Skip to main content

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 11))

Abstract

Photoperiod has been shown to affect the tissue levels of hormones in all of the major categories. More difficult to assess is the precise role of these variations in controlling the many responses of plants to daylength. The great range of photoperiodic behavior (see Vince-Prue 1975) precludes discussion of the hormonal regulation of all daylength-controlled phenomena and this review, there-fore, concentrates on selected responses in three major areas:

  1. a)

    vegetative growth (stem elongation),

  2. b)

    dormancy phenomena (the formation of storage organs and resting buds),

  3. c)

    reproductive behavior (the formation of floral primordia).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles FB (1967) Inhibition of flowering in Xanthium pennsylvanicum by ethylene. Plant Physiol 42: 608–609

    PubMed  CAS  Google Scholar 

  • Alden J, Hermann RK (1971) Aspects of the cold hardiness mechanism in plants. Bot Rev 37: 37–142

    CAS  Google Scholar 

  • Alleweldt G, Düring H (1972) Einfluss der Photoperiode auf Wachstum und Abscisinsäu-

    Google Scholar 

  • regehalt der Rebe. Vitis 111:280–288

    Google Scholar 

  • Alvim RW, Hewett EW, Saunders PF (1976) Seasonal variation in the hormone content of willow. I. Changes in abscisic acid content and cytokinin activity in the xylem sap. Plant Physiol 57: 474–476

    Google Scholar 

  • Alvim RW, Thomas S, Saunders PF (1978) Seasonal variation in the hormone content of willow. II. Effect of photoperiod on growth and abscisic acid content of trees under field conditions. Plant Physiol 62: 779–780

    Google Scholar 

  • Alvim RW, Saunders PF, Barros RS (1979) Abscisic acid and the photoperiodic induction of dormancy in Salix viminalis L. Plant Physiol 63: 774–777

    PubMed  CAS  Google Scholar 

  • Angrish R, Nanda KK (1982) Dormancy and flowering process in reproductive buds of Salix babylonica cultured in vitro. Z Pflanzenphysiol 106:263-269 Asahira T, Nitsch JP ( 1968 ) Tuberization in vitro: Ullucus tuberosus et Dioscorea. Bull

    Google Scholar 

  • Soc Bot (France) 115:345-352 Badizadegan M, Tafazoli E, Kheradnam M (1972) Effect of N6-benzyladenine on vegetative growth and tuber production in potato. Am Potato J 49:109–116

    Google Scholar 

  • Bae M, Mercer EI (1970) The effect of long- and short-day photoperiods on the sterol levels in the leaves of Solanum andigena. Phytochemistry 9: 63 - 68

    CAS  Google Scholar 

  • Baldev B, Lang A (1965) Control of flower formation by growth retardants and gibberel-lin in Samolus parvtflorus a long-day plant. Am J Bot 52: 408–417

    CAS  Google Scholar 

  • Batutis EJ, Ewing EE (1982) Far-red reversal of red light effect during long-night induction of potato (/Solanum tuberosum L.) tuberization. Plant Physiol 69: 672–674

    PubMed  CAS  Google Scholar 

  • Beever JE, Woolhouse HW (1973) Increased cytokinin from root systems of Perilla frutescens and flower and fruit development. Nature 246: 31–32

    CAS  Google Scholar 

  • Bentley B, Morgan CR, Morgan DG, Saad FA (1975) Plant growth substances and effects of photoperiod on flower bud development in Phaseolus vulgaris. Nature 256: 121–122

    CAS  Google Scholar 

  • Bernier G, Kinet J, Jacqmard A, Havelange A, Bodson M (1977) Cytokinin as a possible component of the floral stimulus in Sinapis alba. Plant Physiol 60: 282–285

    PubMed  CAS  Google Scholar 

  • Betria AI, Montaldi ER (1974) Light effects on bulb differentiation and leaf growth in Cyperus rotundus L. Phyton 32: 1–8

    Google Scholar 

  • Biran I, Gur I, Halevy AH (1972) The relationship between exogenous growth inhibitors and endogenous levels of ethylene, and tuberization of dahlias. Physiol Plant 27: 226–230

    CAS  Google Scholar 

  • Biran I, Lesham B, Gur I, Halevy AH (1974) Further studies on the relationship between growth regulators and tuberization of dahlias. Physiol Plant 31: 23–28

    CAS  Google Scholar 

  • Biswas PK, Paul KB, Henderson JHM (1967) Effects of steriods on chrysanthemum in relation to growth and flowering. Nature 213: 917–918

    CAS  Google Scholar 

  • Bledsoe CS, Ross CW (1978) Metabolism of mevalonic acid in vegetative and induced plants of Xanthium strumarium. Plant Physiol 62: 683–686

    PubMed  CAS  Google Scholar 

  • Blondon F, Jacques R (1970) Action de la lumière sur l’initiation florale du Lolium temulentum L: spèctre d’action et ròle du phytochrome. CR Acad Sci Ser D 270: 947–950

    Google Scholar 

  • Bonner J, Heftman JE, Zeevaart JAD (1963) Suppression of fiorai induction by inhibition of steriod biosynthesis. Plant Physiol 38: 81–88

    PubMed  CAS  Google Scholar 

  • Booth A, Lovell PH (1972) The effect of pre-treatment with gibberellic acid on the distribution of phytosynthate in intact and disbudded plants of Solanum tuberosum L. New Phytol 1: 795–804

    Google Scholar 

  • Borah MH, Milthorpe F (1962) Growth of the potato as influenced by temperature. Indian J Plant Physiol 5: 53–72

    Google Scholar 

  • Borkowska B, Powell LE (1982/1983) Abscisic acid relationships in dormancy of apple buds. Sci Hortic 18: 111–117

    Google Scholar 

  • Bowen MR, Hoad GV (1968) Inhibitor content of phloem and xylem sap obtained from willow ( Salix viminalis L.) entering dormancy. Planta 81: 64–70

    Google Scholar 

  • Brewster JL (1977) The physiology of the onion. Hortic Abst 47: 17–23

    Google Scholar 

  • Brix H, Portlock FT (1982) Flowering response of western hemlock seedlings to gibberel-lin and water-stress treatments. Can J For Res 12 (1): 76–82

    CAS  Google Scholar 

  • Burg SP, Burg E A (1966) Interaction between auxin and ethylene and its role in plant growth. Proc Natl Acad Sci USA 55: 262–269

    PubMed  CAS  Google Scholar 

  • Carr DJ (1967) The relationship between florigen and the flower hormones. Ann NY Acad Sci 144: 305–312

    Google Scholar 

  • Catchpole AH, Hillman J (1969) Effect of ethylene on tuber initiation in Solanum tuberosum L. Nature 223: 1387

    CAS  Google Scholar 

  • Cathey HM (1968 a) Response of Dianthus caryophyllus L. (carnation) to synthetic abscisic acid. Proc Am Soc Hortic Sci 93:560–568

    Google Scholar 

  • Cathey HM (1968 b) Response of some ornamental plants to synthetic abscisic acid. Proc Am Soc Hortic Sci 93:693–698

    Google Scholar 

  • Chailakhyan M KH (1936) New facts in support of the hormonal theory of plant development. Dokl Akad Nauk USSR 12: 443–447

    Google Scholar 

  • Chailakhyan M KH (1940) Translocation of the flowering hormones across various plant organs. III. Across the root. Dokl Akad Nauk USSR 27: 373–376

    Google Scholar 

  • Chailakhyan M KH (1958) Hormonale Faktoren des Pflanzenblühens. Biol Zentralbl 77: 641–662

    Google Scholar 

  • Chailakhyan M KH (1968) Flowering hormones of plants. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of growth substances. Runge Press, Ottawa, pp 1317–1340

    Google Scholar 

  • Chailakhyan M KH (1975 a) Substances of plant flowering. Biol Plant 17:1–11

    Google Scholar 

  • Chailakhyan M KH (1975 b) Forty years of research on the hormonal basis of plant development - some personal reflections. Bot Rev 41:1–29

    Google Scholar 

  • Chailakhyan M KH (1982) Hormonal substances in flowering. In: Wareing PF (ed) Plant growth substances 1982. Academic Press, London New York, pp 645–655

    Google Scholar 

  • Chailakhyan M KH, Butenko RG (1957) Movements of assimilates of leaves to shoots under different photoperiodic conditions of leaves. Fiziol Rast 4: 450–462

    CAS  Google Scholar 

  • Chailakhyan M KH, Lozhnikova UN (1966) Reaction of the interruption of darkness on plant gibberellins. Fiziol Rast 13: 833–841

    CAS  Google Scholar 

  • Chailakhyan M KH, Kakhidse NT, Milyeva EL, Gukasyan I A, Yanina LI (1969) Effects of daylength and gibberellins on growth rate, flowering, and complex differentiation in bi-colored coneflower. Fiziol Rast 16: 392–399

    CAS  Google Scholar 

  • Charnay D, Courduroux JC (1972) Acide abscissique et tubérisation in vitro de bourgeons de topinambour (Helianthus tuberosus L. var D19). CR Acad Sci (Paris) 275: 2351–2354

    CAS  Google Scholar 

  • Chouard P (1936) Nouvelles recherches experimentáis sur l’action de la folliculine sur floraison des Reines-Marguerites et de plusiers autres plantes. CR Seances Soc Biol 122: 823–825

    CAS  Google Scholar 

  • Chouard P (1957 a) Diversité des méchanismes des dormances, de la vernalisation et du photopériodisme revelée notamment par l’action de l’acide gibbérellique. Mem Soc Bot Fr 1956–1957:51–64

    Google Scholar 

  • Chouard P (1957 b) La journée courte ou l’acide gibbérellique comme succedanées du froid pour la vernalisation d’une plante vivace en rosette, le Scabiosa succisa L. CR Hebd Seances Acad Sci 245:2520–2522

    Google Scholar 

  • Chvojka L, Travnick M, Zakourilova M (1962) The influence of stimulating doses of 6-benzylaminopurine on awaking apple buds and on their consumption of oxygen. Biol Plant 4: 203–206

    CAS  Google Scholar 

  • Clark JE, Heath OVS (1962) Studies in the physiology of the onion plant. V. An investigation into the growth substance content of bulbing onions. J Exp Bot 13: 227–249

    Google Scholar 

  • Cleland CF (1974 a) Isolation of flower-inducing and flower-inhibiting factors from aphid honeydew. Plant Physiol 54:899–903

    Google Scholar 

  • Cleland CF (1974 b) The influence of salicylic acid on flowering and growth in the long- day plant. Lemna gibba G3. In: Bieleski RL, Ferguson AR, Cresswell MM (eds) Mechanisms of regulation of plant growth. R Soc NZ, Wellington, pp 553–557

    Google Scholar 

  • Cleland CF (1975) The florigen enigma. New Plant Physiol 7 /6: 1–4

    Google Scholar 

  • Cleland CF (1978) The flowering enigma. Bio Sci 28: 265–269

    Google Scholar 

  • Cleland CF (1982) The chemical control of flowering - a status report. In: Wareing PF (ed) Plant growth substances. Academic Press, London New York, pp 635–644

    Google Scholar 

  • Cleland CF, Ajami A (1974) Identification of the flower-inducing factor isolated from aphid honeydew as being salicylic acid. Plant Physiol 54: 904–906

    PubMed  CAS  Google Scholar 

  • Cleland CF, Ben-Tal Y (1983) Hormonal regulation of flowering and sex expression. In: Meudt WJ (ed) Strategies of plant reproduction. BARC Symp 6. Allanheld, Os-mun, Totowa, pp 157–180

    Google Scholar 

  • Cleland CF, Briggs WR (1969) Gibberellin and CCC effects on flowering and growth in the long-day plant, Lemna gibba G3. Plant Physiol 44: 503–507

    PubMed  CAS  Google Scholar 

  • Cleland CF, Tanaka O (1979) Effect of daylength on the ability of salicylic acid to induce flowering in the long-day plant Lemna gibba G3 and the short-day plant Lemna paucicostata 6746. Plant Physiol 64: 421–424

    PubMed  CAS  Google Scholar 

  • Cleland CF, Zeevaart JAD (1970) Gibberellins in relation to flowering and stem elongation in the long-day plant Silene armeria. Plant Physiol 46: 392–400

    PubMed  CAS  Google Scholar 

  • Cleland CF, Tanaka O, Fledman LJ (1982) Influence of plant growth substances and salicylic acid on flowering and growth in the Lemnaceae (duckweeds). Aquat Bot 13(1) (Spec Iss) 3–20

    Google Scholar 

  • Cockshull KE, Horridge JS (1978) 2-Chloroethanephosphonic acid and flower initiation by Chrysanthemum morifolium Ramat. in short days and in long days. J Hortic Sci 53: 89–90

    Google Scholar 

  • Coulter MW (1983) Isolation of a dark-induced hormone from Pharbitis nil. Plant Physiol 72 (Suppl):85, No 481

    Google Scholar 

  • Courduroux JC (1966) Mécanisme physiologique de la tubérisation du topinambour. Bull Soc Fr Physiol Veg 12: 213–232

    Google Scholar 

  • Courduroux JC (1967) Etude du mécanisme physiologique de la tubérisation chez le topinambour (.Helianthus tuber osus L.). Ann Sci Nat Bot 8: 215–355

    Google Scholar 

  • Czopek M (1964) Action of kinetin and gibberellic acid and red light on the germination of turions of Spirodela polyrrhiza. Bull Acad Pol Sci Cl II 12: 177–182

    Google Scholar 

  • Davies PJ, Emshwiller E, Gianfagna TJ, Proebsting WM, Noma M, Pharis RP (1982) The endogenous gibberellins of vegetative and reproductive tissue of G2 peas. Planta 154: 266–272

    CAS  Google Scholar 

  • Deitzer GF, Hayes R, Jabben M (1979) Kinetics and time dependence of the effect of far-red light on the photoperiodic induction of flowering in Wintex barley. Plant Physiol 64: 1015–1021

    PubMed  CAS  Google Scholar 

  • Digby J, Wareing PF (1966) The relationship between endogenous hormone levels in the plant and seasonal aspects of cambial activity. Ann Bot 30: 607–622

    CAS  Google Scholar 

  • Domanski R, Kozlowski TT (1968) Variations of kinetin-like activity in buds of Be tula and Populus during release from dormancy. Can J Bot 46: 397–403

    CAS  Google Scholar 

  • Downs RJ (1956) Photoreversibility of flower initiation. Plant Physiol 31: 279–284

    PubMed  CAS  Google Scholar 

  • Downs RJ, Borthwick HA (1956 a) Effect of photoperiod upon the vegetative growth of Weigela florida var variegata. Proc Am Soc Hortic Sei 68: 518–521

    Google Scholar 

  • Downs RJ, Borthwick HA (1956b) Effects of photoperiod on growth of trees. Bot Gaz 117: 310–326

    Google Scholar 

  • Dunberg A, Malmberg G, Sassa T, Pharis RP (1983) Metabolism of tritiated gibberellins A4 and A9 in Norway Spruce, Picea abies (L.) Karst. Effects of a cultural treatment known to enhance flowering. Plant Physiol 71: 257–262

    Google Scholar 

  • Durley RC, Pharis RP, Zeevart J AD (1975) Metabolism of (3H) gibberellin A20 under long- and short-day conditions. Planta 126: 139–149

    CAS  Google Scholar 

  • Eagles CF, Wareing PF (1964) The role of growth substances in the regulation of bud dormancy. Physiol Plant 17: 697–708

    CAS  Google Scholar 

  • El-Antably HMM, Wareing PF, Hillman J (1967) Some physiological responses to DL abscisin (dormin.). Planta 73: 74–90

    CAS  Google Scholar 

  • Ende van den H, Zeevaart JAD (1971) Influence of daylength on gibberellin metabolism and stem growth in Silene armeria. Planta 98: 164–176

    Google Scholar 

  • Erez A, Lavee S (1969) Prunin identification, biological activity and quantitative change in comparison to naringenin in dormant peach buds. Plant Physiol 44: 342–346

    PubMed  CAS  Google Scholar 

  • Esashi Y (1960) Studies on the formation and sprouting of aerial tubers in Begonia evansiana Adr. IV. Cutting method and tuberizing stages. Sei Rep Tohoku Univ 26: 239–249

    Google Scholar 

  • Esashi Y (1961) Studies on the formation and sprouting of aerial tubers in Begonia evansiana Andr. V. Antagonistic action of long-days to short-day response. Plant Cell Physiol 2: 117–127

    Google Scholar 

  • Esashi Y (1966) The relation between red and blue or far-red lights in the night interruption of the photoperiodic tuberization of Begonia evansiana. Plant Cell Physiol 7: 405–414

    CAS  Google Scholar 

  • Esashi Y, Leopold AC (1968) Regulation of tuber development in Begonia evansiana by cytokinin. In: Wightman F, Setterfleld R (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 923–941

    Google Scholar 

  • Evans LT (1960) Inflorescence initiation in Lolium temulentum L. II. Evidence for inhibitory and promotive processes involving transmissible products. Aust J Biol Sei - 13: 429–440

    Google Scholar 

  • Evans LT (1962) Inflorescence initiation in Lolium temulentum L. III. The effect of anaerobic conditions during photoperiodic induction. Aust J Biol Sci 15: 281–290

    CAS  Google Scholar 

  • Evans LT (1964) Inflorescence initiation in Lolium temulentum L. V. The role of auxins and gibberellins. Aust J Biol Sci 17: 24–35

    CAS  Google Scholar 

  • Evans LT (1966) Inhibitory effect on flower induction in a long-day plant. Science 151: 107–108

    PubMed  CAS  Google Scholar 

  • Evans LT (1969) (ed) The nature of flower induction. In: The induction of flowering. MacMillan, Melbourne, pp 457–580 Evans LT (1971) Flower induction and the florigen concept. Ann Rev Plant Physiol 22: 365–394

    Google Scholar 

  • Evans LT, Wardlaw IF (1966) Independent translocation of 14C-labelled assimilates and of the floral stimulus in Lolium temulentum. Planta 68: 310–316

    CAS  Google Scholar 

  • Ewing EE, Wareing PF (1978) Shoot, stolon and tuber formation on potato ( Solanum tuberosum L.) cuttings in response to photoperiod. Plant Physiol 61: 348–353

    Google Scholar 

  • Fuchigami LH, Evert DR, Weiser CJ (1971) A translocatable cold hardiness promoter. Plant Physiol 47: 164–167

    PubMed  CAS  Google Scholar 

  • Fujioka S, Yamaguchi I, Murofushi N, Takahashi N, Kaihara S, Takimoto A (1983) Flowering and endogenous levels of benzoic acid in Lemna species. Plant Cell Physiol 24: 235–239

    CAS  Google Scholar 

  • Gaskin P, MacMillan J, Zeevaart JAD (1973) Identification of gibberellin A20, abscisic acid, and phaseic acid from flowering Bryophyllum daigremontanum by combined gas chromatography-mass spectrometry. Planta 111: 347–352

    CAS  Google Scholar 

  • Gaspar T (1980) Rooting and flowering, two antagonistic phenomena from a hormonal point of view, Joint DPGRG amp; BPGRG Symp. Aspects and prospects of plant growth regulators. Monogr 6: 39–49

    Google Scholar 

  • Gianfagna T, Zeevaart JAD, Lusk WJ (1983) Effect of photoperiod on the metabolism of deuterium-labelled gibberellin A53 in spinach. Plant Physiol 72: 86–89

    PubMed  CAS  Google Scholar 

  • Gregory LE (1956) Some factors for tuberization in the potato plant. Am J Bot 43: 281–288

    CAS  Google Scholar 

  • Griesel WO (1963) Photoperiodic responses of two Cestrum species and non interchangeably of their flowering hormones. Plant Physiol 38: 479–482

    PubMed  CAS  Google Scholar 

  • Grigorieva NYa, Kucherov VF, Lozhnikova VN, Chailakhyan MKH (1971) Endogenous gibberellins and gibberellin-like plants: a possible correlation with photoperiodic response. Phytochemistry 10: 509–517

    Google Scholar 

  • Gupta S, Maheshwari SC (1970) Growth and flowering of Lemna paucicostata II. Role of growth regulators. Plant Cell Physiol 11: 97–106

    Google Scholar 

  • Guttridge CG (1959 a) Evidence for a flower inhibitor and vegetative growth promoter in the strawberry. Ann Bot 23:351–360

    Google Scholar 

  • Guttridge CG (1959 b) Further evidence for a growth-promoting and flower-inhibiting hormone in strawberry. Ann Bot 23:612–621

    Google Scholar 

  • Guttridge CG (1969) Fragaria. In: Evans LT (ed) The induction of flowering. MacMillan, Melbourne, pp 247–267

    Google Scholar 

  • Guttridge CG (1970) Interaction of photoperiod, chilling and exogenous gibberellic acid on growth of strawberry petioles. Ann Bot 34: 349–364

    CAS  Google Scholar 

  • Guttridge CG, Thompson PA (1964) The effect on growth and flowering of Fragaria and Duchesnea. J Exp Bot 15: 631–646

    CAS  Google Scholar 

  • Hackett WP, Sachs RM (1968) Experimental separation of inflorescence development from initiation in Bougainvillea. Proc Am Soc Hortic Sci 192: 615–621

    Google Scholar 

  • Hammes PS (1971) Tuber initiation in the potato (Solarium tuberosum L.) Agroplantae 3: 73–74

    Google Scholar 

  • Hammes PS, Beyers EA (1973) Localization of the photoperiodic perception in potatoes. Potato Res 16: 68–72

    CAS  Google Scholar 

  • Hamner KC (1940) Interrelation of light and darkness in photoperiodic induction. Bot Gaz 101: 658–687

    CAS  Google Scholar 

  • Hamner KC, Bonner J (1938) Photoperiodism in relation to hormones as factors in floral initiation and development. Bot Gaz 100: 388–431

    CAS  Google Scholar 

  • Hamner KC, Long EM (1939) Localization of the photoperiodic perception in Helianthus tuberosus. Bot Gaz 101: 81–90

    Google Scholar 

  • Hanks GR (1974) Abscisic acid levels and daylength in perennial ryegrass. Z Pflanzenphy- siol 71: 63–66

    CAS  Google Scholar 

  • Harada H, Bose RK, Cheruel J (1971) Effects of four growth regulating chemicals on flowering of Pharbitis nil. Z Pflanzenphysiol 64: 267–269

    CAS  Google Scholar 

  • Harrison MA, Saunders PF (1975) The abscisic acid content of dormant birch buds. Planta 123: 291–298

    CAS  Google Scholar 

  • Hashimoto T, Tamura S (1969) Effects of abscisic acid on the sprouting of aerial tubers of Begonia evansiana and Dioscorea batatas. Bot Mag (Tokyo) 82: 69–75

    CAS  Google Scholar 

  • Heath OVS, Holdsworth M (1948) Morphogenic factors as exemplified by the onion plant. Symp Soc Exp Biol 2: 326–350

    Google Scholar 

  • Heath OVS, Hollies MA (1965) Studies in the physiology of the onion plant. VI. A sensitive morphological test for bulbing and its use in detecting bulb development in sterile culture. J Exp Bot 16: 124–144

    Google Scholar 

  • Heide OM (1967) The auxin level of Begonia leaves in relation to their regeneration ability. Physiol Plant 20: 886–902

    CAS  Google Scholar 

  • Heide OM (1968) Auxin level and regeneration of Begonia leaves. Planta 81: 153–159

    CAS  Google Scholar 

  • Heide OM, Skoog F (1967) Cytokinin activity in Begonia and Bryophyllum. Physiol Plant 20: 771–780

    CAS  Google Scholar 

  • Heim B, Jabben M, Schäfer E (1981) Phytochrome destruction in dark- and light-grown Amaranthus caudatus seedlings. Photochem Photobiol 34: 89–93

    CAS  Google Scholar 

  • Henson IE, Wareing PF (1974) Cytokinins in Xanthium strumarium: a rapid response to short-day treatment. Physiol Plant 32: 185–187

    CAS  Google Scholar 

  • Henson IE, Wareing PF (1977 a) Cytokinins in Xanthium strumarium L.: the metabolism of cytokinins in detached leaves and buds in relation to photoperiod. New Phytol 78: 27–33

    Google Scholar 

  • Henson IE, Wareing PF (1977 b) Cytokinins in Xanthium strumarium L.: some aspects of the photoperiodic control of endogenous levels. New Phytol 78: 35–45

    Google Scholar 

  • Heslop-Harrison J (1964) The control of flower differentiation and sex expression. In: Régulateurs naturels de la croissance végétale. 5th Int Conf Plant Growth Substances. CNRS Paris, pp 597–609

    Google Scholar 

  • Hewett EW, Wareing PG (1973) Cytokinins in Populus x robusta; changes during chilling and bud burst. Physiol Plant 28: 393–399

    CAS  Google Scholar 

  • Higham BH, Smith H (1969) The induction of flowering by abscisic acid in Lemna perpusilla 6746. Life Sci 8: 1061–1065

    PubMed  CAS  Google Scholar 

  • Hoad GV, Bowen MR (1968) Evidence for gibberellin-like substances in phloem exudate from higher plants. Planta 82: 22–32

    CAS  Google Scholar 

  • Hocking TJ, Hillman JR (1975) Studies in the role of abscisic acid in the initiation of bud dormancy in Alnus glutinosa and Betula pubescens. Planta 125: 235–242

    CAS  Google Scholar 

  • Hodson HK, Hamner KC (1970) Floral inducing extracts from Xanthium. Science 167: 384–385

    PubMed  CAS  Google Scholar 

  • Holland RWK, Vince D (1971) Floral initiation in Lolium temulentum L.: the role of phytochrome in the responses to red and far-red light. Planta 98: 232–243

    CAS  Google Scholar 

  • Humphries EC (1963) Effects of gibberellic acid and CCC on growth of potato. Rotham-sted Exp Stn Ann Rep 89 Humphries EC, Dyson PW (1967) Effect of a growth inhibitor, N-dimethylaminosuc-cinamic acid ( B9) on potato plants in the field. Eur Potato J 10: 116–126

    Google Scholar 

  • Hurst C, Hall TC, Weiser CJ (1967) Reception of the light stimulus for cold acclimation in Cornus stolonifera Michx. Hortic Sci 2: 164 - 166

    Google Scholar 

  • Imamura S, Takimoto A (1955) Transmission rate of photoperiodic stimulus in Pharbitis nil Bot Mag 68: 260–266

    Google Scholar 

  • Imhoff CH, Lecharny A, Jacques R, Brulfert J (1979) Two phytochrome dependent processes in Anagallis arvensis L.: flowering and stem elongation. Plant Cell Environ 2: 67–72

    Google Scholar 

  • Irving RM (1969) Characterization and role of an endogenous inhibitor in the induction of cold hardiness in Acer negundo. Plant Physiol 44: 801–805

    PubMed  CAS  Google Scholar 

  • Irving RM, Lanphear FO (1967) The long-day leaf as a source of cold-hardiness inhibitors. Plant Physiol 42: 1384–1388

    CAS  Google Scholar 

  • Irving RM, Lanphear FO (1968) Regulation of cold hardiness in Acer negundo. Plant Physiol 43: 9–13

    PubMed  CAS  Google Scholar 

  • Jacobs WP (1980) Inhibition of flowering in short-day plants. In: Skoog F (ed) Plant growth substances. Springer, Berlin Heidelberg New York, pp 301–309

    Google Scholar 

  • Jacques M (1968) Diversité et caractéristiques des processus de l’induction florale chez deux Chénopodiacées. C R Hebd Seances Acad Sei Ser D 267: 1592–1595

    Google Scholar 

  • Jacques M (1973) Transfert par voie de greffage du stimulus photopériodique. C R Acad Sci 276D: 1705–1708

    Google Scholar 

  • Jones MG, Zeevaart JAD (1980 a) Gibberellins and the photoperiodic control of stem elongation in the long-day plant Agrostemma githago L. Planta 149: 269–273

    Google Scholar 

  • Jones MG, Zeevaart JAD (1980 b) The effect of photoperiod on the levels of seven endogenous gibberellins in the long-day plant Agrostemma githago L. Planta 149: 274–279

    Google Scholar 

  • Jones MG, Zeevaart JAD (1982) Effect of photoperiod on metabolism of [3H] gibberellins A1, 3-epi-A1 and A20 in Agrostemma githago L. Plant Physiol 69: 660–662

    PubMed  CAS  Google Scholar 

  • Junttila O (1981) Effects of different gibberellins on elongation growth under short-day conditions in seedlings of Salix pentandra. Physiol Plant 53: 315–318

    CAS  Google Scholar 

  • Junttila O (1982) Gibberellin-like activity in shoots of Salix pentandra as related to the elongation growth. Can J Bot 60: 1231–1234

    CAS  Google Scholar 

  • Kato T (1965) Physiological studies on the bulbing and dormancy of onion plants. V. The relations between the metabolism of carbohydrates, nitrogen compounds and auxin and the bulbing phenomenon. J Jpn Soc Hortic Sei 34: 187–195

    Google Scholar 

  • Ketellapper HJ, Barbaro A (1966) The role of photoperiod, vernalization and gibberellic acid in floral induction in Coreopsis grandtflora Nutt. Phyton 23: 33–41

    Google Scholar 

  • King RW (1975) Multiple circadian rhythms regulate photoperiodic flowering responses. Can J Bot 53: 2631–2638

    Google Scholar 

  • King RW (1976) Implications for plant growth of the transport of regulatory compounds in phloem and xylem. In: Passioura J (ed) Transport and transfer processes in plants. Academic Press, London New York, pp 415–431

    Google Scholar 

  • King RW, Evans LT (1977) Inhibition of flowering in Lolium temulentum L. by water stress: a role for abscisic acid. Aust J Plant Physiol 4: 225–233

    CAS  Google Scholar 

  • King RW, Zeevaart JAD (1973) Floral stimulus movement in Perilla and flower inhibition caused by non-induced leaves. Plant Physiol 51: 727–738

    PubMed  CAS  Google Scholar 

  • King RW, Evans LT, Wardlaw IF (1968) Translocation of the floral stimulus in Pharbitis nil in relation to that of assimilates. Z Pflanzenphysiol 59: 377–388

    Google Scholar 

  • King RW, Evans LT, Firn RD (1977) Abscisic acid and xanthoxin contents in the long- day plant Lolium temulentum L. in relation to daylength. Aust J Plant Physiol 4: 217–223

    CAS  Google Scholar 

  • King RW, Schäfer E, Thomas B, Vince-Prue D (1982) Photoperiodism and rhythmic response to light. Plant Cell Environ 5: 395–404

    Google Scholar 

  • Knott JE (1934) Effect of a localized photoperiod on spinach. Proc Am Soc Hortic Sei 31: 152–154

    Google Scholar 

  • Kohli RK, Sawhney S (1979) Promotory effect of GA13 on flowering of Amaranthus a short day plant. Biol Plant 21: 206–213

    CAS  Google Scholar 

  • Kojerzenko IE, Majko TK (1967) On the role of natural gibberellins in the photoperiod reaction of peach and vine. Dokl Akad Nauk USSR 177: 720–723

    Google Scholar 

  • Krauss A, Marschner H (1976) Einfluss von Stickstoffernährung und Wuchsstoffapplikation auf die Knollen-Induktion bei den Kartoffelpflanzen. Z Pflanzenern Bodenkd 2: 143–155

    Google Scholar 

  • Krauss A, Marschner H (1982) Influence of nitrogen nutrition, daylength and temperature on contents of gibberellic and abscisic acid and on tuberization in potato plants. Potato Res 25: 13–21

    CAS  Google Scholar 

  • Krekule J (1979) Stimulation and inhibition of flowering. In: Champagnat P, Jacques R (eds) Physiologie de la floraison. CNRS, Paris, pp 19–57

    Google Scholar 

  • Krekule J, Horavka B (1972) The response of short-day plant Chenopodium rubrum L. to abscisic acid and gibberellic acid treatment applied at two levels of photoperiodic induction. Biol Plant 14: 254–259

    CAS  Google Scholar 

  • Krekule J, Kohli RK (1981) The condition of the apical meristem of seedlings responsive to a promotive effect of abscisic acid on flowering in the short-day plant Chenopodium rubrum. Z. Pflanzenphysiol 103: 45–52

    CAS  Google Scholar 

  • Krekule J, Seidlova F (1977) Brassica campestris as a model for studying the effects of exogenous growth substances on flowering in long-day plants. Biol Plant 19: 462–468

    CAS  Google Scholar 

  • Krishnamoorthy HN, Nanda KK (1967) Effect of intercalated long days and light interruption of dark period on flowering, extension growth and senescence of Impatiens balsamina. Physiol Plant 20: 760–770

    Google Scholar 

  • Kumar S, Nanda KK (1981) Effect of gibberellic acid and salicylic acid on the activity and electrophoretic pattern of I AA-oxidase during floral induction in Impatiens balsamina. Biol Plant 23: 328–334

    CAS  Google Scholar 

  • Lang A (1957) The effect of gibberellin upon flower formation. Proc Natl Acad Sci USA 43: 709–717

    PubMed  CAS  Google Scholar 

  • Lang A (1960) Gibberellin-like substances in photoinduced and vegetative Hyoscyamus plants. Planta 54: 498–504

    CAS  Google Scholar 

  • Lang A (1965) Physiology of flower initiation. In: Ruhland W (ed) Encyclopedia of plant physiology, vol XV, Pt 1. Springer, Berlin Göttingen Heidelberg, pp 1380–1536

    Google Scholar 

  • Lang A (1980) Inhibition of flowering in long-day plants. In: Skoog F (ed) Plant growth substances. Springer, Berlin Heidelberg New York, pp 310–322

    Google Scholar 

  • Lang A, Melchers G (1943) Die photoperiodische Reaktion von Hyoscyamus niger. Planta 33: 653–702

    CAS  Google Scholar 

  • Lang A, Chailakhyan MKH, Frolova IA (1977) Promotion and inhibition of flower formation in a day-neutral plant in grafts with a short-day plant and a long-day plant. Proc Natl Acad Sci USA 74: 2412–2416

    PubMed  CAS  Google Scholar 

  • Langille AR (1972) Effects of (2-chloroethyl) phosphonic acid on rhizome and tuber formation in the potato Solanum tuberosum L. J Am Soc Hortic Sci 97: 305–308

    CAS  Google Scholar 

  • Lenton JR, Perry VM, Sauners PF (1972) Endogenous abscisic acid in relation to photo-periodically induced bud dormancy. Planta 106: 13–22

    CAS  Google Scholar 

  • Lercari B, Micheli P (1981) Photoperiodic regulation of cytokinin levels in leaf blades of Allium cepa L. Plant Cell Physiol (Tokyo) 22 (3): 501–505

    CAS  Google Scholar 

  • Levy D, Kedar N, Karacinque R (1973) Effect of ethephon on bulbing of onion under non-inductive photoperiod. Hort Sci 8: 228–229

    CAS  Google Scholar 

  • Lincoln RG, Cunningham A (1964) Evidence for a florigenic acid. Nature 202: 559–561

    CAS  Google Scholar 

  • Lincoln RG, Mayfield DL, Cunningham A (1961) Preparation of a floral initiating extract from Xanthium. Science 133: 756

    PubMed  CAS  Google Scholar 

  • Lincoln RG, Mayfield DL, Hutchins RO, Cunningham A, Hamner KC, Carpenter BH (1962) Floral induction of Xanthium in response to application of an extract from a day-neutral plant. Nature 195: 918

    CAS  Google Scholar 

  • Lincoln RG, Mayfield DL, Cunningham A (1966) Florigenic acid from a fungal culture. Plant Physiol 41: 1079–1080

    PubMed  CAS  Google Scholar 

  • Liverman JL, Lang A (1956) Induction of flowering in long-day plants by applied indoleacetic acid. Plant Physiol 31: 147–150

    PubMed  CAS  Google Scholar 

  • Lona F, Bocchi A (1957) Effetti morfogenetici ed organo-genetici provocati dalla cine- tine (kinetin) su piante erbacee in condizioni esterne controllate. N G Bot Ital 64: 236–246

    Google Scholar 

  • Loveys BR, Leopold AC, Kriedemann PE (1974) Abscisic acid metabolism and stomatal physiology in Betula lutea following alteration in photoperiod. Ann Bot 38: 85–92

    CAS  Google Scholar 

  • Lozhnikova VN, Krekule J, Seidlova F, Bavrina TV, Chailakhyan MKh (1982) The balance of gibberellins and abscisins in tobaccos during the process of photoperiodic induction. Sov Plant Physiol 29: 185–190

    Google Scholar 

  • Lumsden PJ, Vince-Prue D (1984) The perception of dusk signals in photoperiodic time-measurement. Physiol Plant 60: 427–432

    Google Scholar 

  • Luukkanen O (1981) Effects of gibberellins GA4 and GA7 on flowering in Scots pine grafts. Silva Fenn 15: 359–365

    Google Scholar 

  • Mauk CS, Langille AR (1978) Physiology of tuberization in Solanum tuberosum L. Ciszeatin riboside in the potato plant: its identification and changes in endogenous levels as influenced by temperature and photoperiod. Plant Physiol 62: 438–442

    PubMed  CAS  Google Scholar 

  • McKenzie J, Weiser CJ, Burke MJ (1974) Effects of red and far-red light on the initiation of cold hardiness acclimation in Cornus stolonifera Michx. Plant Physiol 53: 783–789

    PubMed  CAS  Google Scholar 

  • Menhenett R, Wareing PF (1977) Effects of photoperiod and temperature on the growth and cytokinin content of two populations of Dactylis glomerata ( Cocksfoot ). New Phytol 78: 17–25

    Google Scholar 

  • Menzel CM (1980) Tuberization in potato at high temperatures: responses to gibberellins and growth inhibitors. Ann Bot 46: 259–265

    CAS  Google Scholar 

  • Metzger JD (1983) Gibberellins and cold-induced stem elongation in Thlapsi arvense L. Plant Physiol 72 Suppl No 467: 82

    Google Scholar 

  • Metzger JD, Zeevaart J AD (1980 a) Identification of six endogenous gibberellins in spinach shoots. Plant Physiol 65: 623–626

    Google Scholar 

  • Metzger JD, Zeevaart J AD (1980 b) Comparison of the levels of six endogenous gibberellins in roots and shoots of spinach in relation to photoperiod. Plant Physiol 66: 679–683

    Google Scholar 

  • Metzger JD, Zeevaart JAD (1980c) Effect of photoperiod on the levels of endogenous gibberellins in spinach as measured by combined gas chromatography-selected ion current monitoring. Plant Physiol 66: 844–846

    PubMed  CAS  Google Scholar 

  • Metzger JD, Zeevaart JAD (1982) Photoperiodic control of gibberellin metabolism in spinach. Plant Physiol 69: 287–291

    PubMed  CAS  Google Scholar 

  • Michniewicz M, Kamienska A (1965) Flower formation induced by kinetin and vitamin F treatment in long-day plant ( Arabidopsis thaliana) grown in short-day. Naturwissen- schaften 52: 623

    Google Scholar 

  • Miginiac E (1978) Some aspects of regulation of flowering: role of correlative factors in photoperiodic plants. Bot Mag (Tokyo) Spec Iss 1: 159–173

    CAS  Google Scholar 

  • Milborrow BY (1967) The identification of (+)-abscisin II ((+)-dormin) in plants and the measurement of its concentrations. Planta 76: 93–113

    CAS  Google Scholar 

  • Mingo-Castel AM, Negm FB, Smith OE (1974) Effect of carbon dioxide and ethylene on tuberization of isolated potato stolons cultured in vitro. Plant Physiol 53: 798–801

    PubMed  CAS  Google Scholar 

  • Morgan DC, Smith H (1976) Linear relationship between phytochrome photoequilibrium and growth in plants under simulated natural radiation. Nature 262: 210–212

    Google Scholar 

  • Morgan DG, Morgan CB (1984) Photoperiod and the abscission of flower buds in Phaseo- lus vulgaris. In: Vince-Prue D, Cockshull KE, Thomas B (eds) Light and the flowering process. Academic Press, London New York, pp 227–240

    Google Scholar 

  • Morgan DG, Zehni MS (1980) The effect of light breaks in the dark period on flower-bud development in varieties of Phaseolus vulgaris L. Ann Bot 46: 37–42

    Google Scholar 

  • Murneek AE (1940) Length of day and temperature effects in Rudbeckia. Bot Gaz 102: 269–279

    Google Scholar 

  • Nagao M, Okagami N (1966) Effect of (2-chloroethyl) trimethylammonium chloride on the formation and dormancy of aerial tubers of Begonia evansiana. Bot Mag (Tokyo) 79: 687–692

    CAS  Google Scholar 

  • Nanda KK, Jindal RK (1975) Summation of the effect of sub-threshold gibberellin treatment and sub-threshold photo-induction of flowering of Impatiens balsamina. Indian J Plant Physiol 18: 109–114

    CAS  Google Scholar 

  • Nanda KK, Krishnamoorthy HN (1967) Photoperiodic studies in growth and development of Impatiens balsamina. II. Floral bud initiation, flower opening and extension growth. Planta 72: 338–343

    Google Scholar 

  • Nanda KK, Anaradha TA, Lai K (1967) Floral induction by gibberellic acid in Impatiens balsamina L., a qualitative short-day plant. Planta 76: 367–370

    Google Scholar 

  • Nanda KK, Toky KL, Lata K (1969) Effects of gibberellins A3, A4+7 and A13 and of (—)-kaurene on flowering and extension growth of Impatiens balsamina under different photoperiods. Planta 86: 134–141

    CAS  Google Scholar 

  • Nanda KK, Kumar S, Sood V (1976) Effect of gibberellic acid and some phenols on the flowering of Impatiens balsamina, a qualitative short-day plant. Physiol Plant 38: 53–56

    CAS  Google Scholar 

  • Newton C, Morgan CB, Morgan DG (1980) Evaluation of a bioassay for cytokinins using soybean hypocotyl sections. J Exp Bot 31: 721–729

    CAS  Google Scholar 

  • Nitsch C, Nitsch JP (1969) Floral induction in a short-day plant, Plumbago indica L. by 2-chloroethane phosphonic acid. Plant Physiol 44: 1747–1748

    PubMed  CAS  Google Scholar 

  • Nitsch JP (1957) Growth responses of woody plants to photoperiodic stimuli. Proc Am Soc Hortic Sci 70: 512–525

    Google Scholar 

  • Nitsch JP (1959) Réactions photopériodiques chez les plantes ligneuses. Bull Soc Bot France 106: 259–287

    Google Scholar 

  • Nitsch JP (1965) Éxistence d’un stimulus photopériodique non spécifique capable de provoquer la tubérisation chez Helianthus tuberosus L. Bull Soc Bot France 112: 333–340

    Google Scholar 

  • Nitsch J, Nitsch C (1960) Le problème de l’action des auxines sur la division cellulaire: présence d’un cofacteur de division dans le tubercle de topinambour. Ann Physiol Vég 2: 261–268

    CAS  Google Scholar 

  • Nitsch JP, Somogyi L (1958) Le photopériodisme des plantes ligneuses. Ann Sci Nat Hortic France 16: 466–490

    Google Scholar 

  • Ofir M (1976) Interaction of gibberellin with photo-induction in the initiation of the dormant phase in vernalized Hordeum bulbosum. Aust J Plant Physiol 3: 827–832

    CAS  Google Scholar 

  • Ogawa Y (1977) Difference in effectiveness of various gibberellins on shoot elongation and flower formation in Pharbitis nil Chois. J Jpn Soc Hortic Sci 46: 117–122

    CAS  Google Scholar 

  • Ogawa Y (1981a) Stimulation of the flowering of Pharbitis nil Chois. by gibberellin Plant Cell Physiol 22: 675–681

    CAS  Google Scholar 

  • Ogawa Y (1981b) Effect of chilling at germinating stage on the flowering response of Pharbitis nil Choisy. J (Jpn) Soc Hortic Sci 49: 102–106

    Google Scholar 

  • Ogawa Y, King RW (1979) Establishment of photoperiodic sensitivity by benzyladenine and a brief red irradiation in dark grown seedlings of Pharbitis nil Chois. Plant Cell Physiol 20: 115–122

    CAS  Google Scholar 

  • Ogawa Y, Zeevaart J AD (1967) The relations of growth regulators to flowering. In: Imamura S (ed) Physiology of flowering in Pharbitis nil Jpn Soc Plant Physiol, pp 107–119

    Google Scholar 

  • Okagami N, Esashi Y, Nagao M (1977) Gibberellin-induced inhibition and promotion of sprouting in aerial tubers of Begonia evansiana and in relation to photoperiodic treatment and tuber storage. Planta 136: 1–6

    CAS  Google Scholar 

  • Okazawa Y (1960) Studies on the relationship between tuber formation of potato and its natural gibberellin content. J Crop Sci Soc Jpn 29: 121–124

    Google Scholar 

  • Okazawa Y (1967) Physiological studies on the tuberization of potato plants. J Fac Agric Hokkaido Univ Sapporo 55: 267–336

    Google Scholar 

  • Owens JN, Pharis RP (1971) Initiation and development of western red cedar cones in response to gibberellin induction under natural conditions. Can J Bot 49: 1165–1175

    CAS  Google Scholar 

  • Palmer CE, Barker WG (1973) Influence of ethylene and kinetin on tuberization and enzyme activity in Solanum tuberosum L. Ann Bot 37: 85–93

    CAS  Google Scholar 

  • Palmer CE, Smith OE (1969) Effect of abscisic acid on elongation and kinetin-induced tuberization of isolated stolons of Solanum tuberosum L. Plant Cell Physiol 10: 657–664

    CAS  Google Scholar 

  • Parker MW, Hendricks SB, Borthwick HA, Scully NJ (1946) Action spectrum for the photoperiodic control of floral initiation of short-day plants. Bot Gaz 108: 1–26

    Google Scholar 

  • Parker MW, Hendricks SB, Borthwick HA (1950) Action spectrum for the photoperiodic control of floral initiation of the long-day plant Hyoscyamus niger. Bot Gaz 111: 242–252

    CAS  Google Scholar 

  • Perry TO, Byrne OR (1969) Turion induction in Spirodela polyrrhiza by abscisic aid. Plant Physiol 44: 754–785

    Google Scholar 

  • Perry TO, Hellmers H (1973) Effects of ABA on growth and dormancy of two races of red maple ( Acer rubrum ). Bot Gaz 134: 283–288

    Google Scholar 

  • Peterson RL, Yeung EC (1972) Effect of two gibberellins on species of the rosette plant Hieracium. Bot Gaz 133: 190–198

    Google Scholar 

  • Pharis RP (1972) Flowering of Chrysanthemum under non-inductive long-days by gibberellins and by N6-benzyladenine. Planta 105: 205–212

    CAS  Google Scholar 

  • Pharis RP (1976) Probable roles of plant hormones in regulating shoot elongation, diameter growth and crown form of coniferous trees. In: Cannel MGR, Last FT (eds) Tree physiology and yield improvement. Academic Press, London New York, pp 291–306

    Google Scholar 

  • Pharis RP, Ruddat MDE, Glenn JL, Morf W (1970) A quantitative requirement for long day in the induction of staminate strobili by gibberellin in the conifer Cupressus arizonica. Can J Bot 48: 653–658

    Google Scholar 

  • Philipson JJ (1983) The role of gibberellin A4/7, heat and drought in the induction of flowering in Sitka spruce. J Exp Bot 34: 291–302

    Google Scholar 

  • Phillips DA, Cleland CF (1972) Cytokinin activity from the phloem sap of Xanthium strumarium L. Planta 102: 173–178

    CAS  Google Scholar 

  • Phillips ID J, Hoffmann A (1979) Abscisic acid (ABA), ABA esters and phaseic acid in vegetative terminal buds of Acer pseudoplatanus during emergence from dormancy. Planta 146: 591–596

    Google Scholar 

  • Phillips IDJ, Wareing PF (1959) Studies in dormancy of sycamore. II. The effect of daylength on the natural growth inhibitor content of the shoot. J Exp Bot 10: 504–514

    Google Scholar 

  • Phillips IDJ, Miners J, Roddick JG (1980) Effect of light and photoperiodic conditions on abscisic acid in leaves and roots of Acer pseudoplatanus L. Planta 149: 118–122

    CAS  Google Scholar 

  • Pieterse AH (1982) A review of chemically induced flowering in Lemna gibba G3 and Pistia stratiotes. Aquat Bot 13 Spec Iss: 21–28

    Google Scholar 

  • Plancher B, Naumann WD (1978) Influence of water supply and day length on abscisic acid content of Fragaria ananassa. Gartenbauwissenschaft 43: 126–136

    CAS  Google Scholar 

  • Pol van de PA (1972) Floral induction, floral hormones and flowering. Meded Landbouw-hogesch Wageningen 72: 1–89

    Google Scholar 

  • Porlingis IC, Boynton D (1961) Growth responses of the strawberry plant, Fragaria chiloensis var ananassa to gibberellic acid and to environmental conditions. Proc Am Soc Hortic Sci 78: 261–269

    Google Scholar 

  • Powell LE (1976) Effect of photoperiod on endogenous abscisic acid in Malus and Betula. Hortic Sci 11: 498–499

    CAS  Google Scholar 

  • Proebsting WM, Heftmann E (1980) The relationship of (3H) GA9 metabolism to photo-period-induced flowering in Pisum sativum L. Z Pflanzenphysiol 98: 305–309

    CAS  Google Scholar 

  • Proebsting WM, Davies PJ, Marx GA (1978) Photoperiod-induced changes in gibberellin metabolism in relation to apical growth and senescence in genetic lines of peas ( Pisum sativum L. ). Planta 141: 231–238

    Google Scholar 

  • Pryce RJ (1972) Gallic acid as a natural inhibitor of flowering in Kalanchoe blossfeldiana. Phytochemistry 11: 1911–1918

    CAS  Google Scholar 

  • Purse JG (1984) Phloem exudate of Perilla crispa and its effects on flowering of P. crispa shoot explants. J Exp Bot 35: 227–238

    CAS  Google Scholar 

  • Railton IDM, Wareing PF (1973) Effects of daylength on endogenous gibberellins in leaves of Solarium andigena L. Changes in levels of free acidic gibberellin-like substances. Physiol Plant 28: 88–94

    Google Scholar 

  • Ramsay J, Martin GC (1970) Isolation and identification of a growth inhibitor in spur buds of apricot. J Am Soc Hortic Sci 95: 574–577

    CAS  Google Scholar 

  • Reid DM, Pharis RP, Roberts DWA (1974) Effects of four temperature regimens on the gibberellin content of winter wheat cv Kharkov. Physiol Plant 30: 53–57

    CAS  Google Scholar 

  • Ren XC, Lian HK, Cao GY (1982 a) The possible role of GA3 in promotion of flowering in SDP Pharbitis nil Acta Phytophysiol Sin 8: 134–140

    Google Scholar 

  • Ren XC, Zhang J-Y, Luo W-H, Jin S-P ( 1982 b) Flower inhibitory effects of long days preceding the inductive short days on SDP Hibiscus cannabinus cv. South Selected. Acta Phytophysiol Sinica 8: 214–221

    Google Scholar 

  • Robinson PM, Wareing PF (1964) Chemical nature and biological properties of the inhibitor varying with photoperiod in sycamore, Acer pseudoplatanus. Physiol Plant 17: 314–323

    Google Scholar 

  • Rogers MN, Tsia BOS (1966) Effects of ethylene in the atmosphere on photoperiodic responses of chrysanthemums. Proc 17th Int Congr Hortic 1, Abstr No 471

    Google Scholar 

  • Ross SD, Pharis RP, Binder WD (1983) Growth regulators and conifers: their physiology and potential uses in forestry. In: Nickell LG (ed) Plant growth regulating chemicals. CRC Press, Boca Raton

    Google Scholar 

  • Rudich J, Halevy AH, Kedar N (1972 a) Ethylene evolution from cucumber plants as related to sex expression. Plant Physiol 49: 998–999

    Google Scholar 

  • Rudich J, Halevy AH, Kedar N (1972 b) The level of phytohormones in monoecious and gynoecious cucumbers as affected by photoperiod and ethephon. Plant Physiol 50: 585–590

    Google Scholar 

  • Sachs RM (1969) Cestrum nocturnum L. In: Evans LT (ed) The induction of flowering. Mac Millan, Sydney, pp 424–434

    Google Scholar 

  • Sachs RM, Kofranek AM, Shyr SY (1967) Gibberellin-induced inhibition of floral initiation in Fuchsia. Am J Bot 54: 921–929

    CAS  Google Scholar 

  • Saji H, Furuya M, Takimoto A (1982) Spectral dependence of the night-break effect on photoperiodic floral induction in Lemna paucicostata 441. Plant Cell Physiol 23: 623–629

    Google Scholar 

  • Saji H, Vince-Prue D, Furuya M (1983) Studies on the photoreceptors for the promotion and inhibition of flowering in dark-grown seedlings of Pharbitis nil Choisy. Plant Cell Physiol 24: 1183–1189

    Google Scholar 

  • Satter RL, Wetherell DF (1968) Photomorphogenesis in Sinningia speciosa cv. Queen Victoria. II. Stem elongation: interaction of a phytochrome controlled process and a red requiring energy dependent reaction. Plant Physiol 43: 961–967

    PubMed  CAS  Google Scholar 

  • Sawhney S, Sawhney N (1976) Floral induction by gibberellic acid in Zinnia elegans under non-inductive long days. Planta 131: 207–208

    CAS  Google Scholar 

  • Sawhney S, Sawhney N, Nanda KK (1972) Partial substitution by long days of short days required for floral induction in Impatiens balsamina. Plant Cell Physiol 13: 1113–1115

    Google Scholar 

  • Schneider MJ, Borthwick HA, Hendricks SB (1967) Effects of radiation on flowering of Hyoscyamus niger. Am J Bot 54: 1241–1249

    Google Scholar 

  • Schwabe WW (1972) Flower inhibition in Kalanchoe blossfeldiana. Bioassay of an endogenous inhibitor and inhibition by (±) abscisic acid and xanthoxin. Planta 103: 18–23

    CAS  Google Scholar 

  • Schwabe WW (1984) Photoperiodic induction - flower-inhibiting substances. In: Vinceprue D, Cockshull KE, Thomas B (eds) Light and the flowering process. Academic Press, London New York, pp 143–153

    Google Scholar 

  • Schwabe WW, Nachmony-Bascombe S (1963) Growth and dormancy in Lunularia cruciata (L) DUM. II. The response to daylength and temperature. J Exp Bot 14: 353–378

    Google Scholar 

  • Schwabe WW, Wimble RH (1976) Control of flower initiation in long- and short-day plants - a common model approach. In: Sunderland N (ed) Perspectives in experimental biology, vol II, Botany. Pergamon, Oxford New York, pp 41–57

    Google Scholar 

  • Seidlova F (1980) Sequential steps of transition to flowering in Chenopodium rubrum L. Physiol Veg 18: 477–487

    CAS  Google Scholar 

  • Sengupta SK, Rogers MN, Lorah EJ (1974) Effects of photoperiod and ethephon treatment on abscisic acid levels in Chrysanthemum morifolium Ramat. J Am Soc Hortic Sci 99: 416–420

    CAS  Google Scholar 

  • Simmons HA, Coulter MW (1979) Responses of normal and dwarf Pharbitis nil to an extended dark period and gibberellic acid. Plant Cell Physiol 20: 1671–1673

    CAS  Google Scholar 

  • Smith OE, Palmer CE (1970) Cytokinin induced tuber formation on stolons of Solanum tuberosum. Physiol Plant 23: 599–606

    CAS  Google Scholar 

  • Smith OE, Rappaport L (1969) Gibberellins, inhibitors and tuber formation in the potato, Solanum tuberosum L. Am Potato J 46: 185–191

    Google Scholar 

  • Sotta B (1978) Interaction du photoperiodisme et des effets de la zeatine, du saccharose et du l’eau dans la floraison du Chenopodium polyspermum. Physiol Plant 43: 337–342

    CAS  Google Scholar 

  • Spence J, Humphries EC (1972) Effect of moisture supply, root remperature and growth regulators on photosynthesis of isolated rooted leaves of sweet potato ( Ipomoea batatas ). Ann Bot 36: 115–121

    Google Scholar 

  • Staden van J, Wareing PF (1972) The effect of photoperiod on levels of endogenous cytokinins in Xanthium strumarium. Physiol Plant 27: 331–337

    Google Scholar 

  • Steward GR (1969) Abscisic acid and morphogenesis in Lemna polyrrhiza L. Nature 221: 61–62

    Google Scholar 

  • Stoddart JL (1966) Studies on the relationship between gibberellin metabolism and day- length in normal and non-flowering red clover (Trifolium pratense L.). J Exp Bot 17: 96–107

    CAS  Google Scholar 

  • Stoddart JL, Lang A (1968) The effect of daylength on gibberellin synthesis in leaves of red clover (Trifolium pratense L.). In: Wightman F, Setterfield G (eds) Biochemistry and physiology of growth substances. Runge, Ottawa, pp 1371–1383

    Google Scholar 

  • Suge H, (1972) Inhibition of photoperiodic floral induction in Pharbitis nil by ethylene. Plant Cell Physiol 13: 1031–1038

    CAS  Google Scholar 

  • Suge H, Rappaport L (1968) Role of gibberellins in stem elongation and flowering in radish. Plant Physiol 43: 1208–1214

    PubMed  CAS  Google Scholar 

  • Tafazoli E, Vince-Prue D (1978) A comparison of the effects of long days and exogenous growth regulators on growth and flowering in strawberry, Fragaria x ananassa Duch. J Hortic Sci 53: 255–259

    Google Scholar 

  • Takahashi H, Saito T, Suge H (1983) Separation of the effects of photoperiod and hormones on sex expression in cucumber. Plant Cell Physiol 24: 147–154

    CAS  Google Scholar 

  • Takashima S, Nakamura K, Naito M, Hirose T (1962) Studies on the growth of potato by the foliar spray of growth regulating substances ( Japanese ). Sei Rep Kyoto Prefect Univ Agric 14: 37–43

    Google Scholar 

  • Takeba G, Takimoto A (1966) Translocation of the floral stimulus in Pharbitis nil. Bot Mag (Tokyo) 79: 811–814

    Google Scholar 

  • Thomas TH (1972) Stimulation of onion bulblet production by N6-benzyladenine. Hortic Res 12: 77–79

    CAS  Google Scholar 

  • Thompson PA, Guttridge CG (1959) Effect of gibberellic acid on the initiation of flowers and runners in the strawberry. Nature 184: 72–73

    CAS  Google Scholar 

  • Thompson PA, Guttridge CG (1960) The role of leaves as inhibitors of flower induction in strawberry. An Bot 24: 482–490

    Google Scholar 

  • Tizio R (1960) Présence de kinines dans périderme de tubercles de pomme de terre. C R Hebd Seances Acad Sei Paris 262: 868–869

    Google Scholar 

  • Tse AT Y, Ramina A, Hackett WP, Sachs RM (1974) Enhanced inflorescence development in Bougainvillea San Diego Red by removal of young leaves and cytokinin treatment. Plant Physiol 54: 404–407

    PubMed  CAS  Google Scholar 

  • Udebo AE (1971) Effect of external supply of growth substances on axillary proliferation and development in Dioscorea bulbifera. Ann Bot 35: 159–163

    Google Scholar 

  • Uematsu Y, Katsura N (1983) Changes in endogenous gibberellin level in strawberry plants induced by light breaks. J Jpn Soc Hortic Sei 51: 405–411

    CAS  Google Scholar 

  • Venkataraman R, Seth PN, Maheshwari SC (1970) Studies on the growth and flowering of a short-day plant, Wolffia microscopica. I. Growth aspects and induction of flowering by cytokinins. Pflanzenphysiol 62: 316–327

    Google Scholar 

  • Vince D (1965) The promoting effect of far-red light on flowering in the long-day plant Lolium temulentum. Physiol Plant 18: 474–482

    Google Scholar 

  • Vince D (1969) The regulation of flowering in long-day plants. Acta Hortic 14: 91–95

    Google Scholar 

  • Vince D (1970) Lighting techniques for the control of flowering. Proc 18th Int Congr Hortic 5: 169–180

    Google Scholar 

  • Vince D (1972) Phytochrome and flowering. In: Mitrakos K, Shropshire W (eds) Photochrome. Academic Press, London New York, pp 257–291

    Google Scholar 

  • Vince-Prue D (1975) Photoperiodism in plants. McGraw-Hill, London New York

    Google Scholar 

  • Vince-Prue D (1976) Phytochrome and photoperiodism. In: Smith H (ed) Light and plant development. Butterworths, London, pp 347–369

    Google Scholar 

  • Vince-Prue D (1977) Photocontrol of stem elongation in light-grown plants of Fuchsia hybrida. Planta 133: 149–156

    Google Scholar 

  • Vince-Prue D (1979) Effect of photoperiod and phytochrome in flowering: time measurement. In: Champagnat P, Jacques R (eds) Physiologie de la floraison. CNRS, Paris, pp 91–127

    Google Scholar 

  • Vince-Prue D (1981) Daylight and photoperiodism. In: Smith H (ed) Plants and the daylight spectrum. Academic Press, London New York, pp 223–242

    Google Scholar 

  • Vince Prue D (1982) Phytochrome and photoperiodic physiology. In: Brady J (ed) Biological time-keeping. Cambridge Univ Press, Cambridge, pp 101–117

    Google Scholar 

  • Vince-Prue D (1983a) Photomorphogenesis and flowering. In: Shropshire W, Mohr H (eds) Encyclopedia of plant physiology new ser vol XVI b. Springer, Berlin Heidelberg New York, pp 457–490

    Google Scholar 

  • Vince-Prue D (1983 b) The perception of light - dark transitions. Philos Trans R Soc London Ser B 303:523–536

    Google Scholar 

  • Vince-Prue D (1984) Contrasting types of photoperiodic response in the control of dormancy. Plant Cell Environ 7: (in press)

    Google Scholar 

  • Vince-Prue D, Guttridge CG (1973) Floral initiation in strawberry: spectral evidence for the regulation of flowering by long-day inhibition. Planta 110: 165–172

    Google Scholar 

  • Vince-Prue D, Guttridge CG, Buck MW (1976) Photocontrol of petiole elongation in light-grown strawberry plants. Planta 131: 109–114

    Google Scholar 

  • Vlitos AJ, Meudt W (1954) The role of auxin in plant flowering. III. Free indole acids in short-day plants grown under photo-inductive and non-photo-inductive daylengths. Contrib Boyce Thompson Inst 17: 413–417

    Google Scholar 

  • Wareing PF (1951) Growth studies in woody species. III. Further photoperiodic effects in Pinus sylvestris. Physiol Plant 4: 41–56

    Google Scholar 

  • Wareing PF (1953) Growth studies in woody species. V. Photoperiodism in dormant buds of Fagus sylvatica L. Physiol Plant 6: 692–706

    Google Scholar 

  • Wareing PF (1954) Growth studies in woody species. VI. The locus of photoperiodic perception in relation to dormancy. Physiol Plant 7: 261–277

    Google Scholar 

  • Wareing PF (1959) Photoperiodism in seeds and buds. In: Withrow RB (ed) Photo-periodism and related phenomena in plants and animals. A A AS, Washington, pp 73–87

    Google Scholar 

  • Wareing PF (1969) Germination and dormancy. In: Wilkins MB (ed) Physiology of plant growth and development. McGraw-Hill, London, New York, pp 605–644

    Google Scholar 

  • Wareing PF (1982) Hormonal control of stolon and tuber development, expecially in the potato plant. In: Wareing PF (ed) Plant growth substances. Academic Press, London New York, pp 181–195

    Google Scholar 

  • Wareing PF, El-Antably HMM (1970) The possible role of endogenous growth inhibitors in the control of flowering. In: Bernier G (ed) Cellular and molecular aspects of floral induction. Longman Group, London, pp 285–303

    Google Scholar 

  • Wareing PF, Jennings AMV (1980) The hormonal control of tuberization in potato. In: Skoog F (ed) Plant growth substances. Springer, Berlin Heidelberg New York, pp 147–153

    Google Scholar 

  • Wareing PF, Saunders PF (1971) Hormones and dormancy. Annu Rev Plant Physiol 22: 261–288

    CAS  Google Scholar 

  • Warm E (1980) Effect of phytohormones and salicylic acid on flowering and stem elongation in the long-day plant Hyoscyamus niger. Z Pflanzenphysiol 99: 325–330

    CAS  Google Scholar 

  • Watanabe K, Takimoto A (1979) Flower-inducing effects of benzoic acid and some related compounds in Lemna paucicostata 151. Plant Cell Physiol 20:847 -850

    Google Scholar 

  • Watanabe K, Fujita T, Takimoto A (1981) Relationship between structure and flower- inducing activity of benzoic acid derivatives in Lemna paucicostata 151. Plant Cell Physiol 22: 1469–1479

    CAS  Google Scholar 

  • Waxman S (1957) The development of woody plants as affected by photoperiodic treatments. Ph D Thes, Cornell Univ, Ithaca, NY Weaver RJ (1963) Use of kinin in breaking rest in buds of Vitis vinifera. Nature 198: 207–208

    Google Scholar 

  • Weber J A, Nooden LD (1976) Environmental and hormonal control of turion formation in Myriophyllum verticillatum. Plant Cell Physiol 17: 721–731

    CAS  Google Scholar 

  • Wellensiek SJ (1970) The floral hormones in Silene armeria and Xanthium strumarium. Z Pflanzenphysiol 63: 25–30

    Google Scholar 

  • Wellensiek SJ (1973) Gibberellic acid, flower formation and stem elongation in Silene armeria. Neth J Agric Sci 21: 245–255

    CAS  Google Scholar 

  • Williams BJ Jr, Pellett NE, Klein RM (1972) Phytochrome control of growth cessation and initiation of cold acclimation in selected woody plants. Plant Physiol 50: 262–265

    PubMed  CAS  Google Scholar 

  • Williams MW (1972) Induction of spur and flower bud formation in young apple trees with chemical growth retardants. J Am Soc Hortic Sci 97: 210–212

    CAS  Google Scholar 

  • Withrow AP, Withrow RB (1943) Translocation of the floral stimulus in Xanthium. Bot Gaz 104: 409–416

    Google Scholar 

  • Yeh RY, Matches AG, Larson RL (1976) Endogenous growth regulators and summer tillering of tall fescue. Crop Sci 16: 409–413

    Google Scholar 

  • Zeevaart J AD (1958) Flower formation as studied by grafting. Meded Landbouwhogesch Wageningen 58: 1–88

    Google Scholar 

  • Zeevaart J AD (1969 a) The leaf as a site of gibberellin action in flower formation in Bryophyllum daigremontianum. Planta 84:339–347

    Google Scholar 

  • Zeevaart J AD (1969 b) Gibberellin-like substances in Bryophyllum daigremontianum and the distribution and persistence of applied gibberellin A3. Planta 86:124–133

    Google Scholar 

  • Zeevaart J AD (1969 c) Changes in the gibberellin content of Bryophyllum daigremontianum in connection with floral induction. Neth J Agric Sci 17:215–220

    Google Scholar 

  • Zeevaart J AD (1969d) Bryophyllum. In: Evans LT (ed) The induction of flowering. MacMillan, Melbourne, pp 435–456

    Google Scholar 

  • Zeevaart JAD (1970) Gibberellins and flower formation. In: Bernier G (ed) Cellular and molecular aspects of floral induction. Longman, London, pp 335–344

    Google Scholar 

  • Zeevaart JAD (1971 a) Effects of photoperiod on growth rate and endogenous gibberellins in the long-day rosette plant spinach. Plant Physiol 47:821–827

    Google Scholar 

  • Zeevaart JAD (1971b) (±)-Abscisic acid content of spinach in relation to photoperiod and water stress. Plant Physiol 48:86–90

    Google Scholar 

  • Zeevaart JAD (1971c) Lack of evidence for distinguishing florigen and flower hormone in Perilla. Planta 98: 190–194

    Google Scholar 

  • Zeevaart JAD (1973) Gibberellin A20 content of Bryophyllum daigremontianum under different photoperiodic conditions as determined by gas-liquid chromatography. Planta 114: 258–288

    Google Scholar 

  • Zeevaart JAD (1974) Levels of (+)-abscisic acid and xanthoxin in spinach under different

    Google Scholar 

  • environmental conditions. Plant Physiol 53:644–648

    Google Scholar 

  • Zeevaart JAD (1976) Physiology of flower formation. Ann Rev Plant Physiol 27: 321–348

    CAS  Google Scholar 

  • Zeevaart JAD (1978) Transmission of the floral stimulus between four different photoperiodic response types in the Crassulaceae. Plant Physiol 61 Suppl: 14, No 72

    Google Scholar 

  • Zeevaart JAD (1979) Perception, nature and complexity of transmitted signals. In: Cham-pagnat P, Jacques R (eds) Physiologie de la floraison. CNRS, Paris, pp 59–90

    Google Scholar 

  • Zeevaart JAD (1982) Transmission of the floral stimulus from a long-short-day plant, Bryophyllum daigremontianum, to the short-long-day plant Echeveria harmsii. Ann Bot 46: 549–552

    Google Scholar 

  • Zeevaart JAD (1984) Photoperiodic induction, the floral stimulus and flower-promoting substances. In: Vince-Prue D, Cockshull KE, Thomas B (eds) Light and the flowering process. Academic Press, London New York, pp 137–142

    Google Scholar 

  • Zeevaart JAD, Kivilaan T (1977) Abscisic acid in the short-day plant, Xanthium strumarium. In: Plant research. Annu Rep MSU/AEC Plant Res Lab Michigan State Univ, East Lansing

    Google Scholar 

  • Zeevaart JAD, Lang A (1963) Suppression of floral induction in Bryophyllum daigremontianum by a growth retardant. Planta 59: 509–517

    CAS  Google Scholar 

  • Zhadanova LP (1950) Significance of the gaseous regime for the passage of the light stage in plants. Dokl Akad Nauk USSR 70: 715–718

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Vince-Prue, D. (1985). Photoperiod and Hormones. In: Pharis, R.P., Reid, D.M. (eds) Hormonal Regulation of Development III. Encyclopedia of Plant Physiology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67734-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67734-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67736-6

  • Online ISBN: 978-3-642-67734-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics