Flavin-Mediated Photoreduction of Nitrate by Nitrate Reductase of Higher Plants and Microorganisms

  • W. G. Zumft
  • F. Castillo
  • K. M. Hartmann
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Nitrate reductase (EC– is the key enzyme in nitrate assimilation by plants and many microorganisms. It is a high molecular weight complex of yet-to-be defined structure which contains as electron transfer groups FAD, cytochrome b-557, and a molybdenum cofactor [1]. The enzyme is usually assayed with one of the following electron donors: (1) reduced pyridine nucleotides, (2) dithionite-reduced flavins, or (3) dithionite-reduced bipyridylium salts. Both dithionite [2] and reduced pyridine nucleotides [3] interfere, however, with the synthesis of the azo dye which is used almost exclusively for analysis of the reaction product, nitrite [4]. To circumvent these difficulties reduction of methyl viologen by hydrogen via hydrogenase may be used, but requires an auxiliary enzyme and does not simplify the assay procedure [5].


Nitrite Pseudomonas NADPH NADH Quinone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hewitt EJ (1975) Assimilatory nitrate-nitrite reduction. Annu Rev Plant Physiol 26: 73–100CrossRefGoogle Scholar
  2. 2.
    Senn DR, Carr PW, Klatt LN (1976) Minimization of a sodium dithionite-derived interference in nitrate reductase-methyl viologen reactions. Anal Biochem 75: 464–471PubMedCrossRefGoogle Scholar
  3. 3.
    Medina A, Nicholas DJD (1957) Interference by reduced pyridine nucleotides in the diazotization of nitrite. Biochim Biophys Acta 23: 440–442PubMedCrossRefGoogle Scholar
  4. 4.
    Snell FD, Snell CT (1949) Colorimetric methods of analysis, vol II. Van Nostrand, Toronto New York LondonGoogle Scholar
  5. 5.
    Pichinoty F, Piechaud M (1968) Recherche des nitrateréductases bactériennes A et B: Méthodes. Ann Inst Pasteur 114: 77–98Google Scholar
  6. 6.
    Jetschmann K, Solomonson LP, Vennesland B (1972) Activation of nitrate reductase by oxidation. Biochim Biophys Acta 275: 276–278PubMedCrossRefGoogle Scholar
  7. 7.
    Losada M (1975/76) Metalloenzymes of the nitrate-reducing system. J Mol Catal 1: 245–264Google Scholar
  8. 8.
    Aparicio PJ, Roldán JM, Calero F (1976) Blue light photoreactivation of nitrate reductase from green algae and higher plants. Biochem Biophys Res Commun 70: 1071–1077PubMedCrossRefGoogle Scholar
  9. 9.
    Stoy V (1956) Riboflavin-catalyzed enzymic photoreduction of nitrate. Biochim Biophys Acta 21: 395–396PubMedCrossRefGoogle Scholar
  10. 10.
    Merkel J, Nickerson WJ (1954) Riboflavin as a photocatalyst and hydrogen carrier in photochemical reduction. Biochim Biophys Acta 14: 303–311PubMedCrossRefGoogle Scholar
  11. 11.
    Massey V, Palmer G (1966) On the existence of spectrally distinct classes of flavoprotein semiquinones. A new method for the quantitative production of flavoprotein semiquinones. Biochemistry 5: 3181–3189PubMedCrossRefGoogle Scholar
  12. 12.
    Massey V, Hemmerich P (1977) A photochemical procedure for reduction of oxidation-reduction proteins employing deazariboflavin as catalyst. J Biol Chem 252: 5612–5614PubMedGoogle Scholar
  13. 13.
    Zumft WG (1976) Anorganische Biochemie des Stickstoffs. Die Mechanismen der Stickstoffassimilation. Naturwissenschaften 63: 457–464PubMedCrossRefGoogle Scholar
  14. 14.
    Manzano C, Candau P, Guerrero M (1978) Affinity chromatography of Anacystis nidulans fer-redoxin-nitrate reductase and NADP reductase on reduced ferredoxin-Sepharose. Anal Biochem 89: 408–412CrossRefGoogle Scholar
  15. 15.
    Zumft WG, Cardenas J (1979) The inorganic biochemistry of nitrogen. Bioenergetic processes. Naturwissenschaften 66: 81–88CrossRefGoogle Scholar
  16. 16.
    Hartmann KM (1978) Aktionspektrometrie. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik, pp 197–222. Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. 17.
    Calvert JG, Pitts JN (1967) Photochemistry. J Wiley & Sons, New YorkGoogle Scholar
  18. 18.
    Duchstein H-J, Fenner H, Hemmerich P, Knappe W-R (1979) (Photo)chemistry of 5-deazaflavin. A clue to the mechanism of flavin-dependent (de)hydrogenation. Eur J Biochem 95: 167–181PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • W. G. Zumft
    • 1
  • F. Castillo
    • 1
  • K. M. Hartmann
    • 1
  1. 1.Institut für BotanikUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations