Skip to main content

Die pathologische Anatomie der akuten respiratorischen Insuffizienz

  • Chapter
Book cover Akute respiratorische Insuffizienz
  • 21 Accesses

Zusammenfassung

Kapilläre Perfusion, alveolo-kapilläre Permeation und alveoläre Ventilation bilden unter physiologischen Bedingungen eine organ-charakteristische Funktionseinheit im Dienste der Lungenatmung, deren generalisierte Störung zur klinischen Symptomatik einer akuten respiratorischen Insuffizienz führt. Die akute respiratorische Insuffizienz der Lungen kann mithin als das klinische Äquivalent einer polyaetiologischen, generalisierten, akuten und zur Automation und Progression neigenden Störung dieser Funktionseinheit definiert werden. Initiale Perfusionsstörungen der Lungenstrombahn, bei denen die Lungenstrombahn in generalisierte Mikrozirkulations- und Verteilungsstörungen der Kreislaufperipherie vor der Lunge einbezogen wird, gelten als die häufigste Ursache der akuten respiratorischen Insuffizienz. Die akute respiratorische Insuffizienz kann im Prinzip jedoch auch durch primäre Permeationsstörungen im Bereich der alveolo-kapillären Austauschmembranen oder durch primäre Stoffwechselirritationen der Alveolarepithele initiiert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bachofen M, Weibel ER (1974) Basic pattern of tissue repair in human lungs following unspecific injury. Chest 65: 4 (Suppl)

    Google Scholar 

  2. Barnhart MI, Noonan SM (1973) Cellular control mechanisms for blood clotting proteins. In: Brinkhous KM, Surgenor DM, Hinnom S, Sherry S, Stengle JM (eds) Thrombosis: Mechanisms and Control. Schattauer, Stuttgart New York, p 59

    Google Scholar 

  3. Benzer H (1975) Oberflächenspannung in der Lunge und Schocklunge. Verh Dtsch Ges Inn Med 81: 455–462

    PubMed  CAS  Google Scholar 

  4. Bignon J, Jaubert F, Jaurand MC (1977) Ultrastructural basis for pulmonary capillary permeability to autologous plasma proteins and to exogenous proteinic tracers. Chest 71: 294

    PubMed  CAS  Google Scholar 

  5. Bleyl (1971) Pathomorphologie und Pathogenese des Atemnotsyndroms. Verh Dtsch Ges Path 55: 55: 39

    CAS  Google Scholar 

  6. Bleyl U (1977) Morphological diagnosis of disseminated intravascular coagulation: histologic, histochemical and electronmicroscopic studies. Seminars in Thrombosis and Hemostasis 3: 247

    Google Scholar 

  7. Bleyl U (1978) Hämostase und Schocklunge. Verh Dtsch Ges Path 62: 39

    Google Scholar 

  8. Bleyl U Die Atemnotsyndrom-Lunge — Sequestrationsorgan für lösliches Fibrin. Schweizerisches Symposium über akutes Lungenversagen 1978 (im Druck)

    Google Scholar 

  9. Bleyl U, Büsing CM (1973) Pathogenese pulmonaler hyaliner Membranen. In: Wiemers K, Scholler KL (Hrsg) Lungenveränderungen bei Langzeitbeatmung. Internat Symposium Freiburg 1971, Thieme Stuttgart

    Google Scholar 

  10. Bleyl U, Rossner JA (1976) Globular hyaline microthrombi — their nature and morphogenesis. Virchows Arch A Path Anat Histol 370: 113

    Article  CAS  Google Scholar 

  11. Brass EP, Forman WB, Edwards RV, Lindan O (1976) Fibrin formation: The role of the fibrinogen fibrin complex. Thrombos Haemostas 36: 37

    CAS  Google Scholar 

  12. Brown ES (1964) Isolation and assay of dipalmitoyllecithin in lung extracts. Am J Physiol 207: 402

    PubMed  CAS  Google Scholar 

  13. Büsing CM, Bleyl U (1977) Plasminogen activator activity of pulmonary vessels in shock. Thrombos Res 11: 285

    Article  Google Scholar 

  14. Coalson JJ, Hinshaw LB, Guenter CA (1970) The pulmonary ultrastructure in septic shock. Exp molec Path 12: 84

    Article  PubMed  CAS  Google Scholar 

  15. Fletcher AP, Alkjaersig N, O’Brien J (1970) Blood hypercoagulability and thrombosis. XIII. Inter¬nat. Congr. of Haematology, Munich, 2–8., p 244

    Google Scholar 

  16. Fung YC, Sobin SS (1969) Theory of sheet flow in lung alveoli. J appl Physiol 26: 472

    PubMed  CAS  Google Scholar 

  17. Fung YC, Sobin SS (1972) Pulmonary alveolar blood flow. Circulat Res 30: 470

    PubMed  CAS  Google Scholar 

  18. Goodwin MN Jr (1971) Deficiency of pulmonary surfactant in metabolic acidosis. Amer J Path 62: 49

    Google Scholar 

  19. Graeff H, Hugo R, Hafter R (1973) In vivo formation of soluble fibrin monomer complexes in human plasma. Thrombos Res 3: 465

    Article  CAS  Google Scholar 

  20. Graeff H, Hugo R, Hafter R (1978) Evaluation of hypercoagulability and intravascular coagulation by estimation and characterization of soluble fibrin monomer complexes (SFMCs). In: Davidson JF, Rowan RM, Samama NM, Desnoyers PC (eds) Progress in Chemical Fibrinolysis and Thrombolysis. Raven Press, New York, p 435

    Google Scholar 

  21. Hafter R, Müller-Berghaus G, Hugo R, Graeff H (1977) Estimation and characterization of soluble fibrin monomer complexes during endotoxin induced intravascular coagulation. Thrombos Res 10: 711

    Article  CAS  Google Scholar 

  22. Hallmann MK, Miyal K, Wagner RM (1975) Isolated lamellar bodies from rat lung. Correlated ultra- structural and biochemical studies. Lab Invest 32: 295

    Google Scholar 

  23. Hughes JMB (1977) Pulmonary edema. In: West JB (ed) Regional differences in the lung. Academic Press, New York London

    Google Scholar 

  24. Hugo R, Hafter R, Stemberger A, Graeff H (1977) Complex formation of crosslinked fibrin oligomers with agarose coupled fibrinogen and fibrin. Hoppe-Seylers Z Physiol Chem 358: 1359

    Article  Google Scholar 

  25. Inoue S, Michel RP, Hogg JC (1976) Zonulae occludentes in alveolar epithelium and capillary endothelium of dog lungs studied with the freeze-fracture technique. J Ultrastruct Res 56: 215

    Article  PubMed  CAS  Google Scholar 

  26. Klaus MH, Clements JA, Havel RJ (1961) Composition of surface-active material isolated from beef lung. Proc Nat Acad Sci USA 47: 1858

    Article  PubMed  CAS  Google Scholar 

  27. Lauweryns JM (1971) Stereomicroscopic funnel-like architecture of pulmonary lymphatic vessels. Lymphology 4: 125

    PubMed  CAS  Google Scholar 

  28. Lauweryns JM, Baert JH (1977) Alveolar clearance and the role of the pulmonary lymphatics: Amer Rev Resp Dis 115: 625

    PubMed  CAS  Google Scholar 

  29. Manasse P (1892) Über hyaline Ballen und Thromben in den Gefäßen bei akuten Infektionskrankheiten. Virchows Arch 130: 217

    Article  Google Scholar 

  30. Meyer BJ, Meyer A, Guyton AC (1968) Interstitial fluid pressure. Circulat Res 22: 263

    PubMed  CAS  Google Scholar 

  31. Movat HZ, Uriuhara T, Macmorine DL, Burke JS (1964) A permeability factor released from leukocytes after phagocytosis of immun complexes and its possible role in the arthus reaction. Life Sci 3: 1025

    Article  PubMed  CAS  Google Scholar 

  32. Movat HZ, Udaka K, Takeuchi Y (1970) Plymorphonuclear leukocyte lysosomes and vascular injury. In: Koller F, Brinkhous KM, Biggs R, Rodman NF, Hinnom S (eds) Vascular Factors and Thrombosis. Schattauer, Stuttgart New York, p 211

    Google Scholar 

  33. Murray JF (1976) The Normal Lung. Saunders, Philadelphia London Toronto

    Google Scholar 

  34. Pingleton WW, Coalson JJ, Hinshaw LB, Guenter CA (1972) Effect of steroid pretreatment on development of shock lung. Lab Invest 27: 445

    PubMed  CAS  Google Scholar 

  35. Ratliff NB, Wilson JW, Mikat E, Hackel DB (1970) Altered leukocytes in pulmonary vessels of dogs in hemorrhagic shock. Microsvasc Res 2: 241

    Google Scholar 

  36. Ratliff NB, Wilson JW, Mikat E, Hackel DB, Graham TC (1971) The lung in hemorrhagic shock. Amer J Path 65: 325

    PubMed  CAS  Google Scholar 

  37. Rüfer R (1971) Surfactant inhibition in vitro. X XV. International Congress of Physiological Sciences. Proceedings of the Internat. Union of Physiological Sciences IX (Abstract)

    Google Scholar 

  38. Sandritter W, Mittermayer C, Riede UN, Freudenberg N, Grimm H (1978) Shock lung syndrome (a general review). Path Res Pract 162: 7

    PubMed  CAS  Google Scholar 

  39. Sasaki T, Page JH, Shainoff JR (1966) Stable complex of fibrinogen and fibrin. Science 152: 1069

    Article  PubMed  CAS  Google Scholar 

  40. Schlag G, Voigt WH, Schnells G, Glatzl A (1976) Die Ultrastruktur der menschlichen Lunge im Schock. I. Anaesthesist 25: 512–521

    CAS  Google Scholar 

  41. Schmid-Schönbein H (1977) Microrheology of erythrocytes and thrombocytes, blood viscosity and the distribution of blood flow in the microcirculation. In: Meessen H (ed) Mikrozirkulation Springer, Berlin Heidelberg New York Handbuch der allgemeinen Pathologie III/7, p 289

    Google Scholar 

  42. Schneeberger EE (1977) Ultrastructure of intercellular junctions in the freeze fractured alveolar- capillary membrane of mouse lung. Chest 71: 299

    PubMed  CAS  Google Scholar 

  43. Sherman LA (1972) Fibrinogen turnover: Demonstration of multiple pathways of catabolism. J Labor Clin Med 79: 710

    CAS  Google Scholar 

  44. Sherman LA (1977) Catabolism of fibrinogen and its derivatives. Thrombos Haemostasis (Stuttg) 38: 809

    CAS  Google Scholar 

  45. Sherman LA, Harwig S, Lee J(1975)In vitro formation and in vivo clearance of fibrinogen complexes. J Labor Clin Med 86:100

    Google Scholar 

  46. Strieder DJ (1976) Physical factors in lung functions. In: Kazemi H (ed) Disorders of the respiratory system. Grune & Stratton, New York San Francisco London, p 12

    Google Scholar 

  47. Taylor FB Jr, Abrams ME (1964) Inhibition of clot lysis by a surface active lipoprotein from lung and inhibition of its surface activity by fibrinogen. Physiologist 7: 269

    Google Scholar 

  48. Taylor FB Jr, Abrams ME (1966) Effect of surface active lipoprotein on clotting and fibrinolysis, and of fibrinogen on surface tension of surface active lipoprotein. With a hypothesis on the pathogenesis of pulmonary atelectasis and hyaline membrane in respiratory distress syndrome of the newborn. Amer J Med 40: 346

    Article  CAS  Google Scholar 

  49. Urbaschek B (1971) The effects of endotoxins in the microcirculation. In: Kadis S, Weinbaum G, Ajl SJ Microbial Toxins, vol. V, Academic Press, New York London, p 261

    Google Scholar 

  50. Wiehert P (1978) Alveolarwandphysiologie und Surfactant. Verh Dtsch Ges Path 62: 29

    Google Scholar 

  51. Zenker K (1895) Über intravasale Fibringerinnung bei der Thrombose. Beitr path Anat 17: 448

    Google Scholar 

  52. Zweifach BW (1961) Functional behavior of the microcirculation. Thomas, Springfield

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bleyl, U. (1980). Die pathologische Anatomie der akuten respiratorischen Insuffizienz. In: Peter, K. (eds) Akute respiratorische Insuffizienz. Anaesthesiologie und Intensivmedizin Anaesthesiology and Intensive Care Medicine, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67723-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67723-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10185-7

  • Online ISBN: 978-3-642-67723-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics