Skip to main content

The Mechanism of Transmembrane Auxin Transport and Its Relation to the Chemiosmotic Hypothesis of the Polar Transport of Auxin

  • Conference paper
Plant Growth Substances 1979

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The coordinated development of plants requires and reflects a controlled distribution of growth substances which, by interaction with receptors, bring about the biochemical and biophysical changes that culminate in morphogenesis. Transport is a central factor influencing cellular hormone concentration and hence the proportion of occupied receptors. Polar transport in a preferred morphologically defined direction has been most extensively studied and characterized for auxin although abscisic acid, gibberellins and perhaps cytokinins may behave similarly in some instances (1). The “chemiosmotic” hypothesis of polar auxin transport was proposed independently by Rubery and Sheldrake (2) and by Raven (3). It has recently been reviewed by Goldsmith (1). In this paper I shall discuss this new hypothesis together with the theoretical arguments and experimental data that led to its formulation. The key considerations are the mechanism and energetics of transmembrane auxin movement and the basis and maintenance of the cellular asymmetry underlying the polarity of the tissue as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldsmith, M.H.M.: Annu. Rev. Plant Physiol. 28, 439–478 (1977)

    Article  CAS  Google Scholar 

  2. Rubery, P.H., Sheldrake, A.R.: Planta 118, 101–121 (1974)

    Article  CAS  Google Scholar 

  3. Raven, J.A.: New Phytol. 74, 163–172 (1975)

    Article  CAS  Google Scholar 

  4. Rubery, P.H., Sheldrake, A.R.: Nature (Lond.) New Biol. 224, 285–288 (1973)

    Google Scholar 

  5. Rubery, P.H.: Planta 135, 275–283 (1977)

    Article  CAS  Google Scholar 

  6. Rubery, P.H.: Planta 142, 203–206 (1978)

    Article  CAS  Google Scholar 

  7. Rubery, P.H.: Planta 144, 173–178 (1979)

    Article  CAS  Google Scholar 

  8. Rubery, P.H.: Plant Sci. Lett. 14, 365–371 (1979)

    Article  CAS  Google Scholar 

  9. Davies, P.J., Rubery, P.H.: Planta 142, 211–219 (1978)

    Article  CAS  Google Scholar 

  10. Gutknecht, J., Tosteson, D.C.: Science 182, 1258–1261 (1973)

    Article  PubMed  CAS  Google Scholar 

  11. Albaum, H.G., Kaiser, S., Nestler, H.A.: Am. J. Bot. 24, 513–518 (1937)

    Article  CAS  Google Scholar 

  12. Sutter, E.: Ber. Schweiz. Bot. Ges. 54, 197–244 (1944)

    CAS  Google Scholar 

  13. Leopold, A.C., Hall, O.F.: Plant Physiol. 41, 1476–1480 (1960)

    Article  Google Scholar 

  14. De La Fuente, R.K., Leopold, A.C.: Plant Physiol. 41, 1481–1484 (1960)

    Article  Google Scholar 

  15. Raven, J.A.: New Phytol. 82, 285–291 (1979)

    Article  CAS  Google Scholar 

  16. Smith, F.A., Raven, J.A.: Encycl. Plant Physiol. New Ser. A 2, 317–346 (1976)

    Google Scholar 

  17. Cande, W.Z., Ray, P.M.: Planta 129, 43–52 (1976)

    Article  CAS  Google Scholar 

  18. Sheldrake, A.R.: Planta 145, 113–117 (1979)

    Article  CAS  Google Scholar 

  19. Juniper, B.E.: Annu. Rev. Plant Physiol. 27, 385–406 (1976)

    Article  CAS  Google Scholar 

  20. Stein, W.D., Honig, B.: Mol. Cell Biochem. 15, 27–44 (1977)

    Article  PubMed  CAS  Google Scholar 

  21. Cross, J.W., Briggs, W.R.: Plant Physiol. 62, 152–157 (1978)

    Article  PubMed  CAS  Google Scholar 

  22. Dohrmann, U., Hertel, R., Kowalik, H.: Planta 140, 97–106 (1978)

    Article  CAS  Google Scholar 

  23. Jacobs, M., Hertel, R.: Planta 142, 1–10 (1978)

    Article  CAS  Google Scholar 

  24. Thomson, K.-S., Hertel, R., Muller, S., Tavares, J.E.: Planta 109, 337–352 (1973)

    Article  CAS  Google Scholar 

  25. Trillmich, K., Michalke, W.: Planta 145, 119–127 (1979)

    Article  CAS  Google Scholar 

  26. Ray, P.M., Dohrmann, U., Hertel, R.: Plant Physiol. 60, 585–591 (1977)

    Article  PubMed  CAS  Google Scholar 

  27. Venis, M.A., Watson, P.J.: Planta 142, 103–107 (1978)

    Article  CAS  Google Scholar 

  28. Dohrmann, U., Hertel, R., Pesci, P., Cocucci, S.M., Marré, E., Randazzo, G., Ballio, A.: Plant Sci. Lett. 9, 291–299(1977)

    Article  CAS  Google Scholar 

  29. Ho, M.K., Guidotti, G.: J. Biol. Chem. 250, 675–683 (1975)

    PubMed  CAS  Google Scholar 

  30. Hertel, R., Flory, R.: Planta 82, 123–140 (1968)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rubery, P.H. (1980). The Mechanism of Transmembrane Auxin Transport and Its Relation to the Chemiosmotic Hypothesis of the Polar Transport of Auxin. In: Skoog, F. (eds) Plant Growth Substances 1979. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67720-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67720-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67722-9

  • Online ISBN: 978-3-642-67720-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics