Skip to main content

The Photochemistry of 5-Bromouracil and 5-lodouracil in DNA

  • Chapter
Progress In Molecular and Subcellular Biology

Part of the book series: Progress In Molecular and Subcellular Biology ((PMSB,volume 7))

Abstract

Of the synthetic bases which may be incorporated in DNA, two of the most interesting are the thymine analogs, 5-bromouracil and 5-iodouracil. DNAs containing these bases have a number of altered properties which have been used to advantage by molecular biologists.

By acceptance of this article, the publisher and/or recipient acknowledges the U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright covering this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, G.E.: The general application of pulse radiolysis to current problems in radiobiology. Curr. Top. Radiat. Res. 13, 35 (1967)

    Google Scholar 

  • Adams, G.E., Willson, R.L.: Mechanism of 5-BrUdr sensitization. Pulse radiolysis study of one electron transfer in nucleic acid derivatives. Int. J. Radiat. Biol. 22, 589 (1972)

    Article  CAS  Google Scholar 

  • Augenlicht, L., Nicolini, C., Baserga, R.: Circular dichroism and thermal denaturation studies of chromatin and DNA from BrdU-treated mouse fibroblasts. Biochem. Biophys. Res. Commun. 59, 920 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Baker, R.F., Case, S.T.: Effect of 5-bromodeoxyuridine on the size distribution of DNAs isolated from sea urchin embryos. Nature (London) 249, 350 (1974)

    Article  CAS  Google Scholar 

  • Bansel, K.M., Patterson, L.K., Schuler, R.H.: The production of halide ion in the radiolysis of aqueous solutions of the 5-halouracils. J. Phys. Chem. 76, 2386 (1972)

    Article  Google Scholar 

  • Barrett, J.C, Schechtman, L., Ts’o, P.: An investigation of the DNA involvement in neoplastic transformation in vitro transformation of hamster fibroblasts induced by BrdU incorporation coupled with irradiation of near ultraviolet light. Abstr. 41 (15th Annu. Meet. Am. Soc. Cell Biol.) (1975)

    Google Scholar 

  • Beattie, K.L.: Breakage of parental strand in Haemophilus influenzae by 313 nm radiation after replication in the presence of 5-bromodeoxyuridine. Biophys. J. 12, 1573 (1972)

    Article  PubMed  CAS  Google Scholar 

  • Bender, M.A., Bedford, J.S., Mitchell, J.B.: Mechanisms of chromosomal aberration production. II. Aberrations induced by 5-bromodeoxyuridine and visible light. Mutat. Res. 20, 403 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Ben-Hur, E., Elkind, M.M.: Damage and repair of DNA in 5-BrdU labeled Chinese hamster cells exposed to fluorescent light. Biophys. J. 12, 636 (1972)

    Article  PubMed  CAS  Google Scholar 

  • Ben-Hur, E., Prager, A., Riklis, E.: Photochemistry of the bisbenzimidazole dye 33258 Hoechst with bromodeoxyuridine and its biological effects on BrdUrd-substituted E. coli. Photochem. Photobiol. 27, 559 (1978)

    Article  PubMed  CAS  Google Scholar 

  • Berens, K., Shugar, D.: Ultraviolet absorption spectra and structure of halogenated uracils and their glycosides. Acta Biochim. Pol. 10, 25 (1963)

    PubMed  CAS  Google Scholar 

  • Berns, M.W., Leonardson, K., Winter, M.: Laser microbeam irradiation of rat kangaroo cells (PTK2) following selective sensitization with bromodeoxyuridine and ethidium bromide. J. Morphol. 149, 327 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Besmer, P., Smotkin, D., Haseltine, W., Fan, H., Wilson, A.T., Paskind, M., Weinberg, R., Baltimore, D.: Mechanism of induction of RNA tumor viruses by halogenated pyrimidines. Cold Spring. Harbor Symp. Quant. Biol. 39, 1103 (1975)

    PubMed  Google Scholar 

  • Bick, M.D.: A quantitative method for distinguishing BrdUTP and dTTP in soluble pools. Anal. Biochem. 78, 582 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Bick, M.D., Davidson, R.L.: Total substitution of bromodeoxyuridine for thymidine in the DNA of a bromodeoxyuridine dependent cell line. Proc. Natl. Acad. Sci. USA 71, 2082 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Bishop, R.J., Sueoka, N.: 5-bromouracil tolerant mutants of Bacillus subtilis. J. Bacteriol. 112, 870 (1972)

    PubMed  CAS  Google Scholar 

  • Bobst, A.M., Torrence, P.F., Kouidou, S., Witkop, B.: Dependence of interferon induction on nucleic acid conformation. Proc. Natl. Acad. Sci. USA 73, 3788 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Bonura, T., Smith, K.C.: Sensitization of E. coli to gamma-radiation by 5-bromouracil incorporation. Int. J. Radiat. Biol. 32, 457 (1977)

    Article  CAS  Google Scholar 

  • Boyce, R.P.: Ultraviolet light inactivation of E. coli and bacteriophage containing 5-bromouracil-substituted DNA. Ph.D. Thesis, Yale Univ. (1961)

    Google Scholar 

  • Boyce, R.P., Setlow, R.B.: The action spectra for ultraviolet light inactivation of systems containing 5-bromouracil-substituted DNA. Biochim. Biophys. Acta 68, 446 (1963)

    Article  CAS  Google Scholar 

  • Bradshaw, T.K., Hutchinson, D.W.: 5-substituted pyrimidine nucleosides and nucelotides. Chem. Soc. Rev. 6, 43 (1977)

    Article  CAS  Google Scholar 

  • Brendel, M., Haynes, R.H.: Exogenous thymidine 5’-monophosphate as a precursor for DNA synthesis in yeast. Genetics 126, 337 (1973)

    CAS  Google Scholar 

  • Breslow, R., Goldsby, R.: Isolation and characterization of thymidine transport mutants of Chinese hamster cells. Exp. Cell Res. 55, 339 (1969)

    Article  PubMed  CAS  Google Scholar 

  • Buhl, S.N., Setlow, R.B., Regan, J.D.: Steps in DNA chain elongation and joining after ultraviolet irradiation of human cells. Int. J. Radiat. Biol. 22, 417 (1972)

    Article  CAS  Google Scholar 

  • Byrd, D.M., Goz, B., Prusoff, W.H.: Comparison of the lethal effect of 5-iodouracil incorporated into T4 ø in the presence and absence of nearvisible light. Photochem. Photobiol. 21, 407 (1975)

    Article  CAS  Google Scholar 

  • Campbell, J.M., Schulte-Frohlinde, D., von Sonntag, C.: Quantum yields in the ultraviolet photolysis of 5-bromouracil in the presence of hydrogen donors. Photochem. Photobiol. 20, 465 (1974)

    Article  CAS  Google Scholar 

  • Carrier, W.L., Setlow, R.B.: Ultraviolet sensitivity of DNA containing bromodeoxyuridine. VI Int. Congr. Photobiol., Bochum, Abstr. 96 (1972)

    Google Scholar 

  • Chen, M.S., Prusoff, W.H.: Kinetic and photochemical studies and alteration of ultraviolet sensitivity of E. coli thymidine kinase by halogenated allosteric regulators and substrate analogs. Biochemistry 16, 3310 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Chikuma, T., Negishi, K., Hayatsu, H.: Formation of S-[5-(2’-deoxyuridyl)] thiol compounds in the dehalogenation of 5-bromo and 5-iodo-2’ deoxyuridine with cysteine derivatives. Chem. Pharmaceut. Bull. 26, 1746 (1978)

    CAS  Google Scholar 

  • Chu, E.H.Y.: Effects of ultraviolet radiations on mammalian cells. Mutat. Res. 2, 75 (1965)

    Article  PubMed  CAS  Google Scholar 

  • Cohen, S.S., Flaks, J.G., Barner, H.D., Loeb, M.R., Lichtenstein, J.: The mode of action of 5-fluorouracil and its derivatives. Proc. Natl. Acad. Sci. USA 44, 1004 (1958)

    Article  PubMed  CAS  Google Scholar 

  • Cone, R., Duncan, J., Hamilton, L., Friedberg, E.C.: Partial purification and characterization of a uracil DNA N-glycosidase from B. subtilis. Biochemistry 16, 3194 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Cornelis, J.J.: The influence of inhibitors on dimer removal and repair of single-strand breaks in normal and bromodeoxyuridine substituted DNA of HeLa cells. Biochim. Biophys. Acta 521, 134 (1978)

    PubMed  CAS  Google Scholar 

  • Cysyk, R., Prusoff, W.H.: Alteration of ultraviolet sensitivity of thymidine kinase by allosteric regulators, normal substrates and a photoaffinity label, 5-iodo-2-deoxyuridine, a metabolic analog of thymidine. J. Biol. Chem. 247, 2522 (1972)

    PubMed  CAS  Google Scholar 

  • Danziger, R.M., Hayon, E., Langmuir, M.E.: Pulse radiolysis and flash photolysis study of aqueous solutions of simple pyrimidines, uracil and bromouracil. J. Phys. Chem. 72, 3842 (1968)

    Article  CAS  Google Scholar 

  • Davidson, R.L., Bick, M.D.: Bromodeoxyuridine dependence — A new mutation in mammalian cells. Proc. Natl. Acad. Sci. USA 70, 138 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Davies, D.R., Baldwin, R.L.: X-ray studies of two synthetic DNA copolymers. J. Mol. Biol. 6, 251 (1963)

    Article  PubMed  CAS  Google Scholar 

  • Denhardt, D.J., Sinsheimer, R.L.: The process of infection with bacteriophage øX174. VI. Inactivation of infected complexes by ultraviolet irradiation. J. Mol. Biol. 12, 674 (1965)

    Article  PubMed  CAS  Google Scholar 

  • Dennis, W.S., Hutchinson, F.: Repair of single-strand breaks induced by ultraviolet light in E. coli DNA containing bromouracil. VI. Int. Congr. Photobiol., Bochum, Abstr. 108 (1972)

    Google Scholar 

  • Dizdaroglu, M., Schulte-Frohlinde, D., von Sonntag, C.: γ-radiolyses of DNA in oxygenated aqueous solution. Structure of an alkali-labile site. Z. Naturforsch. 32c, 1021 (1977)

    CAS  Google Scholar 

  • Dodson, M.L., Hewitt, R., Mandel, M.: Nature of ultraviolet light induced strand breakage in DNA containing bromouracil. Photochem. Photobiol. 16, 15 (1972)

    Article  PubMed  CAS  Google Scholar 

  • Drake, J.W.: The Molecular Basis of Mutation. San Francisco: Holden-Day 1970

    Google Scholar 

  • Duncan, J., Hamilton, L., Friedberg, E.C.: Degradation of uracil-containing DNA. II. Evidence for N-glycosidase and nuclease activities in unfractionated extracts of B. subtilis. J. Virol. 19, 338 (1976)

    PubMed  CAS  Google Scholar 

  • Dutrillaux, B., Fosse, A.M., Prieur, M., Jejeune, J.: Chromatid exchanges in human mitotic cells. BUDR treatment and bichromatic fluorescence by acridine orange. Chromosoma 48, 327 (1974)

    Article  CAS  Google Scholar 

  • Ehrlich, M., Riley, M.: Photolysis of polyribobromouridylic acid. Photochem. Photobiol. 16, 385 (1972a)

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, M., Riley, M.: Oligonucleotide photoproducts formed by photolysis of polyribobromouridylic acid. Photochem. Photobiol. 16, 397 (1972b)

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, M., Riley, M.: Effect of base sequence on the ultraviolet irradiation products of double-stranded polynucleotides containing bromouracil and adenine. Photochem. Photobiol. 20, 159 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Eisinger, J., Lamola, A.A.: Luminescence spectroscopy of nucleic acids. Methods Enzymol. 21, 24 (1971)

    Article  Google Scholar 

  • Fielden, E.M., Lillicrap, S.C., Robins, A.B.: The effects of 5-bromouracil on energy transfer in DNA and related model systems: DNA with incorporated 5-BUdR. Radiat. Res. 48, 421 (1971)

    Article  PubMed  CAS  Google Scholar 

  • Fives-Taylor, P., Novotny, CP.: Effect of thymine-5-bromouracil substitution on F pili. J. Bacteriol. 118, 175 (1974)

    PubMed  CAS  Google Scholar 

  • Fogel, M.: Induction of virus synthesis in polyoma transformed cells by DNA anti-metabolites and by irradiation after pretreatment with 5-bromodeoxyuridine. Virology 49, 12 (1972)

    Article  PubMed  CAS  Google Scholar 

  • Fox, E., Meselson, M.: Unequal photosensitivity of the two strands of DNA in bacteriophage lambda. J. Mol. Biol. 1, 583 (1963)

    Article  Google Scholar 

  • Fox, J.J., Shugar, D.: Spectrophotometric studies of nucleic acid derivatives and related compounds as a function of pH. II. Natural and synthetic pyrimidine nucleosides. Biochim. Biophys. Acta 9, 369 (1952)

    Article  PubMed  CAS  Google Scholar 

  • Freifelder, D., Freifelder, D.R.: Mechanism of X-ray sensitization of bacteriophage T7 by 5-bromouracil. Mutat. Res. 3, 111 (1966)

    Article  Google Scholar 

  • Freifelder, D., Davison, P.F., Guiduschek, E.P.: Damage by visible light to the acridine orange-DNA complex. Biophys. J. 1, 389 (1961)

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara, Y.: Postreplication repair of alkylation damage to DNA of mammalian cells in culture. Cancer Res. 35, 2780 (1975)

    PubMed  CAS  Google Scholar 

  • Gilbert, E., Cristallini, C.: Ultraviolet photolysis of 5-bromouracil in aqueous solution. Influence of oxygen and deoxy-D-ribose. Z. Naturforsch. 28B, 615 (1973)

    Google Scholar 

  • Gilbert, E., Schulte-Frohlinde, D.: Photolysis of 5-iodouracil in aqueous oxygen saturated solution. Z. Naturforsch. 25B, 492 (1970)

    Google Scholar 

  • Gilbert, E., Volkert, O., Schulte-Frohlinde, D.: Radiochemistry of aqueous oxygen containing solutions of 5-bromouracil. Identification of radiolysis products. Z. Naturforsch. 22b, 477 (1967)

    Google Scholar 

  • Goto, K., Akematsu, T., Shimazu, H., Sugiyama, T.: Simple differential Giemsa staining of sister chromatids after treatment with photosensitive dyes and exposure to light and the mechanisms of staining. Chromosoma 52, 223 (1975)

    Article  Google Scholar 

  • Gratzner, H.G., Leif, R.C., Ingram, D.J., Castro, A.: The use of antibody specific for bromodeoxyuridine for the immunofluorescent determination of DNA replication in single cells and chromosomes. Exp. Cell Res. 95, 88 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Greer, S., Zamenhof, S.: Effect of 5-bromouracil in DNA of E. coli on sensitivity to ultraviolet irradiation. Abstr. Am. Chem. Soc. 131st Meet. p3C (1957)

    Google Scholar 

  • Grigg, G.W.: Selective breakage of DNA alongside 5-bromodeoxyuridine nucleotide residues by high temperature hydrolysis. Nucleic Acids Res. 4, 969 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Grivell, A.R., Grivell, M.B., Hanawalt, P.C.: Turnover in bacterial DNA containing thymine or 5-bromouracil. J. Mol. Biol. 98, 219 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Gueron, M., Eisinger, J., Lamola, A.A.: Excited states of nucleic acid bases. In: Principles in Nucleic Acid chemistry. Vol. I, p. 312. New York: Academic Press 1974

    Google Scholar 

  • Guthrie, R.D.: Glycosans and anhydro sugars. In: The carbohydrates (eds. W. Pigman, D. Horton). Vol. I A. New York: Academic Press 1972

    Google Scholar 

  • Hagan, M.P., Elkind, M.M.: Changes in repair competency after 5-bromodeoxyuridine pulse labeling and near-ultraviolet light. Biophys. J. 27, 75 (1979)

    Article  PubMed  CAS  Google Scholar 

  • Hanawalt, P.C, Setlow, R.B.: Molecular Mechanisms for Repair of DNA. Vol. A, B. New York: Plenum Press 1975

    Google Scholar 

  • Haug, A.: Photochemical decomposition of TdBU. Z. Naturforsch. 19B, 143 (1964)

    CAS  Google Scholar 

  • Haugli, F.B., Dove, W.F.: Mutagenesis and mutant selection in Physarum polycephalum. Mol. Gen. Genet. 118, 109 (1972)

    PubMed  CAS  Google Scholar 

  • Hewitt, R., Marburger, K.: The photolability of DNA containing 5-bromouracil. I. Single-strand breaks and alkali-labile bonds. Photochem. Photobiol. 21, 431 (1975)

    Article  Google Scholar 

  • Hewitt, R., Suit, J.C., Billen, D.: Utilization of 5-bromouracil by thymineless bacteria. J. Bacteriol. 93, 86 (1967)

    PubMed  CAS  Google Scholar 

  • Holliday, R., Pugh, J.E.: DNA modification mechanisms and gene activity during development. Science 187, 226 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Horn, D., Davidson, R.L.: Inhibition of biological effects of bromodeoxyuridine by deoxycytidine-correlation with decreased incorporation of bromodeoxyuridine into DNA. Somat. Cell Genet. 2, 469 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Hotz, G., Reuschl, H.: Damage to deoxyribose molecules and to U-gene reactivation in ultraviolet-irradiated 5-bromouracil DNA of phage T4. Mol. Gen. Genet. 99, 5 (1967)

    Article  PubMed  CAS  Google Scholar 

  • Hotz, G. Walser, R.: On the mechanism of radiosensitization by 5-bromouracil. The occurrence of DNA single-strand breaks in ultraviolet-irradiated phage T4 as influenced by cysteamine. Photochem. Photobiol. 12, 207 (1970)

    Article  PubMed  CAS  Google Scholar 

  • Hotz, G., Mauser, R., Walser, R.: Infectious DNA from coliphage T1. III. The occurrence of single-strand breaks in stored, thermally treated, and ultraviolet irradiated molecules. Int. J. Radiat. Biol. 19, 519 (1971)

    Article  CAS  Google Scholar 

  • Hurst, R.O., Kuksis, A.: Degradation of deoxyribonucleic acid by hot alkali. Can. J. Biochem. Physiol. 36, 919 (1958)

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, F.: The lesions produced by ultraviolet light in DNA containing 5-bromouracil. Q. Rev. Biophys. 6, 201 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, F., Hales, H.: Mechanism of the sensitization of bacterial transforming DNA to ultraviolet light by the incorporation of 5-bromouracil. J. Mol. Biol. 50, 59 (1970)

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, F., Stein, J.: Mutagenesis of lambda phage: 5-bromouracil and hydroxylamine. Mol. Gen. Genet. 152, 29 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Ihler, G.: Preparation and photochemical properties of strand-specific 5-bromouracil substituted lambda phage. Radiat. Res. 61, 298 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Ikushima, T., Wolff, S.: Sister chromatid exchanges induced by light flashes to 5-bromodeoxyuridine and 5-iododeoxyuridine substituted Chinese hamster chromosomes. Exp. Cell Res. 87, 15 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Incremona, J.H., Martin, J.C.: N-bromosuccinimide, mechanisms of allylic bromination and related reactions. J. Am. Chem. Soc. 92, 627 (1970)

    Article  CAS  Google Scholar 

  • Ishihara, H., Wang, S.Y.: Photochemistry of 5-bromouracils: Isolation of 5–5’ diuracils. Nature (London) 210, 1222 (1966)

    Article  CAS  Google Scholar 

  • Kanner, L., Hanawalt, P.C: Efficiency of utilization of thymine and 5-bromouracil for normal and repair DNA synthesis in bacteria. Biochim. Biophys. Acta 157, 532 (1968)

    PubMed  CAS  Google Scholar 

  • Kao, P.C., Regan, J.D., Volkin, E.: Fate of homologous and heterologous DNAs after incorporation into human skin fibroblasts. Biophys. Biochim. Acta 324, 1 (1973)

    CAS  Google Scholar 

  • Kaplan, H.S.: DNA strand scission and loss of viability after X-irradiation of normal and sensitized bacterial cells. Proc. Natl. Acad. Sci. USA 55, 1442 (1966)

    Article  PubMed  CAS  Google Scholar 

  • Kato, H.: Spontaneous sister chromatid exchanges detected by a BUdR labeling method. Nature (London) 251, 70 (1974)

    Article  CAS  Google Scholar 

  • Kessin, R.H., Williams, K.L., Newell, P.C: Linkage analysis in Dictyostelium discoidium using temperature-sensitive growth mutants selected with bromodeoxyuridine. J. Bacteriol. 119, 776 (1974)

    PubMed  CAS  Google Scholar 

  • Kihlman, B.A., Kronborg, D.: Sister chromatid exchanges in Vicia faba. Demonstration of a modified fluorescence plus Giemsa (FPG) technique. Chromosoma 51, 1 (1975)

    Article  Google Scholar 

  • Kimball, R.F., Setlow, J.K.: Mutation fixation in MNNG-treated H. influenzae as determined by transformation. Mutat. Res. 22, 1 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Kirtikar, D.M., Slaughter, J., Goldthwait, D.A.: Endonuclease II of E. coli: degradation of gamma-irradiated DNA. Biochemistry 14, 1235 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Köhnlein, W.: Transforming activity in both complementary strands of B. subtilis DNA. Z. Naturforsch. 29c, 63 (1974)

    Google Scholar 

  • Köhnlein, W., Hutchinson, F.: ESR-studies of normal and 5-bromouracil-substituted DNA of Bacillus subtilis after irradiation with ultraviolet light. Radiat. Res. 39, 745 (1969)

    Article  PubMed  Google Scholar 

  • Köhnlein, W., Mönkehaus, F.: Experimental evidence for intramolecular energy transfer in hybrid DNA of B. subtilis after irradiation with long wavelength Uv. Z. Naturforsch. 27b, 708 (1972)

    Google Scholar 

  • Kondratev, Y.S., Skavronskaya, A.G.: The effect of 5-bromouracil on the sensitivity of Hcr + and Hcr bacteria to the lethal and mutagenic action of ultraviolet light. Sov. Genet. 7, 1218 (1971)

    Google Scholar 

  • Korenberg, J.R., Freedlender, E.F.: Giemsa technique for the detection of sister chromatid exchanges. Chromosoma 48, 355 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Korner, I., Malz, W.: Postreplication gap filling in the DNA of X-ray damaged Chinese hamster cells. Stud. Biophys. 51, 115 (1975)

    Google Scholar 

  • Kourim, P., Bors, W., Schulte-Frohlinde, D.: Gamma radiolysis of aqueous solutions of 5-bromo-2-deoxyuridine in the presence of oxygen. Z. Naturforsch. 26b, 308 (1971)

    Google Scholar 

  • Krasin, F., Hutchinson, F.: Repair of DNA double-strand breaks in E. coli, which requires recA function and the presence of a duplicate genome. J. Mol. Biol. 116, 81 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Krasin, F., Hutchinson, F.: Double-strand breaks from single photochemical events in DNA containing 5-bromouracil. Biophys. J. 24, 645 (1978a)

    Article  PubMed  CAS  Google Scholar 

  • Krasin, F., Hutchinson, F.: Strand breaks and alkali-labile bonds induced by ultraviolet light in DNA with 5-bromouracil in vivo. Biophys. J. 24, 657 (1978b).

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U.K., Teaff, N., D’Ambrosia, J.: Maturation of the head of bacteriophage T4. III. DNA packaging into preformed heads. J. Mol. Biol. 88, 749 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Lambert, B., Harrison, K., Lindsten, J., Sten, M., Werelius, B.: Bromodeoxyuridine induced sister chromatid exchanges in human lymphocytes. Hereditas 83, 163 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Langmuir, M.E., Hayon, E.: Transient species produced in the photochemistry of 5-bromouracil and its N-methyl derivatives. J. Chem. Phys. 51, 4893 (1969)

    Article  CAS  Google Scholar 

  • Langridge, R., Marvin, D.A., Seeds, W.E., Wilson, H.R., Hooper, C.W., Wilkins, M.H.F., Hamilton, L.D.: The molecular configuration of deoxyribonucleic acid. II. Molecular models and their Fourier transforms. J. Mol. Biol. 2, 38 (1960)

    Article  CAS  Google Scholar 

  • Lansman, R.A., Clayton, D.A.: Selective nicking of mammalian mitochondrial DNA in vivo: Photosensitization by incorporation of 5-bromodeoxyuridine. J. Mol. Biol. 99, 761 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Lapeyre, J.-N., Bekhor, I.: Effect of 5-Bromo 2’ deoxyuridine and dimethyl sulfoxide on properties and structure of chomatin. J. Mol. Biol. 89, 137 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Latt, S.A.,: Microfluorometric detection of DNA replication in human metaphase chromosomes. Proc. Natl. Acad. Sci. USA 70, 3395 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Latt, S.A., Wohlleb, J.C.: Optical studies of the interaction of 33258 Hoechst with DNA, chromatin and metaphase chromosomes. Chromosoma 52, 297 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Lazda, V.A., Baram, P.: Participation of different cell populations in antigen-and mitogen-induced lymphocyte proliferation. J. Immunol. 112, 1705 (1974)

    PubMed  CAS  Google Scholar 

  • Lehmann, A.R.: Postreplication repair of DNA in ultraviolet-irradiated mammalian cells. J. Mol. Biol. 66, 319 (1972)

    Article  PubMed  CAS  Google Scholar 

  • Lett, J.T., Caldwell, I., Little, J.G.: Repair of X-ray damage to the DNA in Micrococcus radiodurarts: The effect of 5-bromodeoxyuridine. J. Mol. Biol. 48, 395 (1970)

    Article  PubMed  CAS  Google Scholar 

  • Ley, R.D.: Postreplication repair in an excision-defective mutant E. coli. Ultraviolet light-induced incorporation of bromodeoxyuridine into parental DNA. Photochem. Photobiol. 18, 87 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Ley, R.D., Setlow, R.B.: Rapid repair of lesions induced by 313 nm light in bromouracil-substituted DNA of E. coli. Biochem. Biophys. Res. Commun. 46, 1089 (1972)

    Article  PubMed  CAS  Google Scholar 

  • Lillicrap, S.C., Fielden, E.M.: The effect of 5-bromouracil on energy transfer in DNA and related model systems. Radiat. Res. 48, 432 (1971)

    Article  PubMed  CAS  Google Scholar 

  • Lin, S.Y., Riggs, A.D.: Lac operator analogues: Bromodeoxyuridine substitution in the lac operator affects the rate of dissociation of the lac repressor. Proc. Natl. Acad. Sci. USA 69, 2574 (1972)

    Article  PubMed  CAS  Google Scholar 

  • Lin, S.Y., Riggs, A.D.: Photochemical attachment of lac repressor to bromodeoxyuridine-substituted lac operator by ultraviolet irradiation. Proc. Natl. Acad. Sci. USA 71, 947 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Lin, S.Y., Lin, D., Riggs, A.D.: Histones bind more tightly to bromodeoxyuridine-substituted DNA than to normal DNA. Nucleic Acids Res. 3, 2183 (1976)

    PubMed  CAS  Google Scholar 

  • Lindahl, T.: An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc. Natl. Acad. Sci. USA 71, 3649 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Lindahl, T., Ljungquist, S.: Apurinic and apyrimidinic sites in DNA. In: Molecular Mechanisms for Repair of DNA (eds. P.C. Hanawalt, R.B. Setlow) Vol. A, p. 31. New York: Academic Press 1975

    Google Scholar 

  • Lindahl, T., Nyberg, B.: Heat-induced deamination of cytosine residues in DNA. Biochemistry 13, 3405 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Lion, M.B.: Search for a mechanism to explain the high ultraviolet sensitivity of 5-bromouracil-substituted DNA. 3rd Int. Congr. Radiat. Res. (Cortina) Abstr. p. 142 (1966)

    Google Scholar 

  • Lion, M.B.: Search for a mechanism for the increased sensitivity of bromouracil-substituted DNA to ultraviolet radiation. Biochim. Biophys. Acta 155, 505 (1968)

    PubMed  CAS  Google Scholar 

  • Lion, M.B.: Single-strand breaks in the DNA of irradiated 5-bromouracilsubstituted T3 coliphage. Biochim. Biophys. Acta 209, 24 (1970)

    PubMed  CAS  Google Scholar 

  • Lion, M.B.: Mechanism of sensitization of ultraviolet radiation by 5-bromouracil-substituted DNA. Isr. J. Chem. 10, 1151 (1972)

    CAS  Google Scholar 

  • Lion, M.B., Doerner, T.: Determination of the distribution of 5-bromouracil and 5-iodouracil in the DNA of viable and total phage populations. Biochim. Biophys. Acta 277, 25 (1972)

    PubMed  CAS  Google Scholar 

  • Lion, M.B., Köhnlein, W.: Effect of DNA conformation on the ultraviolet damage in 5-bromouracil substituted DNA of T3 coliphage. VI Int. Congr. Photobiol., Bochum, Abstr. 107 (1972)

    Google Scholar 

  • Little, J.W.: The effect of 5-bromouracil on recombination of phage lambda. Virology 72, 530 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Lohmann, W.: Halogen substitution effect on the optical adsorption bands of uracil. Z. Naturforsch. 29c, 493 (1974)

    CAS  Google Scholar 

  • Longworth, J.W., Rahn, R.O., Shulman, R.G.: Luminescence of pyrimidines, purines, nucleosides and nucleotides at 77°K. The effect of ionization and tautomerization. J. Chem. Phys. 45, 2930 (1966)

    Article  PubMed  CAS  Google Scholar 

  • Luk, D.C., Bick, M.D.: Determination of 5-bromodeoxyuridine in DNA by buoyant density. Anal. Biochem. 77, 346 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Makino, F., Munakata, N.: Isolation and characterization of a B. subtilis mutant with a defective N-glycosidase activity for uracil-containing DNA. J. Bacteriol. 131, 438 (1977)

    CAS  Google Scholar 

  • Martens, P.A., Clayton, D.A.: Strand breakage in solution of DNA and ethidium bromide exposed to visible light. Nucleic Acids Res. 4, 1393 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, K., Shibata, T., Saito, H.: Genetic mapping in Bacillus subtilis by 5-bromouracil sensitization to ultraviolet inactivation of transforming activities. J. Bacteriol. 119, 666 (1974)

    PubMed  CAS  Google Scholar 

  • Mazrimas, J.A., Stetka, D.G.: Direct evidence for the role of incorporated BudR in the induction of sister chromatid exchanges. Exp. Cell Res. 117, 23 (1978)

    Article  PubMed  CAS  Google Scholar 

  • McKeown, M., Kahn, M., Hanawalt, P.: Thymidine uptake and utilization in E. coli: A new gene controlling nucleoside transport. J. Bacteriol. 126, 814 (1976)

    PubMed  CAS  Google Scholar 

  • Meuth, M., Green, H.: Induction of a deoxycytidineless state in cultured mammalian cells by bromodeoxyuridine. Cell 2, 109 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Mönkehaus, F.: Influence of cysteamine on intramolecular energy transfer in 5-bromouracil-substituted phage DNA. Int. J. Radiat. Biol. 24, 517 (1973)

    Article  Google Scholar 

  • Mönkehaus, F., Köhnlein, W.: Single-and double-strand breaks in 5-BrU substituted DNA of B. subtilis and phage PBSH after irradiation with long wavelength ultraviolet and their correlation to intramolecular energy transfer. Biopolymers 12, 329.(1973)

    Article  Google Scholar 

  • Nečas, J.: Attempts to sensitize some chlorococcal algae using 5-bromouracil for the induction of mutations by ultraviolet light. Biochem. Physiol. Pflanz. 166, 115 (1974)

    Google Scholar 

  • Nečas, J.: Sensitization dependence of ultraviolet irradiation effects on concentration of 5-bromodexoyuridine in a precultivation medium for a chlorococcal alga. Biochem. Physiol. Pflanz. 170, 487 (1976)

    Google Scholar 

  • Negishi, K., Hayatsu, H., Tanooka, H.: Pol A dependent repair of 5-bromouracil labeled Bacillus subtilis transforming DNA irradiated with ultraviolet in the presence of cysteamine. Int. J. Radiat. Biol. 30, 491 (1976)

    Article  CAS  Google Scholar 

  • Nemcrofsky, A.: The interaction effect of ultraviolet irradiation and 5-bromouracil at the rib 1 locus in Neurospora crassa. Can. J. Genet. Cytol. 17, 275 (1975)

    Google Scholar 

  • Newman, C.N., Kubitschek, H.E.: Variation in periodic replication of the chromosome in Escherichia coli B/r TT. J. Mol. Biol. 121, 461 (1978)

    Article  PubMed  CAS  Google Scholar 

  • Nicolini, C., Baserga, R.: Circular dichroism spectra and ethidium bromide binding of 5-deoxybromouridine-substituted chromatin. Biochem. Biophys. Res. Commun. 64, 189 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Ogata, R., Gilbert, W.: Contacts between the lac repressor and thymines in the lac operator. Proc. Natl. Acad, Sci. USA 74, 4973 (1977)

    Article  CAS  Google Scholar 

  • Olafsson, P.G., Bryan, A.M.: The influence of 5-halo substituants on the thermal depyrimidination of the glycosidic bond in 2’-deoxyuridines. Arch. Biochem. Biophys. 165, 46 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Pera, F., Mattias, P.: Labeling of DNA and differential sister chromatid staining after BrdU treatment in vivo. Chromosoma 57, 13 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Perry, P., Wolff, S.: New method for the differential staining of sister chromatids. Nature (London) 251, 156 (1974)

    Article  CAS  Google Scholar 

  • Peter, H., Drewer, R.: Photoproducts of bromouracil-labeled DNA and the structure of 5-bromodeoxyuridyl-thymidine photoproduct. Photochem. Photobiol. 12, 269 (1970)

    Article  PubMed  CAS  Google Scholar 

  • Peter, H., Drewer, R.: Photochemistry of 14c-labeled 5-bromo-2-deoxyuridylyl (3’–5’) thymidine. Determination of quantum yields as a function of pH. Photochem. Photobiol. 14, 561 (1971)

    Article  PubMed  CAS  Google Scholar 

  • Pietrzykowska, I., Krych, M.: Lethal and mutagenic BU-induced lesions in DNA and their repair. Stud. Biophys. 61, 17 (1977)

    CAS  Google Scholar 

  • Pietrzykowska, I., Lewandowska, K., Shugar, D.: Liquid holding recovery of bromouracil-induced lesions in DNA of Escherichia coli CR34 and its possible relation to dark repair mechanisms. Mutat. Res. 30, 21 (1975)

    Article  CAS  Google Scholar 

  • Pontecorvo, G.: Induction of directional chromosome elimination in somatic cell hybrids. Nature (London) 230, 367 (1971)

    Article  CAS  Google Scholar 

  • Povirk, L.F.: Radiation-induced depression of DNA synthesis in cultured mammalian cells. Ph. D. Thesis, Univ. California, Berkeley (1977a)

    Google Scholar 

  • Povirk, L.F.: Localization of inhibition of replicon initiation to damaged regions of DNA. J. Mol. Biol. 114, 141 (1977b)

    Article  PubMed  CAS  Google Scholar 

  • Prusoff, W.H., Goz, B.: Halogenated pyrimidine deoxyribonucleosides. In: Antimetabolites and Immunosuppressive Agents (eds. A.C. Sartorelli, D. Johns). Vol. II, Chap. 5. Berlin, Heidelberg, New York: Springer 1975

    Google Scholar 

  • Puck, T.T., Kao, F.-T.: Genetics of somatic mammalian cells. V. Treatment of 5-bromodeoxyuridine and visible light for isolation of nutritionally deficient mutants. Proc Natl. Acad. Sci. USA 58, 1227 (1967)

    Article  PubMed  CAS  Google Scholar 

  • Radman, M., Roller, A., Errera, M.: Protection and host cell repair of irradiated lambda phage. II. Irradiation of 5-bromouracil-substituted phage with near visible light. Mol. Gen. Genet. 104, 147 (1969a)

    Article  PubMed  CAS  Google Scholar 

  • Radman, M., Roller, A., Errera, M.: Protection and host cell repair of irradiated lambda phage. III. Ultraviolet irradiation of 5-bromouracil-substituted phage. Mol. Gen. Genet. 104, 152 (1969b)

    Article  PubMed  CAS  Google Scholar 

  • Rahn, R.O., Patrick, M.H.: Photochemistry of DNA. In: Photochemistry and Photobiology of Nucleic Acids (ed. S.Y. Wang), Vol. II, p. 97. New York: Academic Press 1976

    Google Scholar 

  • Rahn, R.O., Stafford, R.S.: Photochemistry of DNA containing iodonated cytosine. Photochem. Photobiol. 30, 449 (1979)

    Article  CAS  Google Scholar 

  • Rapaport, S.A.: Action spectrum for inactivation by ultraviolet light of bacteriophage T4 substituted with 5-bromodeoxyuridine. Virology 22, 125 (1964)

    Article  CAS  Google Scholar 

  • Regan, J.D., Setlow, R.B.: Two forms of repair in the DNA of human cells damaged by chemical carcinogens and mutagens. Cancer Res. 34, 3318 (1974)

    PubMed  CAS  Google Scholar 

  • Regan, J.D., Setlow, R.B.: Repair of human DNA: Radiation and chemical damage in normal and Xeroderma pigmentosum cells, in: Biology of Radiation Carcinogenesis (eds. J.M. Yuhas, R.W. Tennant, J.D. Regan), pp. 103. New York: Raven Press 1976

    Google Scholar 

  • Regan, J.D., Setlow, R.B., Ley, R.D.: Normal and defective repair of damaged DNA in human cells: A sensitive assay utilizing the photolysis of bromodeoxyuridine. Proc. Natl. Acad. Sci. USA 68, 708 (1971)

    Article  PubMed  CAS  Google Scholar 

  • Reichert, P., Canellakis, Z.N., Canellakis, E.S.: Regulatory mechanisms in the synthesis of deoxyribonucleic acid in vitro. Biochim. Biophys. Acta 41, 558 (1960)

    Article  Google Scholar 

  • Reuschl, H.: Kinetic studies of gamma radiolysis of 5-bromouracil in aqueous solution. Z. Naturforsch. 21b, 643 (1966)

    Google Scholar 

  • Rosenstein, B.S., Setlow, R.B., Ahmed, F.E.: Use of the dye Hoechst 33258 in a modification of the bromodeoxyuridine photolysis technique for the analysis of DNA repair. Photochem. Photobiol. 31, 215 (1980)

    Article  PubMed  CAS  Google Scholar 

  • Rothman, W., Kearns, D.R.: Triplet states of bromouracil and iodouracil. Photochem. Photobiol. 6, 775 (1967)

    CAS  Google Scholar 

  • Roufa, D.J.: Bromodeoxyuridine strand symmetry and the repair of photolytic breaks in Chinese hamster cell chromosomes. Proc. Natl. Acad. Sci. USA 23, 3905 (1976)

    Article  Google Scholar 

  • Roufa, D.J., Sadow, B., Caskey, C.T.: Derivation of TK clones from revertant TK+ mammalian cells. Genetics 75, 515 (1973)

    PubMed  CAS  Google Scholar 

  • Rupp, W.D.: The photochemistry of iodouracil as related to the survival of ultraviolet-irradiated T1 bacteriophage substituted with 5-iodo-2’-deoxyuridine. Ph. D. Thesis, Yale Univ. (1965)

    Google Scholar 

  • Rupp, W.D., Howard-Flanders, P.: Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J. Mol. Biol. 31, 291 (1968)

    Article  PubMed  CAS  Google Scholar 

  • Rupp, W.D., Prusoff, W.H.: Incorporation of 5-iodo 2’-deoxyuridine into bacteriophage T1 as related to ultraviolet sensitization or protection. Nature (London) 202, 1288 (1964)

    Article  CAS  Google Scholar 

  • Rupp, W.D., Prusoff, W.H.: Photochemistry of iodouracil. II. Effects of sulfur compounds, ethanol and oxygen. Biochem. Biophys. Res. Commun. 18, 158 (1965)

    Article  PubMed  CAS  Google Scholar 

  • Rutter, W.J., Pictet, R.L., Githins, S., III, Gordon, J.S.: The mode of action of the thymidine analogue, 5-bromodeoxyuridine, a model teratogenic agent. In: New Approaches to the Evaluation of Abnormal Embryonic Development (eds. D. Neubert, H.J. Merker), pp. 804. Stuttgart: Thieme 1975

    Google Scholar 

  • Rydberg, B.: Bromouracil mutagenesis in E. coli; Evidence for involvement of mismatch repair. Mol. Gen. Genet. 152, 19 (1977a)

    Article  PubMed  CAS  Google Scholar 

  • Rydberg, B.: Discrimination between bromouracil and thymine for uptake into DNA in drm and dra mutants of E. coli K12. Biochim. Biophys. Acta 476, 32 (1977b)

    CAS  Google Scholar 

  • Saito, I., Ito, S., Matsumura, T.: Photoinduced coupling reaction of 5-bromouridine to tryptophan derivatives. JACS 100, 2901 (1978)

    Article  CAS  Google Scholar 

  • Sasson, S., Wang, S.Y., Ehrlich, M.: 5−5’ diuridinyl, a major photoproduct from ultraviolet-irradiation of polynucelotides containing bromouracil. Photochem. Photobiol. 25, 11 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Sawada, S., Okada, S.: Effects of 5-BrUdR labeling on radiation-induced DNA breakage and subsequent rejoining in cultured mammalian cells. Int. J. Radiat. Biol. 21, 599 (1972)

    Article  CAS  Google Scholar 

  • Scheid, W.: Mechanism of differential staining of BrUdR-Substituted Vicia faba chromosomes. Exp. Cell Res. 101, 55 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Scheid, W., Traupe, H.: Further studies on the mechanism involved in differential staining of BUdR-substituted Vicia faba chromosomes. Exp. Cell Res. 108, 440 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Schwartzman, J.B., Cortes, F.: Sister chromatid exchanges in Allium cepa. Chromosoma 62, 119 (1977)

    Article  Google Scholar 

  • Sedor, F.A., Sander, E.G.: Effect of thiols on the dehalogenation of 5-iodo and 5-bromouracil. Biochem. Biophys. Res. Commun. 50, 328 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Setlow, R.B.: The wavelengths in sunlight effective in producing skin cancer, a theoretical analysis. Proc. Natl. Acad. Sci. USA 71, 3363 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Setlow, R.B., Doyle, B.: The action of monochromatic ultraviolet light on proteins. Biochim. Biophys. Acta 24, 27 (1957)

    Article  PubMed  CAS  Google Scholar 

  • Shugar, D., Fox, J.J.: Spectrophotometric studies on nucleic acid derivatives and related compounds as a function of pH. I. Pyrimidines. Biochem. Biophys. Acta 9, 199 (1952)

    Article  CAS  Google Scholar 

  • Simpson, R.T., Seale, R.L.: Characterization of chromatin extensively substituted with 5-bromodeoxyuridine. Biochemistry 13, 4609 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Simpson, R.B.: Contact between E. coli RNA polymerase and thymines in the lac UV5 promotor. Proc. Natl. Acad. Sci. USA 76, 3233 (1979)

    Article  PubMed  CAS  Google Scholar 

  • Singer, J., Stellwagen, R.H., Roberts-Ems, J., Riggs, A.D.: 5-methylcytosine content of rat hepatoma DNA substituted with bromodeoxyuridine. J. Biol. Chem. 252, 5509 (1977)

    PubMed  CAS  Google Scholar 

  • Singh, P.K.: Sensitization of algal virus to UV by the incorporation of 5-bromouracil and mutations of host alga Plectonema bvoyanum. Z. Allg. Mikrobiol. 15, 547 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Skalko, R.G., Packard, D.S., Jr.: Mechanisms of halogenated nucleoside embryotoxicity. Ann. N. Y. Acad. Sci. 255, 552 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Smets, L.A., Cornells, J.J.: Repairable and irrepairable damage in 5-bromouracil-substituted DNA exposed to ultraviolet radiation. Int. J. Radiat. Biol. 19, 445 (1971)

    Article  CAS  Google Scholar 

  • Smith, K.C.: The photochemistry of thymine and bromouracil in vivo. Photochem. Photobiol. 3, 1 (1964)

    Article  CAS  Google Scholar 

  • Smith, K.C.: The radiation-induced addition of proteins and other molecules to nucleic acids. In: Photochemistry and Photobiology of Nucleid Acids, (ed. S.Y. Wang), Vol. II, p. 187. New York: Academic Press 1976

    Google Scholar 

  • Stahl, F.W., Crasemann, J.M.K., Okun, L., Fox, E., Laird, C: Radiationsensitivity of bacteriophage containing 5-bromodeoxyuridine. Virology 13, 98 (1961)

    Article  CAS  Google Scholar 

  • Sternglanz, H., Bugg, C.E.: Relationship between the mutagenic and base stacking properties of halogenated uracil derivatives. The crystal structures of 5-chloro-and 5-bromouracil. Biochim. Biophys. Acta 378, 1 (1975)

    PubMed  CAS  Google Scholar 

  • Stetten, G., Davidson, R.L., Latt, S.A.: 33258 Hoechst enhances the selectivity of the bromodeoxyuridine-light method of isolating conditional lethal mutants. Exp. Cell Res. 108, 447 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, T., Goto, K., Kano, Y.: Mechanism of differential Giemsa method for sister chromatids. Nature (London) 259, 59 (1976)

    Article  CAS  Google Scholar 

  • Szarek, W.A.: Deosyhalogeno-sugars. Adv. Carbohydr. Chem. Biochem. 28, 225 (1973)

    Article  CAS  Google Scholar 

  • Szybalski, W.: Properties and applications of halogenated deoxyribonucleic acids. In: The Molecular Basis of Neoplasia, pp. 147. Austin: Un. Texas Press 1962

    Google Scholar 

  • Szybalski, W.: X-ray sensitization by halopyrimidines. Cancer Chemother. Rep. 58, 539 (1974)

    PubMed  CAS  Google Scholar 

  • Szybalski, W., Opara-Kubinska, Z.: Radiobiological and physiochemical properties of 5-bromodeoxyuridine-labeled transforming DNA as related to the nature of the critical radiosensitive structures. In: Cellular Radiation Biology, pp. 223. Baltimore: Williams and Wilkins 1965

    Google Scholar 

  • Taichman, L., Freedlender, E.F.: Separation of chromatins containing BrU in one or both strands of the DNA. Biochemistry 15, 447 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Teich, N., Lowy, D.R., Hartley, J.W., Rowe, W.P.: Studies of the mechanism of induction of infectious murine leukemia virus from AKR mouse embryo cell lines by 5-iododeoxyuridine and 5-bromodeoxyuridine. Virology 51, 163 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Thiel, R., Wacker, A., Treatment of herpetic keratitis with thymine-analogous compounds. Klin. Monatsbl. Augenheilkd. 141, 94 (1962)

    CAS  Google Scholar 

  • Thiron, J.P.: Chromosome damage in mouse-human hybrid cells after BUdR treatment and light irradiation. Mutat. Res. 35, 479 (1976)

    Article  Google Scholar 

  • Ullman, J.S., McCarthy, B.J.: Alkali deamination of cytosine residues in DNA. Biochim. Biophys. Acta 294, 396 (1973)

    PubMed  CAS  Google Scholar 

  • Varghese, A.J.: Photoreactions of 5-bromouracil in the presence of cysteine and glutathione. Photochem. Photobiol. 20, 461 (1974)

    Article  CAS  Google Scholar 

  • Verly, W.G.: Maintenance of DNA and repair of apurinic sites. In: Molecular Mechanisms for Repair of DNA (eds. P.C. Hanawalt, R.B. Setlow), Vol. A, p. 39. New York: Plenum Press 1975

    Google Scholar 

  • Verma, R.S., Cummins, J.E., Walden, D.B.: Chromosome aberrations produced by 5-bromodeoxyuridine with concurrent exposure to long wavelength UV in Zea mays root tip cells. Can. J. Genet. Cytol. 19, 447 (1977)

    CAS  Google Scholar 

  • Voytek, P., Chang, P.K., Prusoff, W.H.: Kinetic and photochemical studies of 3-N-methyl-5-iodo-2’-deoxyuridine. J. Biol. Chem. 247, 367 (1972)

    PubMed  CAS  Google Scholar 

  • Wacker, A.: Strahlenchemische Veränderungen von Pyrimidinen in vivo und in vitro. J. Chim. Phys. 58, 1041 (1961)

    CAS  Google Scholar 

  • Wacker, A.: Molecular mechanisms of radiation effects. Prog. Nucleic Acid Res. 1, 369 (1963)

    Article  CAS  Google Scholar 

  • Wang, S.Y.: Pyrimidine biomolecular photoproducts. In: Photochemistry and Photobiology of Nucleic Acids (ed. S.Y. Wang), Vol. I, p. 296. New York: Academic Press 1976

    Google Scholar 

  • Ward, J.F.: Molecular mechanisms of radiation-induced damage to nucleic acids. Adv. Radiat. Biol. 5, 181 (1975)

    CAS  Google Scholar 

  • Ward, J.F., Kuo, I.: The effects of radiation modifiers on sugar-phosphate bond breakage in deoxynucleotides irradiated in aqueous solution. IV. Int. Congr. Radiat. Res., Evian, France (1970)

    Google Scholar 

  • Wataga, Y., Negishi, K., Hayatsu, H.: Debromination of 5-bromo-2-deoxyuridine by cysteine. Formation of deoxyuridine and S-(5-2-deoxyuridyl) cysteine. Biochemistry 12, 3992 (1973)

    Article  Google Scholar 

  • Weintraub, H.: The assembly of newly replicated DNA into chromatin. Cold Spring Harbor Symp. Quant. Biol. 38, 247 (1973)

    Google Scholar 

  • Witkin, E.M.: Ultraviolet mutagenesis and inducible DNA repair in E. coli. Bacteriol. Rev. 40, 869 (1976)

    PubMed  CAS  Google Scholar 

  • Wolff, S., Perry, P.: Differential giemsa staining of sister chromatids and the study of sister chromatid exchanges without autoradiography. Chromosoma 48, 341 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Zamchuk, L.A., Braude, N.A.: Immunogenic properties of Escherichia coli and T4 DNA containing 5-bromodeoxyuridine. Mol. Biol. USSR 9, 565 (1975)

    Google Scholar 

  • Zamenhof, S., Rich, K., DeGiovanni, R.: Further studies on the introduction of pyrimidines into deoxyribonucleic acids of E. coli. J. Biol. Chem. 232, 651 (1958)

    PubMed  CAS  Google Scholar 

  • Zimbrick, J.D., Ward, J.F., Myers, L.S., Jr.: Studies on the chemical basis of cellular radiosensitization by 5-bromouracil substitution in DNA. I. Pulse and steady state radiolysis of 5-bromouracil and thymine. Int. J. Radiobiol. 16, 505 (1969a)

    Article  CAS  Google Scholar 

  • Zimbrick, J.D., Ward, J.F., Myers, L.S., Jr.: Studies on the chemical basis of cellular radiosensitization by 5-bromouracil substitution in DNA. II. Pulse and steady state radiolysis of regular and bromouracilsubstituted DNA. Int. J. Radiobiol. 16, 525 (1969b)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hutchinson, F., Köhnlein, W. (1980). The Photochemistry of 5-Bromouracil and 5-lodouracil in DNA. In: Hahn, F.E., Kersten, H., Kersten, W., Szybalski, W. (eds) Progress In Molecular and Subcellular Biology. Progress In Molecular and Subcellular Biology, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67701-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67701-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67703-8

  • Online ISBN: 978-3-642-67701-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics