The Photochemistry of 5-Bromouracil and 5-lodouracil in DNA

  • F. Hutchinson
  • W. Köhnlein
Part of the Progress In Molecular and Subcellular Biology book series (PMSB, volume 7)


Of the synthetic bases which may be incorporated in DNA, two of the most interesting are the thymine analogs, 5-bromouracil and 5-iodouracil. DNAs containing these bases have a number of altered properties which have been used to advantage by molecular biologists.


Strand Break Ultraviolet Light Thymidine Kinase Sister Chromatid Sister Chromatid Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, G.E.: The general application of pulse radiolysis to current problems in radiobiology. Curr. Top. Radiat. Res. 13, 35 (1967)Google Scholar
  2. Adams, G.E., Willson, R.L.: Mechanism of 5-BrUdr sensitization. Pulse radiolysis study of one electron transfer in nucleic acid derivatives. Int. J. Radiat. Biol. 22, 589 (1972)CrossRefGoogle Scholar
  3. Augenlicht, L., Nicolini, C., Baserga, R.: Circular dichroism and thermal denaturation studies of chromatin and DNA from BrdU-treated mouse fibroblasts. Biochem. Biophys. Res. Commun. 59, 920 (1974)PubMedCrossRefGoogle Scholar
  4. Baker, R.F., Case, S.T.: Effect of 5-bromodeoxyuridine on the size distribution of DNAs isolated from sea urchin embryos. Nature (London) 249, 350 (1974)CrossRefGoogle Scholar
  5. Bansel, K.M., Patterson, L.K., Schuler, R.H.: The production of halide ion in the radiolysis of aqueous solutions of the 5-halouracils. J. Phys. Chem. 76, 2386 (1972)CrossRefGoogle Scholar
  6. Barrett, J.C, Schechtman, L., Ts’o, P.: An investigation of the DNA involvement in neoplastic transformation in vitro transformation of hamster fibroblasts induced by BrdU incorporation coupled with irradiation of near ultraviolet light. Abstr. 41 (15th Annu. Meet. Am. Soc. Cell Biol.) (1975)Google Scholar
  7. Beattie, K.L.: Breakage of parental strand in Haemophilus influenzae by 313 nm radiation after replication in the presence of 5-bromodeoxyuridine. Biophys. J. 12, 1573 (1972)PubMedCrossRefGoogle Scholar
  8. Bender, M.A., Bedford, J.S., Mitchell, J.B.: Mechanisms of chromosomal aberration production. II. Aberrations induced by 5-bromodeoxyuridine and visible light. Mutat. Res. 20, 403 (1973)PubMedCrossRefGoogle Scholar
  9. Ben-Hur, E., Elkind, M.M.: Damage and repair of DNA in 5-BrdU labeled Chinese hamster cells exposed to fluorescent light. Biophys. J. 12, 636 (1972)PubMedCrossRefGoogle Scholar
  10. Ben-Hur, E., Prager, A., Riklis, E.: Photochemistry of the bisbenzimidazole dye 33258 Hoechst with bromodeoxyuridine and its biological effects on BrdUrd-substituted E. coli. Photochem. Photobiol. 27, 559 (1978)PubMedCrossRefGoogle Scholar
  11. Berens, K., Shugar, D.: Ultraviolet absorption spectra and structure of halogenated uracils and their glycosides. Acta Biochim. Pol. 10, 25 (1963)PubMedGoogle Scholar
  12. Berns, M.W., Leonardson, K., Winter, M.: Laser microbeam irradiation of rat kangaroo cells (PTK2) following selective sensitization with bromodeoxyuridine and ethidium bromide. J. Morphol. 149, 327 (1976)PubMedCrossRefGoogle Scholar
  13. Besmer, P., Smotkin, D., Haseltine, W., Fan, H., Wilson, A.T., Paskind, M., Weinberg, R., Baltimore, D.: Mechanism of induction of RNA tumor viruses by halogenated pyrimidines. Cold Spring. Harbor Symp. Quant. Biol. 39, 1103 (1975)PubMedGoogle Scholar
  14. Bick, M.D.: A quantitative method for distinguishing BrdUTP and dTTP in soluble pools. Anal. Biochem. 78, 582 (1977)PubMedCrossRefGoogle Scholar
  15. Bick, M.D., Davidson, R.L.: Total substitution of bromodeoxyuridine for thymidine in the DNA of a bromodeoxyuridine dependent cell line. Proc. Natl. Acad. Sci. USA 71, 2082 (1974)PubMedCrossRefGoogle Scholar
  16. Bishop, R.J., Sueoka, N.: 5-bromouracil tolerant mutants of Bacillus subtilis. J. Bacteriol. 112, 870 (1972)PubMedGoogle Scholar
  17. Bobst, A.M., Torrence, P.F., Kouidou, S., Witkop, B.: Dependence of interferon induction on nucleic acid conformation. Proc. Natl. Acad. Sci. USA 73, 3788 (1976)PubMedCrossRefGoogle Scholar
  18. Bonura, T., Smith, K.C.: Sensitization of E. coli to gamma-radiation by 5-bromouracil incorporation. Int. J. Radiat. Biol. 32, 457 (1977)CrossRefGoogle Scholar
  19. Boyce, R.P.: Ultraviolet light inactivation of E. coli and bacteriophage containing 5-bromouracil-substituted DNA. Ph.D. Thesis, Yale Univ. (1961)Google Scholar
  20. Boyce, R.P., Setlow, R.B.: The action spectra for ultraviolet light inactivation of systems containing 5-bromouracil-substituted DNA. Biochim. Biophys. Acta 68, 446 (1963)CrossRefGoogle Scholar
  21. Bradshaw, T.K., Hutchinson, D.W.: 5-substituted pyrimidine nucleosides and nucelotides. Chem. Soc. Rev. 6, 43 (1977)CrossRefGoogle Scholar
  22. Brendel, M., Haynes, R.H.: Exogenous thymidine 5’-monophosphate as a precursor for DNA synthesis in yeast. Genetics 126, 337 (1973)Google Scholar
  23. Breslow, R., Goldsby, R.: Isolation and characterization of thymidine transport mutants of Chinese hamster cells. Exp. Cell Res. 55, 339 (1969)PubMedCrossRefGoogle Scholar
  24. Buhl, S.N., Setlow, R.B., Regan, J.D.: Steps in DNA chain elongation and joining after ultraviolet irradiation of human cells. Int. J. Radiat. Biol. 22, 417 (1972)CrossRefGoogle Scholar
  25. Byrd, D.M., Goz, B., Prusoff, W.H.: Comparison of the lethal effect of 5-iodouracil incorporated into T4 ø in the presence and absence of nearvisible light. Photochem. Photobiol. 21, 407 (1975)CrossRefGoogle Scholar
  26. Campbell, J.M., Schulte-Frohlinde, D., von Sonntag, C.: Quantum yields in the ultraviolet photolysis of 5-bromouracil in the presence of hydrogen donors. Photochem. Photobiol. 20, 465 (1974)CrossRefGoogle Scholar
  27. Carrier, W.L., Setlow, R.B.: Ultraviolet sensitivity of DNA containing bromodeoxyuridine. VI Int. Congr. Photobiol., Bochum, Abstr. 96 (1972)Google Scholar
  28. Chen, M.S., Prusoff, W.H.: Kinetic and photochemical studies and alteration of ultraviolet sensitivity of E. coli thymidine kinase by halogenated allosteric regulators and substrate analogs. Biochemistry 16, 3310 (1977)PubMedCrossRefGoogle Scholar
  29. Chikuma, T., Negishi, K., Hayatsu, H.: Formation of S-[5-(2’-deoxyuridyl)] thiol compounds in the dehalogenation of 5-bromo and 5-iodo-2’ deoxyuridine with cysteine derivatives. Chem. Pharmaceut. Bull. 26, 1746 (1978)Google Scholar
  30. Chu, E.H.Y.: Effects of ultraviolet radiations on mammalian cells. Mutat. Res. 2, 75 (1965)PubMedCrossRefGoogle Scholar
  31. Cohen, S.S., Flaks, J.G., Barner, H.D., Loeb, M.R., Lichtenstein, J.: The mode of action of 5-fluorouracil and its derivatives. Proc. Natl. Acad. Sci. USA 44, 1004 (1958)PubMedCrossRefGoogle Scholar
  32. Cone, R., Duncan, J., Hamilton, L., Friedberg, E.C.: Partial purification and characterization of a uracil DNA N-glycosidase from B. subtilis. Biochemistry 16, 3194 (1977)PubMedCrossRefGoogle Scholar
  33. Cornelis, J.J.: The influence of inhibitors on dimer removal and repair of single-strand breaks in normal and bromodeoxyuridine substituted DNA of HeLa cells. Biochim. Biophys. Acta 521, 134 (1978)PubMedGoogle Scholar
  34. Cysyk, R., Prusoff, W.H.: Alteration of ultraviolet sensitivity of thymidine kinase by allosteric regulators, normal substrates and a photoaffinity label, 5-iodo-2-deoxyuridine, a metabolic analog of thymidine. J. Biol. Chem. 247, 2522 (1972)PubMedGoogle Scholar
  35. Danziger, R.M., Hayon, E., Langmuir, M.E.: Pulse radiolysis and flash photolysis study of aqueous solutions of simple pyrimidines, uracil and bromouracil. J. Phys. Chem. 72, 3842 (1968)CrossRefGoogle Scholar
  36. Davidson, R.L., Bick, M.D.: Bromodeoxyuridine dependence — A new mutation in mammalian cells. Proc. Natl. Acad. Sci. USA 70, 138 (1973)PubMedCrossRefGoogle Scholar
  37. Davies, D.R., Baldwin, R.L.: X-ray studies of two synthetic DNA copolymers. J. Mol. Biol. 6, 251 (1963)PubMedCrossRefGoogle Scholar
  38. Denhardt, D.J., Sinsheimer, R.L.: The process of infection with bacteriophage øX174. VI. Inactivation of infected complexes by ultraviolet irradiation. J. Mol. Biol. 12, 674 (1965)PubMedCrossRefGoogle Scholar
  39. Dennis, W.S., Hutchinson, F.: Repair of single-strand breaks induced by ultraviolet light in E. coli DNA containing bromouracil. VI. Int. Congr. Photobiol., Bochum, Abstr. 108 (1972)Google Scholar
  40. Dizdaroglu, M., Schulte-Frohlinde, D., von Sonntag, C.: γ-radiolyses of DNA in oxygenated aqueous solution. Structure of an alkali-labile site. Z. Naturforsch. 32c, 1021 (1977)Google Scholar
  41. Dodson, M.L., Hewitt, R., Mandel, M.: Nature of ultraviolet light induced strand breakage in DNA containing bromouracil. Photochem. Photobiol. 16, 15 (1972)PubMedCrossRefGoogle Scholar
  42. Drake, J.W.: The Molecular Basis of Mutation. San Francisco: Holden-Day 1970Google Scholar
  43. Duncan, J., Hamilton, L., Friedberg, E.C.: Degradation of uracil-containing DNA. II. Evidence for N-glycosidase and nuclease activities in unfractionated extracts of B. subtilis. J. Virol. 19, 338 (1976)PubMedGoogle Scholar
  44. Dutrillaux, B., Fosse, A.M., Prieur, M., Jejeune, J.: Chromatid exchanges in human mitotic cells. BUDR treatment and bichromatic fluorescence by acridine orange. Chromosoma 48, 327 (1974)CrossRefGoogle Scholar
  45. Ehrlich, M., Riley, M.: Photolysis of polyribobromouridylic acid. Photochem. Photobiol. 16, 385 (1972a)PubMedCrossRefGoogle Scholar
  46. Ehrlich, M., Riley, M.: Oligonucleotide photoproducts formed by photolysis of polyribobromouridylic acid. Photochem. Photobiol. 16, 397 (1972b)PubMedCrossRefGoogle Scholar
  47. Ehrlich, M., Riley, M.: Effect of base sequence on the ultraviolet irradiation products of double-stranded polynucleotides containing bromouracil and adenine. Photochem. Photobiol. 20, 159 (1974)PubMedCrossRefGoogle Scholar
  48. Eisinger, J., Lamola, A.A.: Luminescence spectroscopy of nucleic acids. Methods Enzymol. 21, 24 (1971)CrossRefGoogle Scholar
  49. Fielden, E.M., Lillicrap, S.C., Robins, A.B.: The effects of 5-bromouracil on energy transfer in DNA and related model systems: DNA with incorporated 5-BUdR. Radiat. Res. 48, 421 (1971)PubMedCrossRefGoogle Scholar
  50. Fives-Taylor, P., Novotny, CP.: Effect of thymine-5-bromouracil substitution on F pili. J. Bacteriol. 118, 175 (1974)PubMedGoogle Scholar
  51. Fogel, M.: Induction of virus synthesis in polyoma transformed cells by DNA anti-metabolites and by irradiation after pretreatment with 5-bromodeoxyuridine. Virology 49, 12 (1972)PubMedCrossRefGoogle Scholar
  52. Fox, E., Meselson, M.: Unequal photosensitivity of the two strands of DNA in bacteriophage lambda. J. Mol. Biol. 1, 583 (1963)CrossRefGoogle Scholar
  53. Fox, J.J., Shugar, D.: Spectrophotometric studies of nucleic acid derivatives and related compounds as a function of pH. II. Natural and synthetic pyrimidine nucleosides. Biochim. Biophys. Acta 9, 369 (1952)PubMedCrossRefGoogle Scholar
  54. Freifelder, D., Freifelder, D.R.: Mechanism of X-ray sensitization of bacteriophage T7 by 5-bromouracil. Mutat. Res. 3, 111 (1966)CrossRefGoogle Scholar
  55. Freifelder, D., Davison, P.F., Guiduschek, E.P.: Damage by visible light to the acridine orange-DNA complex. Biophys. J. 1, 389 (1961)PubMedCrossRefGoogle Scholar
  56. Fujiwara, Y.: Postreplication repair of alkylation damage to DNA of mammalian cells in culture. Cancer Res. 35, 2780 (1975)PubMedGoogle Scholar
  57. Gilbert, E., Cristallini, C.: Ultraviolet photolysis of 5-bromouracil in aqueous solution. Influence of oxygen and deoxy-D-ribose. Z. Naturforsch. 28B, 615 (1973)Google Scholar
  58. Gilbert, E., Schulte-Frohlinde, D.: Photolysis of 5-iodouracil in aqueous oxygen saturated solution. Z. Naturforsch. 25B, 492 (1970)Google Scholar
  59. Gilbert, E., Volkert, O., Schulte-Frohlinde, D.: Radiochemistry of aqueous oxygen containing solutions of 5-bromouracil. Identification of radiolysis products. Z. Naturforsch. 22b, 477 (1967)Google Scholar
  60. Goto, K., Akematsu, T., Shimazu, H., Sugiyama, T.: Simple differential Giemsa staining of sister chromatids after treatment with photosensitive dyes and exposure to light and the mechanisms of staining. Chromosoma 52, 223 (1975)CrossRefGoogle Scholar
  61. Gratzner, H.G., Leif, R.C., Ingram, D.J., Castro, A.: The use of antibody specific for bromodeoxyuridine for the immunofluorescent determination of DNA replication in single cells and chromosomes. Exp. Cell Res. 95, 88 (1975)PubMedCrossRefGoogle Scholar
  62. Greer, S., Zamenhof, S.: Effect of 5-bromouracil in DNA of E. coli on sensitivity to ultraviolet irradiation. Abstr. Am. Chem. Soc. 131st Meet. p3C (1957)Google Scholar
  63. Grigg, G.W.: Selective breakage of DNA alongside 5-bromodeoxyuridine nucleotide residues by high temperature hydrolysis. Nucleic Acids Res. 4, 969 (1977)PubMedCrossRefGoogle Scholar
  64. Grivell, A.R., Grivell, M.B., Hanawalt, P.C.: Turnover in bacterial DNA containing thymine or 5-bromouracil. J. Mol. Biol. 98, 219 (1975)PubMedCrossRefGoogle Scholar
  65. Gueron, M., Eisinger, J., Lamola, A.A.: Excited states of nucleic acid bases. In: Principles in Nucleic Acid chemistry. Vol. I, p. 312. New York: Academic Press 1974Google Scholar
  66. Guthrie, R.D.: Glycosans and anhydro sugars. In: The carbohydrates (eds. W. Pigman, D. Horton). Vol. I A. New York: Academic Press 1972Google Scholar
  67. Hagan, M.P., Elkind, M.M.: Changes in repair competency after 5-bromodeoxyuridine pulse labeling and near-ultraviolet light. Biophys. J. 27, 75 (1979)PubMedCrossRefGoogle Scholar
  68. Hanawalt, P.C, Setlow, R.B.: Molecular Mechanisms for Repair of DNA. Vol. A, B. New York: Plenum Press 1975Google Scholar
  69. Haug, A.: Photochemical decomposition of TdBU. Z. Naturforsch. 19B, 143 (1964)Google Scholar
  70. Haugli, F.B., Dove, W.F.: Mutagenesis and mutant selection in Physarum polycephalum. Mol. Gen. Genet. 118, 109 (1972)PubMedGoogle Scholar
  71. Hewitt, R., Marburger, K.: The photolability of DNA containing 5-bromouracil. I. Single-strand breaks and alkali-labile bonds. Photochem. Photobiol. 21, 431 (1975)CrossRefGoogle Scholar
  72. Hewitt, R., Suit, J.C., Billen, D.: Utilization of 5-bromouracil by thymineless bacteria. J. Bacteriol. 93, 86 (1967)PubMedGoogle Scholar
  73. Holliday, R., Pugh, J.E.: DNA modification mechanisms and gene activity during development. Science 187, 226 (1975)PubMedCrossRefGoogle Scholar
  74. Horn, D., Davidson, R.L.: Inhibition of biological effects of bromodeoxyuridine by deoxycytidine-correlation with decreased incorporation of bromodeoxyuridine into DNA. Somat. Cell Genet. 2, 469 (1976)PubMedCrossRefGoogle Scholar
  75. Hotz, G., Reuschl, H.: Damage to deoxyribose molecules and to U-gene reactivation in ultraviolet-irradiated 5-bromouracil DNA of phage T4. Mol. Gen. Genet. 99, 5 (1967)PubMedCrossRefGoogle Scholar
  76. Hotz, G. Walser, R.: On the mechanism of radiosensitization by 5-bromouracil. The occurrence of DNA single-strand breaks in ultraviolet-irradiated phage T4 as influenced by cysteamine. Photochem. Photobiol. 12, 207 (1970)PubMedCrossRefGoogle Scholar
  77. Hotz, G., Mauser, R., Walser, R.: Infectious DNA from coliphage T1. III. The occurrence of single-strand breaks in stored, thermally treated, and ultraviolet irradiated molecules. Int. J. Radiat. Biol. 19, 519 (1971)CrossRefGoogle Scholar
  78. Hurst, R.O., Kuksis, A.: Degradation of deoxyribonucleic acid by hot alkali. Can. J. Biochem. Physiol. 36, 919 (1958)PubMedCrossRefGoogle Scholar
  79. Hutchinson, F.: The lesions produced by ultraviolet light in DNA containing 5-bromouracil. Q. Rev. Biophys. 6, 201 (1973)PubMedCrossRefGoogle Scholar
  80. Hutchinson, F., Hales, H.: Mechanism of the sensitization of bacterial transforming DNA to ultraviolet light by the incorporation of 5-bromouracil. J. Mol. Biol. 50, 59 (1970)PubMedCrossRefGoogle Scholar
  81. Hutchinson, F., Stein, J.: Mutagenesis of lambda phage: 5-bromouracil and hydroxylamine. Mol. Gen. Genet. 152, 29 (1977)PubMedCrossRefGoogle Scholar
  82. Ihler, G.: Preparation and photochemical properties of strand-specific 5-bromouracil substituted lambda phage. Radiat. Res. 61, 298 (1975)PubMedCrossRefGoogle Scholar
  83. Ikushima, T., Wolff, S.: Sister chromatid exchanges induced by light flashes to 5-bromodeoxyuridine and 5-iododeoxyuridine substituted Chinese hamster chromosomes. Exp. Cell Res. 87, 15 (1974)PubMedCrossRefGoogle Scholar
  84. Incremona, J.H., Martin, J.C.: N-bromosuccinimide, mechanisms of allylic bromination and related reactions. J. Am. Chem. Soc. 92, 627 (1970)CrossRefGoogle Scholar
  85. Ishihara, H., Wang, S.Y.: Photochemistry of 5-bromouracils: Isolation of 5–5’ diuracils. Nature (London) 210, 1222 (1966)CrossRefGoogle Scholar
  86. Kanner, L., Hanawalt, P.C: Efficiency of utilization of thymine and 5-bromouracil for normal and repair DNA synthesis in bacteria. Biochim. Biophys. Acta 157, 532 (1968)PubMedGoogle Scholar
  87. Kao, P.C., Regan, J.D., Volkin, E.: Fate of homologous and heterologous DNAs after incorporation into human skin fibroblasts. Biophys. Biochim. Acta 324, 1 (1973)Google Scholar
  88. Kaplan, H.S.: DNA strand scission and loss of viability after X-irradiation of normal and sensitized bacterial cells. Proc. Natl. Acad. Sci. USA 55, 1442 (1966)PubMedCrossRefGoogle Scholar
  89. Kato, H.: Spontaneous sister chromatid exchanges detected by a BUdR labeling method. Nature (London) 251, 70 (1974)CrossRefGoogle Scholar
  90. Kessin, R.H., Williams, K.L., Newell, P.C: Linkage analysis in Dictyostelium discoidium using temperature-sensitive growth mutants selected with bromodeoxyuridine. J. Bacteriol. 119, 776 (1974)PubMedGoogle Scholar
  91. Kihlman, B.A., Kronborg, D.: Sister chromatid exchanges in Vicia faba. Demonstration of a modified fluorescence plus Giemsa (FPG) technique. Chromosoma 51, 1 (1975)CrossRefGoogle Scholar
  92. Kimball, R.F., Setlow, J.K.: Mutation fixation in MNNG-treated H. influenzae as determined by transformation. Mutat. Res. 22, 1 (1974)PubMedCrossRefGoogle Scholar
  93. Kirtikar, D.M., Slaughter, J., Goldthwait, D.A.: Endonuclease II of E. coli: degradation of gamma-irradiated DNA. Biochemistry 14, 1235 (1975)PubMedCrossRefGoogle Scholar
  94. Köhnlein, W.: Transforming activity in both complementary strands of B. subtilis DNA. Z. Naturforsch. 29c, 63 (1974)Google Scholar
  95. Köhnlein, W., Hutchinson, F.: ESR-studies of normal and 5-bromouracil-substituted DNA of Bacillus subtilis after irradiation with ultraviolet light. Radiat. Res. 39, 745 (1969)PubMedCrossRefGoogle Scholar
  96. Köhnlein, W., Mönkehaus, F.: Experimental evidence for intramolecular energy transfer in hybrid DNA of B. subtilis after irradiation with long wavelength Uv. Z. Naturforsch. 27b, 708 (1972)Google Scholar
  97. Kondratev, Y.S., Skavronskaya, A.G.: The effect of 5-bromouracil on the sensitivity of Hcr + and Hcr bacteria to the lethal and mutagenic action of ultraviolet light. Sov. Genet. 7, 1218 (1971)Google Scholar
  98. Korenberg, J.R., Freedlender, E.F.: Giemsa technique for the detection of sister chromatid exchanges. Chromosoma 48, 355 (1974)PubMedCrossRefGoogle Scholar
  99. Korner, I., Malz, W.: Postreplication gap filling in the DNA of X-ray damaged Chinese hamster cells. Stud. Biophys. 51, 115 (1975)Google Scholar
  100. Kourim, P., Bors, W., Schulte-Frohlinde, D.: Gamma radiolysis of aqueous solutions of 5-bromo-2-deoxyuridine in the presence of oxygen. Z. Naturforsch. 26b, 308 (1971)Google Scholar
  101. Krasin, F., Hutchinson, F.: Repair of DNA double-strand breaks in E. coli, which requires recA function and the presence of a duplicate genome. J. Mol. Biol. 116, 81 (1977)PubMedCrossRefGoogle Scholar
  102. Krasin, F., Hutchinson, F.: Double-strand breaks from single photochemical events in DNA containing 5-bromouracil. Biophys. J. 24, 645 (1978a)PubMedCrossRefGoogle Scholar
  103. Krasin, F., Hutchinson, F.: Strand breaks and alkali-labile bonds induced by ultraviolet light in DNA with 5-bromouracil in vivo. Biophys. J. 24, 657 (1978b).PubMedCrossRefGoogle Scholar
  104. Laemmli, U.K., Teaff, N., D’Ambrosia, J.: Maturation of the head of bacteriophage T4. III. DNA packaging into preformed heads. J. Mol. Biol. 88, 749 (1974)PubMedCrossRefGoogle Scholar
  105. Lambert, B., Harrison, K., Lindsten, J., Sten, M., Werelius, B.: Bromodeoxyuridine induced sister chromatid exchanges in human lymphocytes. Hereditas 83, 163 (1976)PubMedCrossRefGoogle Scholar
  106. Langmuir, M.E., Hayon, E.: Transient species produced in the photochemistry of 5-bromouracil and its N-methyl derivatives. J. Chem. Phys. 51, 4893 (1969)CrossRefGoogle Scholar
  107. Langridge, R., Marvin, D.A., Seeds, W.E., Wilson, H.R., Hooper, C.W., Wilkins, M.H.F., Hamilton, L.D.: The molecular configuration of deoxyribonucleic acid. II. Molecular models and their Fourier transforms. J. Mol. Biol. 2, 38 (1960)CrossRefGoogle Scholar
  108. Lansman, R.A., Clayton, D.A.: Selective nicking of mammalian mitochondrial DNA in vivo: Photosensitization by incorporation of 5-bromodeoxyuridine. J. Mol. Biol. 99, 761 (1975)PubMedCrossRefGoogle Scholar
  109. Lapeyre, J.-N., Bekhor, I.: Effect of 5-Bromo 2’ deoxyuridine and dimethyl sulfoxide on properties and structure of chomatin. J. Mol. Biol. 89, 137 (1974)PubMedCrossRefGoogle Scholar
  110. Latt, S.A.,: Microfluorometric detection of DNA replication in human metaphase chromosomes. Proc. Natl. Acad. Sci. USA 70, 3395 (1973)PubMedCrossRefGoogle Scholar
  111. Latt, S.A., Wohlleb, J.C.: Optical studies of the interaction of 33258 Hoechst with DNA, chromatin and metaphase chromosomes. Chromosoma 52, 297 (1975)PubMedCrossRefGoogle Scholar
  112. Lazda, V.A., Baram, P.: Participation of different cell populations in antigen-and mitogen-induced lymphocyte proliferation. J. Immunol. 112, 1705 (1974)PubMedGoogle Scholar
  113. Lehmann, A.R.: Postreplication repair of DNA in ultraviolet-irradiated mammalian cells. J. Mol. Biol. 66, 319 (1972)PubMedCrossRefGoogle Scholar
  114. Lett, J.T., Caldwell, I., Little, J.G.: Repair of X-ray damage to the DNA in Micrococcus radiodurarts: The effect of 5-bromodeoxyuridine. J. Mol. Biol. 48, 395 (1970)PubMedCrossRefGoogle Scholar
  115. Ley, R.D.: Postreplication repair in an excision-defective mutant E. coli. Ultraviolet light-induced incorporation of bromodeoxyuridine into parental DNA. Photochem. Photobiol. 18, 87 (1973)PubMedCrossRefGoogle Scholar
  116. Ley, R.D., Setlow, R.B.: Rapid repair of lesions induced by 313 nm light in bromouracil-substituted DNA of E. coli. Biochem. Biophys. Res. Commun. 46, 1089 (1972)PubMedCrossRefGoogle Scholar
  117. Lillicrap, S.C., Fielden, E.M.: The effect of 5-bromouracil on energy transfer in DNA and related model systems. Radiat. Res. 48, 432 (1971)PubMedCrossRefGoogle Scholar
  118. Lin, S.Y., Riggs, A.D.: Lac operator analogues: Bromodeoxyuridine substitution in the lac operator affects the rate of dissociation of the lac repressor. Proc. Natl. Acad. Sci. USA 69, 2574 (1972)PubMedCrossRefGoogle Scholar
  119. Lin, S.Y., Riggs, A.D.: Photochemical attachment of lac repressor to bromodeoxyuridine-substituted lac operator by ultraviolet irradiation. Proc. Natl. Acad. Sci. USA 71, 947 (1974)PubMedCrossRefGoogle Scholar
  120. Lin, S.Y., Lin, D., Riggs, A.D.: Histones bind more tightly to bromodeoxyuridine-substituted DNA than to normal DNA. Nucleic Acids Res. 3, 2183 (1976)PubMedGoogle Scholar
  121. Lindahl, T.: An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc. Natl. Acad. Sci. USA 71, 3649 (1974)PubMedCrossRefGoogle Scholar
  122. Lindahl, T., Ljungquist, S.: Apurinic and apyrimidinic sites in DNA. In: Molecular Mechanisms for Repair of DNA (eds. P.C. Hanawalt, R.B. Setlow) Vol. A, p. 31. New York: Academic Press 1975Google Scholar
  123. Lindahl, T., Nyberg, B.: Heat-induced deamination of cytosine residues in DNA. Biochemistry 13, 3405 (1974)PubMedCrossRefGoogle Scholar
  124. Lion, M.B.: Search for a mechanism to explain the high ultraviolet sensitivity of 5-bromouracil-substituted DNA. 3rd Int. Congr. Radiat. Res. (Cortina) Abstr. p. 142 (1966)Google Scholar
  125. Lion, M.B.: Search for a mechanism for the increased sensitivity of bromouracil-substituted DNA to ultraviolet radiation. Biochim. Biophys. Acta 155, 505 (1968)PubMedGoogle Scholar
  126. Lion, M.B.: Single-strand breaks in the DNA of irradiated 5-bromouracilsubstituted T3 coliphage. Biochim. Biophys. Acta 209, 24 (1970)PubMedGoogle Scholar
  127. Lion, M.B.: Mechanism of sensitization of ultraviolet radiation by 5-bromouracil-substituted DNA. Isr. J. Chem. 10, 1151 (1972)Google Scholar
  128. Lion, M.B., Doerner, T.: Determination of the distribution of 5-bromouracil and 5-iodouracil in the DNA of viable and total phage populations. Biochim. Biophys. Acta 277, 25 (1972)PubMedGoogle Scholar
  129. Lion, M.B., Köhnlein, W.: Effect of DNA conformation on the ultraviolet damage in 5-bromouracil substituted DNA of T3 coliphage. VI Int. Congr. Photobiol., Bochum, Abstr. 107 (1972)Google Scholar
  130. Little, J.W.: The effect of 5-bromouracil on recombination of phage lambda. Virology 72, 530 (1976)PubMedCrossRefGoogle Scholar
  131. Lohmann, W.: Halogen substitution effect on the optical adsorption bands of uracil. Z. Naturforsch. 29c, 493 (1974)Google Scholar
  132. Longworth, J.W., Rahn, R.O., Shulman, R.G.: Luminescence of pyrimidines, purines, nucleosides and nucleotides at 77°K. The effect of ionization and tautomerization. J. Chem. Phys. 45, 2930 (1966)PubMedCrossRefGoogle Scholar
  133. Luk, D.C., Bick, M.D.: Determination of 5-bromodeoxyuridine in DNA by buoyant density. Anal. Biochem. 77, 346 (1977)PubMedCrossRefGoogle Scholar
  134. Makino, F., Munakata, N.: Isolation and characterization of a B. subtilis mutant with a defective N-glycosidase activity for uracil-containing DNA. J. Bacteriol. 131, 438 (1977)Google Scholar
  135. Martens, P.A., Clayton, D.A.: Strand breakage in solution of DNA and ethidium bromide exposed to visible light. Nucleic Acids Res. 4, 1393 (1977)PubMedCrossRefGoogle Scholar
  136. Matsumoto, K., Shibata, T., Saito, H.: Genetic mapping in Bacillus subtilis by 5-bromouracil sensitization to ultraviolet inactivation of transforming activities. J. Bacteriol. 119, 666 (1974)PubMedGoogle Scholar
  137. Mazrimas, J.A., Stetka, D.G.: Direct evidence for the role of incorporated BudR in the induction of sister chromatid exchanges. Exp. Cell Res. 117, 23 (1978)PubMedCrossRefGoogle Scholar
  138. McKeown, M., Kahn, M., Hanawalt, P.: Thymidine uptake and utilization in E. coli: A new gene controlling nucleoside transport. J. Bacteriol. 126, 814 (1976)PubMedGoogle Scholar
  139. Meuth, M., Green, H.: Induction of a deoxycytidineless state in cultured mammalian cells by bromodeoxyuridine. Cell 2, 109 (1974)PubMedCrossRefGoogle Scholar
  140. Mönkehaus, F.: Influence of cysteamine on intramolecular energy transfer in 5-bromouracil-substituted phage DNA. Int. J. Radiat. Biol. 24, 517 (1973)CrossRefGoogle Scholar
  141. Mönkehaus, F., Köhnlein, W.: Single-and double-strand breaks in 5-BrU substituted DNA of B. subtilis and phage PBSH after irradiation with long wavelength ultraviolet and their correlation to intramolecular energy transfer. Biopolymers 12, 329.(1973)CrossRefGoogle Scholar
  142. Nečas, J.: Attempts to sensitize some chlorococcal algae using 5-bromouracil for the induction of mutations by ultraviolet light. Biochem. Physiol. Pflanz. 166, 115 (1974)Google Scholar
  143. Nečas, J.: Sensitization dependence of ultraviolet irradiation effects on concentration of 5-bromodexoyuridine in a precultivation medium for a chlorococcal alga. Biochem. Physiol. Pflanz. 170, 487 (1976)Google Scholar
  144. Negishi, K., Hayatsu, H., Tanooka, H.: Pol A dependent repair of 5-bromouracil labeled Bacillus subtilis transforming DNA irradiated with ultraviolet in the presence of cysteamine. Int. J. Radiat. Biol. 30, 491 (1976)CrossRefGoogle Scholar
  145. Nemcrofsky, A.: The interaction effect of ultraviolet irradiation and 5-bromouracil at the rib 1 locus in Neurospora crassa. Can. J. Genet. Cytol. 17, 275 (1975)Google Scholar
  146. Newman, C.N., Kubitschek, H.E.: Variation in periodic replication of the chromosome in Escherichia coli B/r TT. J. Mol. Biol. 121, 461 (1978)PubMedCrossRefGoogle Scholar
  147. Nicolini, C., Baserga, R.: Circular dichroism spectra and ethidium bromide binding of 5-deoxybromouridine-substituted chromatin. Biochem. Biophys. Res. Commun. 64, 189 (1975)PubMedCrossRefGoogle Scholar
  148. Ogata, R., Gilbert, W.: Contacts between the lac repressor and thymines in the lac operator. Proc. Natl. Acad, Sci. USA 74, 4973 (1977)CrossRefGoogle Scholar
  149. Olafsson, P.G., Bryan, A.M.: The influence of 5-halo substituants on the thermal depyrimidination of the glycosidic bond in 2’-deoxyuridines. Arch. Biochem. Biophys. 165, 46 (1974)PubMedCrossRefGoogle Scholar
  150. Pera, F., Mattias, P.: Labeling of DNA and differential sister chromatid staining after BrdU treatment in vivo. Chromosoma 57, 13 (1976)PubMedCrossRefGoogle Scholar
  151. Perry, P., Wolff, S.: New method for the differential staining of sister chromatids. Nature (London) 251, 156 (1974)CrossRefGoogle Scholar
  152. Peter, H., Drewer, R.: Photoproducts of bromouracil-labeled DNA and the structure of 5-bromodeoxyuridyl-thymidine photoproduct. Photochem. Photobiol. 12, 269 (1970)PubMedCrossRefGoogle Scholar
  153. Peter, H., Drewer, R.: Photochemistry of 14c-labeled 5-bromo-2-deoxyuridylyl (3’–5’) thymidine. Determination of quantum yields as a function of pH. Photochem. Photobiol. 14, 561 (1971)PubMedCrossRefGoogle Scholar
  154. Pietrzykowska, I., Krych, M.: Lethal and mutagenic BU-induced lesions in DNA and their repair. Stud. Biophys. 61, 17 (1977)Google Scholar
  155. Pietrzykowska, I., Lewandowska, K., Shugar, D.: Liquid holding recovery of bromouracil-induced lesions in DNA of Escherichia coli CR34 and its possible relation to dark repair mechanisms. Mutat. Res. 30, 21 (1975)CrossRefGoogle Scholar
  156. Pontecorvo, G.: Induction of directional chromosome elimination in somatic cell hybrids. Nature (London) 230, 367 (1971)CrossRefGoogle Scholar
  157. Povirk, L.F.: Radiation-induced depression of DNA synthesis in cultured mammalian cells. Ph. D. Thesis, Univ. California, Berkeley (1977a)Google Scholar
  158. Povirk, L.F.: Localization of inhibition of replicon initiation to damaged regions of DNA. J. Mol. Biol. 114, 141 (1977b)PubMedCrossRefGoogle Scholar
  159. Prusoff, W.H., Goz, B.: Halogenated pyrimidine deoxyribonucleosides. In: Antimetabolites and Immunosuppressive Agents (eds. A.C. Sartorelli, D. Johns). Vol. II, Chap. 5. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  160. Puck, T.T., Kao, F.-T.: Genetics of somatic mammalian cells. V. Treatment of 5-bromodeoxyuridine and visible light for isolation of nutritionally deficient mutants. Proc Natl. Acad. Sci. USA 58, 1227 (1967)PubMedCrossRefGoogle Scholar
  161. Radman, M., Roller, A., Errera, M.: Protection and host cell repair of irradiated lambda phage. II. Irradiation of 5-bromouracil-substituted phage with near visible light. Mol. Gen. Genet. 104, 147 (1969a)PubMedCrossRefGoogle Scholar
  162. Radman, M., Roller, A., Errera, M.: Protection and host cell repair of irradiated lambda phage. III. Ultraviolet irradiation of 5-bromouracil-substituted phage. Mol. Gen. Genet. 104, 152 (1969b)PubMedCrossRefGoogle Scholar
  163. Rahn, R.O., Patrick, M.H.: Photochemistry of DNA. In: Photochemistry and Photobiology of Nucleic Acids (ed. S.Y. Wang), Vol. II, p. 97. New York: Academic Press 1976Google Scholar
  164. Rahn, R.O., Stafford, R.S.: Photochemistry of DNA containing iodonated cytosine. Photochem. Photobiol. 30, 449 (1979)CrossRefGoogle Scholar
  165. Rapaport, S.A.: Action spectrum for inactivation by ultraviolet light of bacteriophage T4 substituted with 5-bromodeoxyuridine. Virology 22, 125 (1964)CrossRefGoogle Scholar
  166. Regan, J.D., Setlow, R.B.: Two forms of repair in the DNA of human cells damaged by chemical carcinogens and mutagens. Cancer Res. 34, 3318 (1974)PubMedGoogle Scholar
  167. Regan, J.D., Setlow, R.B.: Repair of human DNA: Radiation and chemical damage in normal and Xeroderma pigmentosum cells, in: Biology of Radiation Carcinogenesis (eds. J.M. Yuhas, R.W. Tennant, J.D. Regan), pp. 103. New York: Raven Press 1976Google Scholar
  168. Regan, J.D., Setlow, R.B., Ley, R.D.: Normal and defective repair of damaged DNA in human cells: A sensitive assay utilizing the photolysis of bromodeoxyuridine. Proc. Natl. Acad. Sci. USA 68, 708 (1971)PubMedCrossRefGoogle Scholar
  169. Reichert, P., Canellakis, Z.N., Canellakis, E.S.: Regulatory mechanisms in the synthesis of deoxyribonucleic acid in vitro. Biochim. Biophys. Acta 41, 558 (1960)CrossRefGoogle Scholar
  170. Reuschl, H.: Kinetic studies of gamma radiolysis of 5-bromouracil in aqueous solution. Z. Naturforsch. 21b, 643 (1966)Google Scholar
  171. Rosenstein, B.S., Setlow, R.B., Ahmed, F.E.: Use of the dye Hoechst 33258 in a modification of the bromodeoxyuridine photolysis technique for the analysis of DNA repair. Photochem. Photobiol. 31, 215 (1980)PubMedCrossRefGoogle Scholar
  172. Rothman, W., Kearns, D.R.: Triplet states of bromouracil and iodouracil. Photochem. Photobiol. 6, 775 (1967)Google Scholar
  173. Roufa, D.J.: Bromodeoxyuridine strand symmetry and the repair of photolytic breaks in Chinese hamster cell chromosomes. Proc. Natl. Acad. Sci. USA 23, 3905 (1976)CrossRefGoogle Scholar
  174. Roufa, D.J., Sadow, B., Caskey, C.T.: Derivation of TK clones from revertant TK+ mammalian cells. Genetics 75, 515 (1973)PubMedGoogle Scholar
  175. Rupp, W.D.: The photochemistry of iodouracil as related to the survival of ultraviolet-irradiated T1 bacteriophage substituted with 5-iodo-2’-deoxyuridine. Ph. D. Thesis, Yale Univ. (1965)Google Scholar
  176. Rupp, W.D., Howard-Flanders, P.: Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J. Mol. Biol. 31, 291 (1968)PubMedCrossRefGoogle Scholar
  177. Rupp, W.D., Prusoff, W.H.: Incorporation of 5-iodo 2’-deoxyuridine into bacteriophage T1 as related to ultraviolet sensitization or protection. Nature (London) 202, 1288 (1964)CrossRefGoogle Scholar
  178. Rupp, W.D., Prusoff, W.H.: Photochemistry of iodouracil. II. Effects of sulfur compounds, ethanol and oxygen. Biochem. Biophys. Res. Commun. 18, 158 (1965)PubMedCrossRefGoogle Scholar
  179. Rutter, W.J., Pictet, R.L., Githins, S., III, Gordon, J.S.: The mode of action of the thymidine analogue, 5-bromodeoxyuridine, a model teratogenic agent. In: New Approaches to the Evaluation of Abnormal Embryonic Development (eds. D. Neubert, H.J. Merker), pp. 804. Stuttgart: Thieme 1975Google Scholar
  180. Rydberg, B.: Bromouracil mutagenesis in E. coli; Evidence for involvement of mismatch repair. Mol. Gen. Genet. 152, 19 (1977a)PubMedCrossRefGoogle Scholar
  181. Rydberg, B.: Discrimination between bromouracil and thymine for uptake into DNA in drm and dra mutants of E. coli K12. Biochim. Biophys. Acta 476, 32 (1977b)Google Scholar
  182. Saito, I., Ito, S., Matsumura, T.: Photoinduced coupling reaction of 5-bromouridine to tryptophan derivatives. JACS 100, 2901 (1978)CrossRefGoogle Scholar
  183. Sasson, S., Wang, S.Y., Ehrlich, M.: 5−5’ diuridinyl, a major photoproduct from ultraviolet-irradiation of polynucelotides containing bromouracil. Photochem. Photobiol. 25, 11 (1977)PubMedCrossRefGoogle Scholar
  184. Sawada, S., Okada, S.: Effects of 5-BrUdR labeling on radiation-induced DNA breakage and subsequent rejoining in cultured mammalian cells. Int. J. Radiat. Biol. 21, 599 (1972)CrossRefGoogle Scholar
  185. Scheid, W.: Mechanism of differential staining of BrUdR-Substituted Vicia faba chromosomes. Exp. Cell Res. 101, 55 (1976)PubMedCrossRefGoogle Scholar
  186. Scheid, W., Traupe, H.: Further studies on the mechanism involved in differential staining of BUdR-substituted Vicia faba chromosomes. Exp. Cell Res. 108, 440 (1977)PubMedCrossRefGoogle Scholar
  187. Schwartzman, J.B., Cortes, F.: Sister chromatid exchanges in Allium cepa. Chromosoma 62, 119 (1977)CrossRefGoogle Scholar
  188. Sedor, F.A., Sander, E.G.: Effect of thiols on the dehalogenation of 5-iodo and 5-bromouracil. Biochem. Biophys. Res. Commun. 50, 328 (1973)PubMedCrossRefGoogle Scholar
  189. Setlow, R.B.: The wavelengths in sunlight effective in producing skin cancer, a theoretical analysis. Proc. Natl. Acad. Sci. USA 71, 3363 (1974)PubMedCrossRefGoogle Scholar
  190. Setlow, R.B., Doyle, B.: The action of monochromatic ultraviolet light on proteins. Biochim. Biophys. Acta 24, 27 (1957)PubMedCrossRefGoogle Scholar
  191. Shugar, D., Fox, J.J.: Spectrophotometric studies on nucleic acid derivatives and related compounds as a function of pH. I. Pyrimidines. Biochem. Biophys. Acta 9, 199 (1952)CrossRefGoogle Scholar
  192. Simpson, R.T., Seale, R.L.: Characterization of chromatin extensively substituted with 5-bromodeoxyuridine. Biochemistry 13, 4609 (1974)PubMedCrossRefGoogle Scholar
  193. Simpson, R.B.: Contact between E. coli RNA polymerase and thymines in the lac UV5 promotor. Proc. Natl. Acad. Sci. USA 76, 3233 (1979)PubMedCrossRefGoogle Scholar
  194. Singer, J., Stellwagen, R.H., Roberts-Ems, J., Riggs, A.D.: 5-methylcytosine content of rat hepatoma DNA substituted with bromodeoxyuridine. J. Biol. Chem. 252, 5509 (1977)PubMedGoogle Scholar
  195. Singh, P.K.: Sensitization of algal virus to UV by the incorporation of 5-bromouracil and mutations of host alga Plectonema bvoyanum. Z. Allg. Mikrobiol. 15, 547 (1975)PubMedCrossRefGoogle Scholar
  196. Skalko, R.G., Packard, D.S., Jr.: Mechanisms of halogenated nucleoside embryotoxicity. Ann. N. Y. Acad. Sci. 255, 552 (1975)PubMedCrossRefGoogle Scholar
  197. Smets, L.A., Cornells, J.J.: Repairable and irrepairable damage in 5-bromouracil-substituted DNA exposed to ultraviolet radiation. Int. J. Radiat. Biol. 19, 445 (1971)CrossRefGoogle Scholar
  198. Smith, K.C.: The photochemistry of thymine and bromouracil in vivo. Photochem. Photobiol. 3, 1 (1964)CrossRefGoogle Scholar
  199. Smith, K.C.: The radiation-induced addition of proteins and other molecules to nucleic acids. In: Photochemistry and Photobiology of Nucleid Acids, (ed. S.Y. Wang), Vol. II, p. 187. New York: Academic Press 1976Google Scholar
  200. Stahl, F.W., Crasemann, J.M.K., Okun, L., Fox, E., Laird, C: Radiationsensitivity of bacteriophage containing 5-bromodeoxyuridine. Virology 13, 98 (1961)CrossRefGoogle Scholar
  201. Sternglanz, H., Bugg, C.E.: Relationship between the mutagenic and base stacking properties of halogenated uracil derivatives. The crystal structures of 5-chloro-and 5-bromouracil. Biochim. Biophys. Acta 378, 1 (1975)PubMedGoogle Scholar
  202. Stetten, G., Davidson, R.L., Latt, S.A.: 33258 Hoechst enhances the selectivity of the bromodeoxyuridine-light method of isolating conditional lethal mutants. Exp. Cell Res. 108, 447 (1977)PubMedCrossRefGoogle Scholar
  203. Sugiyama, T., Goto, K., Kano, Y.: Mechanism of differential Giemsa method for sister chromatids. Nature (London) 259, 59 (1976)CrossRefGoogle Scholar
  204. Szarek, W.A.: Deosyhalogeno-sugars. Adv. Carbohydr. Chem. Biochem. 28, 225 (1973)CrossRefGoogle Scholar
  205. Szybalski, W.: Properties and applications of halogenated deoxyribonucleic acids. In: The Molecular Basis of Neoplasia, pp. 147. Austin: Un. Texas Press 1962Google Scholar
  206. Szybalski, W.: X-ray sensitization by halopyrimidines. Cancer Chemother. Rep. 58, 539 (1974)PubMedGoogle Scholar
  207. Szybalski, W., Opara-Kubinska, Z.: Radiobiological and physiochemical properties of 5-bromodeoxyuridine-labeled transforming DNA as related to the nature of the critical radiosensitive structures. In: Cellular Radiation Biology, pp. 223. Baltimore: Williams and Wilkins 1965Google Scholar
  208. Taichman, L., Freedlender, E.F.: Separation of chromatins containing BrU in one or both strands of the DNA. Biochemistry 15, 447 (1976)PubMedCrossRefGoogle Scholar
  209. Teich, N., Lowy, D.R., Hartley, J.W., Rowe, W.P.: Studies of the mechanism of induction of infectious murine leukemia virus from AKR mouse embryo cell lines by 5-iododeoxyuridine and 5-bromodeoxyuridine. Virology 51, 163 (1973)PubMedCrossRefGoogle Scholar
  210. Thiel, R., Wacker, A., Treatment of herpetic keratitis with thymine-analogous compounds. Klin. Monatsbl. Augenheilkd. 141, 94 (1962)Google Scholar
  211. Thiron, J.P.: Chromosome damage in mouse-human hybrid cells after BUdR treatment and light irradiation. Mutat. Res. 35, 479 (1976)CrossRefGoogle Scholar
  212. Ullman, J.S., McCarthy, B.J.: Alkali deamination of cytosine residues in DNA. Biochim. Biophys. Acta 294, 396 (1973)PubMedGoogle Scholar
  213. Varghese, A.J.: Photoreactions of 5-bromouracil in the presence of cysteine and glutathione. Photochem. Photobiol. 20, 461 (1974)CrossRefGoogle Scholar
  214. Verly, W.G.: Maintenance of DNA and repair of apurinic sites. In: Molecular Mechanisms for Repair of DNA (eds. P.C. Hanawalt, R.B. Setlow), Vol. A, p. 39. New York: Plenum Press 1975Google Scholar
  215. Verma, R.S., Cummins, J.E., Walden, D.B.: Chromosome aberrations produced by 5-bromodeoxyuridine with concurrent exposure to long wavelength UV in Zea mays root tip cells. Can. J. Genet. Cytol. 19, 447 (1977)Google Scholar
  216. Voytek, P., Chang, P.K., Prusoff, W.H.: Kinetic and photochemical studies of 3-N-methyl-5-iodo-2’-deoxyuridine. J. Biol. Chem. 247, 367 (1972)PubMedGoogle Scholar
  217. Wacker, A.: Strahlenchemische Veränderungen von Pyrimidinen in vivo und in vitro. J. Chim. Phys. 58, 1041 (1961)Google Scholar
  218. Wacker, A.: Molecular mechanisms of radiation effects. Prog. Nucleic Acid Res. 1, 369 (1963)CrossRefGoogle Scholar
  219. Wang, S.Y.: Pyrimidine biomolecular photoproducts. In: Photochemistry and Photobiology of Nucleic Acids (ed. S.Y. Wang), Vol. I, p. 296. New York: Academic Press 1976Google Scholar
  220. Ward, J.F.: Molecular mechanisms of radiation-induced damage to nucleic acids. Adv. Radiat. Biol. 5, 181 (1975)Google Scholar
  221. Ward, J.F., Kuo, I.: The effects of radiation modifiers on sugar-phosphate bond breakage in deoxynucleotides irradiated in aqueous solution. IV. Int. Congr. Radiat. Res., Evian, France (1970)Google Scholar
  222. Wataga, Y., Negishi, K., Hayatsu, H.: Debromination of 5-bromo-2-deoxyuridine by cysteine. Formation of deoxyuridine and S-(5-2-deoxyuridyl) cysteine. Biochemistry 12, 3992 (1973)CrossRefGoogle Scholar
  223. Weintraub, H.: The assembly of newly replicated DNA into chromatin. Cold Spring Harbor Symp. Quant. Biol. 38, 247 (1973)Google Scholar
  224. Witkin, E.M.: Ultraviolet mutagenesis and inducible DNA repair in E. coli. Bacteriol. Rev. 40, 869 (1976)PubMedGoogle Scholar
  225. Wolff, S., Perry, P.: Differential giemsa staining of sister chromatids and the study of sister chromatid exchanges without autoradiography. Chromosoma 48, 341 (1974)PubMedCrossRefGoogle Scholar
  226. Zamchuk, L.A., Braude, N.A.: Immunogenic properties of Escherichia coli and T4 DNA containing 5-bromodeoxyuridine. Mol. Biol. USSR 9, 565 (1975)Google Scholar
  227. Zamenhof, S., Rich, K., DeGiovanni, R.: Further studies on the introduction of pyrimidines into deoxyribonucleic acids of E. coli. J. Biol. Chem. 232, 651 (1958)PubMedGoogle Scholar
  228. Zimbrick, J.D., Ward, J.F., Myers, L.S., Jr.: Studies on the chemical basis of cellular radiosensitization by 5-bromouracil substitution in DNA. I. Pulse and steady state radiolysis of 5-bromouracil and thymine. Int. J. Radiobiol. 16, 505 (1969a)CrossRefGoogle Scholar
  229. Zimbrick, J.D., Ward, J.F., Myers, L.S., Jr.: Studies on the chemical basis of cellular radiosensitization by 5-bromouracil substitution in DNA. II. Pulse and steady state radiolysis of regular and bromouracilsubstituted DNA. Int. J. Radiobiol. 16, 525 (1969b)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • F. Hutchinson
  • W. Köhnlein

There are no affiliations available

Personalised recommendations