Skip to main content

Electron Diffraction Study of Crotoxin Complex At 1.6 Å

  • Conference paper
Electron Microscopy at Molecular Dimensions

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Crotoxin complex is the principle neurotoxin isolated from the rattlesnake venom of Crotalus d. terrificius [1]. The crotoxin complex can be dissociated by 6 M urea into two dissimilar subunits of 14,000 and 10,000 daltons respectively [2,3]. The large subunit is denoted as crotoxin B with a pl of 8.4 and the small subunit is denoted as crotoxin A with a pl of 3.8. Since the pl of the crotoxin complex is 4.5, the positively charged groups in crotoxin B are apparently neutralized due to the interaction of the two subunits. [4]. One of the biological activities of crotoxin complex and of crotoxin B is to catalyze the enzymatic degradation of phospholipids is as the phospholipase A2 isolated from other sources [5]. The recent amino acid sequence results show some sequence homology between crotoxin B and other toxic and nontoxic phospholipases [6]. Both the crotoxin A and B subunits contain 7 disulphide bridges as in some other neurotoxins from snake venoms [7]. Fluorescence emission spectroscopy has been used to show the conformational changes upon the Separation of the two subunits [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Slotta K, Fraenkel-Conrat H (1938) Snake venom III, purification and crystallization of rattlesnake venom. Ber Dtsch Chem Ges 71B: 1076–1081

    CAS  Google Scholar 

  2. Hendon RA, Fraenkel-Conrat H (1971) Biological roles of two components of crotoxin. Proc Natt Acad Sci USA 68: 1560–1563

    Article  CAS  Google Scholar 

  3. Horst J, Hendon RA, Fraenkel-Conrat H (1972) The aetive eomponents of crotoxin. Biochem Biophys Res Commun 46: 1042–1047

    Article  PubMed  CAS  Google Scholar 

  4. Breithaupt H, Rubsamen K, Habermann E (1974) Biochemical analysis of crotoapotin and the basic erotalus phospholipase A. Eur J Biochem 49: 333–345

    Article  PubMed  CAS  Google Scholar 

  5. Rubsamen K, Breithaupt H, Habermann E (1971) Biochemistry and pharmacology of the crotoxin complex. Naunyn-Schmiedebergs Arch Pharmakol 270: 274–288

    Article  PubMed  CAS  Google Scholar 

  6. Jeng TW, Hsiang M, Cole D, Fraenkel-Conrat H (1979) Amino acid sequence of crotoxin B. Submitted for publication

    Google Scholar 

  7. Tu AT (1977) Venoms: Chemistry and molecular biology, pp 30, 268. John Wiley & Sons, New York

    Google Scholar 

  8. Hanley MR (1979) Conformation of neurotoxin complex and its subunits. Biochemistry 18: 1681–1688

    Article  PubMed  CAS  Google Scholar 

  9. Jeng TW, Hendon RA, Fraenkel-Conrat H (1979) Search for relationships among the hemolytic, phospholipolytic and neurotoxic activities of snake venoms. Proc Natl Acad Sci USA 75: 600–604

    Article  Google Scholar 

  10. Bon C, Changeux JP, Jeng TW, Fraenkel-Conrat H (1979) Postsynaptic effects of crotoxin and its isolated subunits. Eur J Biochem 99: 471–481

    Article  PubMed  CAS  Google Scholar 

  11. Hawgood BJ, Smith JW (1977) The mode of action at the mouse neuromuscular junction of the phospholipase A-crotapotin complex isolated from venom of the South American rattlesnake. Br J Pharmacol 61: 597–606

    PubMed  CAS  Google Scholar 

  12. Unwin PNT, Henderson R (1975) Molecular structural determination by electron microscopy of unstained crystalline specimens. J Mol Biol 94: 425–440

    Article  PubMed  CAS  Google Scholar 

  13. Chiu W, Hosoda J (1978) Crystallization and preliminary electron diffraction study to 3.7 Å of DNA helix-destabilizing protein gp32*I. J Mol Biol 122: 103–107

    Article  PubMed  CAS  Google Scholar 

  14. Glaeser RM (1971) Limitations to significant information in biological electron microscopy as aresult of radiation damage. J Ultrastruct Res 36: 466–482

    Article  PubMed  CAS  Google Scholar 

  15. Hayward S, Glaeser RM (1979) Radiation damage of purple membrane at low temperature. Ultramicroscopy 4: 201–210

    Article  CAS  Google Scholar 

  16. Henry N, Lonsdale K(1969) International tables for X-ray crystallography vol III, Physical and ehemical tables. Kynoch Press, Birmingham, England

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chiu, W., Jeng, T.W. (1980). Electron Diffraction Study of Crotoxin Complex At 1.6 Å. In: Baumeister, W., Vogell, W. (eds) Electron Microscopy at Molecular Dimensions. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67688-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67688-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67690-1

  • Online ISBN: 978-3-642-67688-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics