Skip to main content

Effects of UV and Blue Light on the Bipotential Changes in Etiolated Hypocotyl Hooks of Dwarf Beans

  • Conference paper
The Blue Light Syndrome

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

One of the most complex topics to study in biology is the ability of organism to perceive, code, transmit, and integrate environmental information, which is used to direct the cellular metabolism and developmental processes occurring. The detection of different wavelengths of light by specific mechanism plays a key role in plant development. Although great progress has been made in the study of plant photoreceptor pigments, some pigment systems are understood better than others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Briggs WR (1976) The nature of the blue light photoreceptor in higher plants and fungi. In: Smith H (ed) Light and plant development, pp 7–18. Butterworths, London

    Google Scholar 

  • Bünning E (1938) II. Das Carotin der Reizaufnahmezone von Pilobolus, Phycornyces und Avena. Planta 27: 148–158

    Article  Google Scholar 

  • Curry GM, Thimann KV (1961) Phototropism: The nature of the photoreceptor in higher and lower plants. In: Christensen BС, Buchmann B (eds) Progress in photobiology, pp 127–134. Elsevier Publishing Co, New York

    Google Scholar 

  • De Greef JA, Cauberg R, Verbelen JP, Moerells E (1976) Phyto chrome-mediated inter-organ dependence and rapid transmission of the light stimulus. In: Smith H (ed) Light and plant development, pp 295–316. Butterworths, London

    Google Scholar 

  • Dennison DS (1979) Phototropism. In: Pirson A, Zimmermann MH (eds) Enzyclopedia of plant physiology, New Ser, vol VII, pp 506–560. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Furuya M, Hillman WS (1964) Observations on spectrophotometrically assayable phytochrome in vivo in etiolated Pisum seedlings. Planta 63: 31–42

    Article  Google Scholar 

  • Gee H, Vince-Prue D (1976) Control of the hypocotyl hook angle in Phaseolus mungo L.: The role of parts of the seedling. J Exp Bot 27: 314–323

    Article  Google Scholar 

  • Hartmann E (1975) Influence of light on the bioelectric potential of the bean (Phaseolus vulgaris) hypocotyl hook. Physiol Plant 33: 266–275

    Article  CAS  Google Scholar 

  • Haupt W, Buchwald M (1967) Die Orientierung der Photoreceptor-Moleküle im Sporangienträger von Phycomyces. Z Pflanzenphysiol 56: 20–26

    CAS  Google Scholar 

  • Jacob F (1964) Über die Funktion eines Karotin-Lichtschirmes bei dem Phototropismus von Sporangienträger chromosporer Pilobolus-Arten. Flora 155: 209–222

    Google Scholar 

  • Klein WH, Withrow RB, Elstad VB (1956) Response of the hypocotyl hook of bean seedlings to radient energy and other factors. Plant Physiol 31: 289–294

    Article  PubMed  CAS  Google Scholar 

  • Marmé D, Schäfer E (1972) On the localization and orientation of phytochrome molecules in corn coleoptiles (Zea mays L.). Z Pflanzenphysiol 67: 192–194

    Google Scholar 

  • Munoz V, Butler WL (1975) Photoreceptor pigment for blue light in Neurospora crassa. Plant Physiol 55: 421–426

    Article  PubMed  CAS  Google Scholar 

  • Nielsen OF, Gough S (1974) Macromolecular physiology of plastids. XI. Carotenes in etiolated tigrina and xantha mutants of barley. Physiol Plant 30: 246–254

    Article  CAS  Google Scholar 

  • Page RM, Curry GM (1966) Studies on phototropism of young sporangiophores of Piloboluskleinii. Photochem Photobiol 5: 31–40

    Article  CAS  Google Scholar 

  • Poff KL, Butler WL (1974) Absorption changes induced by blue light in Phycomyces blakesleeanus and Dictyostelium discoideum. Nature (London) 248: 799–801

    Article  CAS  Google Scholar 

  • Poff KL, Butler WL, Loomis WF Jr (1973) Light-induced absorbance changes associated with photo-taxis in Dictyostelium. Proc Natl Acad Sci USA 70: 813–816

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein B (1971) The role of various regions of the bean hypocotyl on red light-induced hook opening. Plant Physiol 48: 183–186

    Article  PubMed  CAS  Google Scholar 

  • Schmidt W, Hart I, Filner Ph, Poff KL (1977) Specific inhibition of phototropism in corn seedlings. Plant Physiol 60: 736–738

    Article  PubMed  CAS  Google Scholar 

  • Shropshire W Jr, Withrow RB (1958) Action spectrum of phototropic tip-curvature of Avena. Plant Physiol 33: 360–365

    Article  PubMed  CAS  Google Scholar 

  • Smith H (1975) Phytochrome and photomorphogenesis. McGraw Hill, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hartmann, E., Schmid, K. (1980). Effects of UV and Blue Light on the Bipotential Changes in Etiolated Hypocotyl Hooks of Dwarf Beans. In: Senger, H. (eds) The Blue Light Syndrome. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67648-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67648-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67650-5

  • Online ISBN: 978-3-642-67648-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics