pharbitis nil. Plant Physiol 39: 1024–1030

    PubMed  CAS  Google Scholar 

  • Tanada T (1983) Interaction of phytohormones and far-red irradiation on the nyctinastic closing of Albizzia julibrissin pinnules. Physiol Plant 57: 42–46

    CAS  Google Scholar 

  • Tasseron-de Jong FG, Veldstra H (1971) Investigations on cytokinins. I. Effects of 6-ben- zylaminopurine on growth and starch content of Lemna minor. Physiol Plant 24: 235–238

    CAS  Google Scholar 

  • Thimann KV (1969) The auxins. In: Wilkins MB (ed) The physiology of plant growth and development. McGraw-Hill, New York, pp 1–45

    Google Scholar 

  • Tronchet A, Marchai J (1960) Action de la gibberelline sur la croissance et les mouvements de Lactuca saligna L. Bull Hist Nat 62: 99–100

    Google Scholar 

  • Tronchet A, Tronchet J, Perney J (1960) Sur les mouvements revolutifs de la tige de Zinnia elegans induits par l’acide gibberellique. CR Acad Sci Paris 250: 576–578

    Google Scholar 

  • Tucker DJ, Mansfield TA (1971) A simple bioassay for detecting “antitransplant” activity of naturally occurring compounds such as abscisic acid. Planta 98: 157–163

    CAS  Google Scholar 

  • Upcroft JA, Done J (1972) Evidence for a complex control system for nitrate reductase in wheat leaves. FEBS Lett 21: 142–144

    PubMed  CAS  Google Scholar 

  • Varner JE, Ho DT (1976) Hormones. In: Bonner J, Varner JE (eds) Plant biochemistry, 3rd edn. Academic Press, London New York, pp 713–770

    Google Scholar 

  • Wagner E, Frosch S, Deitzer GF (1974) Metabolic control of photoperiodic time measurement. J Interdiscipl Cycle Res 5: 240–246

    CAS  Google Scholar 

  • Wagner E, Deitzer GF, Fischer S, Frosh S, Kempf O, Stroebele L (1975) Endogenous oscillations in pathways of energy transduction as related to circadian rhythmicity and photoperiodic control. Biosystems 7: 68–76

    PubMed  CAS  Google Scholar 

  • Ward RR (1971) The living clocks. New English Library, London Wassermann L (1959) Die Auslösung endogen-tagesperiodischer Vorgänge bei Pflanzen durch einmalige Reize. Planta 53: 647–669

    Google Scholar 

  • Weaver ML, Nylund RE (1963) Factors influencing the tolerance of peas to MCPA. Weeds 11: 142–148

    Google Scholar 

  • Weij van der HG (1932) Der Mechanismus des Wuchsstofftransportes II. Ree Trav Bot Neerl 31: 810–857

    Google Scholar 

  • Went FW (1928) Wuchsstoff und Wachstum. Ree Trav Bot Neerl 25: 1–116

    Google Scholar 

  • Went FW (1960) Photo- and thermoperiodic effects in plant growth. Cold Spring Harbor Symp Quant Biol 25:221–230

    Google Scholar 

  • Went FW (1962) Ecological implications of the autonomous 24-hour rhythm in plants. Ann NY Acad Sci 98: 866–875

    PubMed  CAS  Google Scholar 

  • Went FW (1974) Reflections and speculations. Annu Rev Plant Physiol 25: 1–26

    CAS  Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. Macmillan, New York

    Google Scholar 

  • Wilkins MB (1962) An endogenous rhythm in the rate of carbon dioxide output of Bryophyllum. III. The effects of temperature on the phase and period of the rhythm. Proc R Soc London Ser B 156: 220–241

    Google Scholar 

  • Wilkins MB, Warren DM (1963) The influence of low partial pressures of oxygen on the rhythm in the growth rate of the Avena coleoptile. Planta 60: 261–273

    CAS  Google Scholar 

  • Williams CN, Raghavan V (1966) Effects of light and growth substances on the diurnal movements of the leaflets of Mimosa pudica. J Exp Bot 17: 742–749

    CAS  Google Scholar 

  • Wurtman RJ (1967) Ambiguities in the use of the term circadian. Science. 156: 104

    PubMed  CAS  Google Scholar 

  • Yin HC (1941) Studies on the nyctinastic movement of the leaves of Carica papaya. Am J Bot 28: 250–261

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Koukkari, W.L., Warde, S.B. (1985). Rhythms and Their Relations to Hormones. In: Pharis, R.P., Reid, D.M. (eds) Hormonal Regulation of Development III. Encyclopedia of Plant Physiology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67734-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67734-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67736-6

  • Online ISBN: 978-3-642-67734-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics