Flavin-Mediated Photoreduction of Nitrate by Nitrate Reductase of Higher Plants and Microorganisms

  • W. G. Zumft
  • F. Castillo
  • K. M. Hartmann
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

Nitrate reductase (EC 1.6.6.1–1.6.6.3) is the key enzyme in nitrate assimilation by plants and many microorganisms. It is a high molecular weight complex of yet-to-be defined structure which contains as electron transfer groups FAD, cytochrome b-557, and a molybdenum cofactor [1]. The enzyme is usually assayed with one of the following electron donors: (1) reduced pyridine nucleotides, (2) dithionite-reduced flavins, or (3) dithionite-reduced bipyridylium salts. Both dithionite [2] and reduced pyridine nucleotides [3] interfere, however, with the synthesis of the azo dye which is used almost exclusively for analysis of the reaction product, nitrite [4]. To circumvent these difficulties reduction of methyl viologen by hydrogen via hydrogenase may be used, but requires an auxiliary enzyme and does not simplify the assay procedure [5].

Keywords

Nitrite Pseudomonas NADPH NADH Quinone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hewitt EJ (1975) Assimilatory nitrate-nitrite reduction. Annu Rev Plant Physiol 26: 73–100CrossRefGoogle Scholar
  2. 2.
    Senn DR, Carr PW, Klatt LN (1976) Minimization of a sodium dithionite-derived interference in nitrate reductase-methyl viologen reactions. Anal Biochem 75: 464–471PubMedCrossRefGoogle Scholar
  3. 3.
    Medina A, Nicholas DJD (1957) Interference by reduced pyridine nucleotides in the diazotization of nitrite. Biochim Biophys Acta 23: 440–442PubMedCrossRefGoogle Scholar
  4. 4.
    Snell FD, Snell CT (1949) Colorimetric methods of analysis, vol II. Van Nostrand, Toronto New York LondonGoogle Scholar
  5. 5.
    Pichinoty F, Piechaud M (1968) Recherche des nitrateréductases bactériennes A et B: Méthodes. Ann Inst Pasteur 114: 77–98Google Scholar
  6. 6.
    Jetschmann K, Solomonson LP, Vennesland B (1972) Activation of nitrate reductase by oxidation. Biochim Biophys Acta 275: 276–278PubMedCrossRefGoogle Scholar
  7. 7.
    Losada M (1975/76) Metalloenzymes of the nitrate-reducing system. J Mol Catal 1: 245–264Google Scholar
  8. 8.
    Aparicio PJ, Roldán JM, Calero F (1976) Blue light photoreactivation of nitrate reductase from green algae and higher plants. Biochem Biophys Res Commun 70: 1071–1077PubMedCrossRefGoogle Scholar
  9. 9.
    Stoy V (1956) Riboflavin-catalyzed enzymic photoreduction of nitrate. Biochim Biophys Acta 21: 395–396PubMedCrossRefGoogle Scholar
  10. 10.
    Merkel J, Nickerson WJ (1954) Riboflavin as a photocatalyst and hydrogen carrier in photochemical reduction. Biochim Biophys Acta 14: 303–311PubMedCrossRefGoogle Scholar
  11. 11.
    Massey V, Palmer G (1966) On the existence of spectrally distinct classes of flavoprotein semiquinones. A new method for the quantitative production of flavoprotein semiquinones. Biochemistry 5: 3181–3189PubMedCrossRefGoogle Scholar
  12. 12.
    Massey V, Hemmerich P (1977) A photochemical procedure for reduction of oxidation-reduction proteins employing deazariboflavin as catalyst. J Biol Chem 252: 5612–5614PubMedGoogle Scholar
  13. 13.
    Zumft WG (1976) Anorganische Biochemie des Stickstoffs. Die Mechanismen der Stickstoffassimilation. Naturwissenschaften 63: 457–464PubMedCrossRefGoogle Scholar
  14. 14.
    Manzano C, Candau P, Guerrero M (1978) Affinity chromatography of Anacystis nidulans fer-redoxin-nitrate reductase and NADP reductase on reduced ferredoxin-Sepharose. Anal Biochem 89: 408–412CrossRefGoogle Scholar
  15. 15.
    Zumft WG, Cardenas J (1979) The inorganic biochemistry of nitrogen. Bioenergetic processes. Naturwissenschaften 66: 81–88CrossRefGoogle Scholar
  16. 16.
    Hartmann KM (1978) Aktionspektrometrie. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik, pp 197–222. Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. 17.
    Calvert JG, Pitts JN (1967) Photochemistry. J Wiley & Sons, New YorkGoogle Scholar
  18. 18.
    Duchstein H-J, Fenner H, Hemmerich P, Knappe W-R (1979) (Photo)chemistry of 5-deazaflavin. A clue to the mechanism of flavin-dependent (de)hydrogenation. Eur J Biochem 95: 167–181PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • W. G. Zumft
    • 1
  • F. Castillo
    • 1
  • K. M. Hartmann
    • 1
  1. 1.Institut für BotanikUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations