Skip to main content

Image Averaging of Membrane-Bound Acetylcholine Receptor from Torpedo marmorata

  • Conference paper
Electron Microscopy at Molecular Dimensions

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

  • 120 Accesses

Abstract

The acetylcholine-receptor protein (AchR) plays a key role in synaptic transmission because it controls the cation permeability of the postsynaptic membrane. It is an integral membrane glycoprotein of ≃ 3 x 105 daltons molecular weight, composed of several Polypeptide chains. Reports of its detailed chemical subunit composition and the number of ligandor neurotoxin binding sites are controversial [1, 2]. In purified postsynaptic membrane fragments (microsacs, see Fig. la) prepared from tissues rich in acetylcholine receptor, AchR is visualized by negative staining as densely packed round particles of ≃ 70 Å diameter [3,4,5,6], which are somewhat irregularly shaped (see also Fig. 1b). These particles possess a stain-filled central pit of ≃ 20 Å diameter. The terms “dough- nuts” or “rosettes” are often used to describe this appearance, which is due to a hydrated portion of AchR, protruding from the external surface of the microsac membrane by about 50 Å [6,7,8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Heidmann T, Changeux J-P (1978) Structural and functional properties of the acetylcholine receptor protein in its purified and membrane-bound State. Annu Rev Biochem 47: 317–357

    Article  PubMed  CAS  Google Scholar 

  2. Barrantes FJ (1979) Endogenous chemical receptors: Some physical aspects. Annu Rev Biophys Biogen 8: 287–321

    Article  CAS  Google Scholar 

  3. Nickel E, Potter LT (1973) Ultrastructure of isolated membranes of Torpedo electric tissue. Brain Res 57: 508–517

    Article  PubMed  CAS  Google Scholar 

  4. Cartaud J, Benedetti EL, Cohen JB, Meunier J-C, Changeux J-P (1973) Presence of a lattice structure in membrane fragments rich in nicotinic receptor protein from the electric organ of Torpedo marmorata. FEBS Lett 33: 109–113

    Article  PubMed  CAS  Google Scholar 

  5. Cartaud J, Benedetti EL, Sobel A, Changeux J-P (1978) A morphologieal study of the cholinergic receptor protein from Torpedo marmorata in its membrane environment and in its detergent- extracted purified form. J Cell Sci 29: 313–337

    PubMed  CAS  Google Scholar 

  6. Schiebler W, Hucho F (1978) Membranes rich in acetylcholine receptor: Characterization and reconstitution to excitable membranes from exogenous lipids. Eur J Biochem 85: 55–63

    Google Scholar 

  7. Ross MJ, Klymkowsky MW, Agard DA, Stroud RM (1977) Structural studies of a membrane- bound acetylcholine receptor from Torpedo marmorata. J Mol Biol 116: 635–659

    Article  PubMed  CAS  Google Scholar 

  8. Klymkowsky MW, Stroud RM (1979) Immunospecific identification and three-dimensional structure of a membrane-bound acetylcholine receptor from Torpedo californica. J Mol Biol 128: 319–334

    Article  PubMed  CAS  Google Scholar 

  9. Brisson A (1978) Acetylcholine receptor protein structure. 10th Int Congr Electron Microsc, vol II, pp 180–181. Toronto

    Google Scholar 

  10. Sobel A, Changeux J-P (1977) Purification and characterization of the cholinergic receptor protein in its membrane-bound and detergent soluble forms from the electric organ of Torpedo marmorata. Biochem Soc Trans 5: 511–514

    PubMed  CAS  Google Scholar 

  11. Unwin PNT (1974) Electron microscopy of the stacked disk aggregate of tobacco mosaic virus protein. II. The influence of electron irradiation on the stain distribution. J Mol Biol 87: 657–670

    Article  PubMed  CAS  Google Scholar 

  12. Crewe AV, Langmore JP, Isaacson MS (1975) Resolution and contrast in the scanning transmission electron microscope. In: Siegel B, Beaman DR (eds) Physical aspects of electron microscopy and microbeam analysis, pp 47–62. John Wiley & Sons, New York

    Google Scholar 

  13. Erickson HP, Klug A (1971) Measurement and compensation of defocussing and aberrations by fourier processing of electron micrographs. Philos Trans R Soc London Ser B 261: 105–118

    Article  Google Scholar 

  14. Zingsheim HP, Bachmann L (1971) Elektronenmikroskopische Untersuchungen an Molekülen von Hochpolymeren. Kolloid Z Z Polym 246: 561–570

    Article  CAS  Google Scholar 

  15. Ottensmeyer FP, Andrew JW, Bazett-Jones DP, Chan ASK, Hewitt JJ (1977) Signal to noise enhancement in dark field electron micrographs of Vasopressin: Filtering of arrays of images in reciprocal Space. J Microsc 109: 259–268

    Article  PubMed  CAS  Google Scholar 

  16. Lugt van der A (1964) Signal detection by complex spatial filtering. IEEE Trans lnf Theory IT-10: 139–145

    Google Scholar 

  17. Frank J, Goldfarb W, Eisenberg D, Baker TS (1978) Image Reconstruction of low and high dose micrographs of negatively stained glutamine synthetase. Proc 9th Int Congr Electron Microsc, vol II, pp 8–9. Toronto

    Google Scholar 

  18. Frank J, Goldfarb W, Eisenberg D, Baker TS (1978) Reconstruction of glutamine synthetase using Computer averaging. Ultramicroscopy 3: 283–290

    Article  PubMed  CAS  Google Scholar 

  19. Frank J, Shimkin B (1978) A new image processing Software system for structural analysis and contrast enhancement. Proc 9th Int Congr Electron Microsc, vol I, pp 210–211. Toronto

    Google Scholar 

  20. Crowther RA, Arnos L (1971) Harmonic analysis of electron microscope images with rotational symmetry. J Mol Biol 60: 123–130

    Article  PubMed  CAS  Google Scholar 

  21. Markham R, Frey S, Hills GJ (1963) Methods for enhancement of image detail and accentuation of structure in electron microscopy. Virology 20: 88–102

    Article  Google Scholar 

  22. Frank J, Bussler PH, Langer R, Hoppe W (1970) Einige Erfahrungen mit der rechnerischen Analyse und Synthese von elektronenmikroskopischen Bildern hoher Auflösung. Ber Bunsenges Phys Chem 74: 1105–1115

    CAS  Google Scholar 

  23. Chang HW, Bock E (1977) Molecular forms of acetylcholine receptor. Effects of calcium ions and a sulfhydryl reagent on the occurence of oligomers. Biochemistry 16: 4513–4520

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zingsheim, H.P., Neugebauer, DC., Barrantes, F.J., Frank, J. (1980). Image Averaging of Membrane-Bound Acetylcholine Receptor from Torpedo marmorata . In: Baumeister, W., Vogell, W. (eds) Electron Microscopy at Molecular Dimensions. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67688-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67688-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67690-1

  • Online ISBN: 978-3-642-67688-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics