Effects of UV and Blue Light on the Bipotential Changes in Etiolated Hypocotyl Hooks of Dwarf Beans

  • E. Hartmann
  • K. Schmid
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


One of the most complex topics to study in biology is the ability of organism to perceive, code, transmit, and integrate environmental information, which is used to direct the cellular metabolism and developmental processes occurring. The detection of different wavelengths of light by specific mechanism plays a key role in plant development. Although great progress has been made in the study of plant photoreceptor pigments, some pigment systems are understood better than others.


Blue Light Carotenoid Content Light Stimulus Carotenoid Concentration Pigment System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Briggs WR (1976) The nature of the blue light photoreceptor in higher plants and fungi. In: Smith H (ed) Light and plant development, pp 7–18. Butterworths, LondonGoogle Scholar
  2. Bünning E (1938) II. Das Carotin der Reizaufnahmezone von Pilobolus, Phycornyces und Avena. Planta 27: 148–158CrossRefGoogle Scholar
  3. Curry GM, Thimann KV (1961) Phototropism: The nature of the photoreceptor in higher and lower plants. In: Christensen BС, Buchmann B (eds) Progress in photobiology, pp 127–134. Elsevier Publishing Co, New YorkGoogle Scholar
  4. De Greef JA, Cauberg R, Verbelen JP, Moerells E (1976) Phyto chrome-mediated inter-organ dependence and rapid transmission of the light stimulus. In: Smith H (ed) Light and plant development, pp 295–316. Butterworths, LondonGoogle Scholar
  5. Dennison DS (1979) Phototropism. In: Pirson A, Zimmermann MH (eds) Enzyclopedia of plant physiology, New Ser, vol VII, pp 506–560. Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. Furuya M, Hillman WS (1964) Observations on spectrophotometrically assayable phytochrome in vivo in etiolated Pisum seedlings. Planta 63: 31–42CrossRefGoogle Scholar
  7. Gee H, Vince-Prue D (1976) Control of the hypocotyl hook angle in Phaseolus mungo L.: The role of parts of the seedling. J Exp Bot 27: 314–323CrossRefGoogle Scholar
  8. Hartmann E (1975) Influence of light on the bioelectric potential of the bean (Phaseolus vulgaris) hypocotyl hook. Physiol Plant 33: 266–275CrossRefGoogle Scholar
  9. Haupt W, Buchwald M (1967) Die Orientierung der Photoreceptor-Moleküle im Sporangienträger von Phycomyces. Z Pflanzenphysiol 56: 20–26Google Scholar
  10. Jacob F (1964) Über die Funktion eines Karotin-Lichtschirmes bei dem Phototropismus von Sporangienträger chromosporer Pilobolus-Arten. Flora 155: 209–222Google Scholar
  11. Klein WH, Withrow RB, Elstad VB (1956) Response of the hypocotyl hook of bean seedlings to radient energy and other factors. Plant Physiol 31: 289–294PubMedCrossRefGoogle Scholar
  12. Marmé D, Schäfer E (1972) On the localization and orientation of phytochrome molecules in corn coleoptiles (Zea mays L.). Z Pflanzenphysiol 67: 192–194Google Scholar
  13. Munoz V, Butler WL (1975) Photoreceptor pigment for blue light in Neurospora crassa. Plant Physiol 55: 421–426PubMedCrossRefGoogle Scholar
  14. Nielsen OF, Gough S (1974) Macromolecular physiology of plastids. XI. Carotenes in etiolated tigrina and xantha mutants of barley. Physiol Plant 30: 246–254CrossRefGoogle Scholar
  15. Page RM, Curry GM (1966) Studies on phototropism of young sporangiophores of Piloboluskleinii. Photochem Photobiol 5: 31–40CrossRefGoogle Scholar
  16. Poff KL, Butler WL (1974) Absorption changes induced by blue light in Phycomyces blakesleeanus and Dictyostelium discoideum. Nature (London) 248: 799–801CrossRefGoogle Scholar
  17. Poff KL, Butler WL, Loomis WF Jr (1973) Light-induced absorbance changes associated with photo-taxis in Dictyostelium. Proc Natl Acad Sci USA 70: 813–816PubMedCrossRefGoogle Scholar
  18. Rubinstein B (1971) The role of various regions of the bean hypocotyl on red light-induced hook opening. Plant Physiol 48: 183–186PubMedCrossRefGoogle Scholar
  19. Schmidt W, Hart I, Filner Ph, Poff KL (1977) Specific inhibition of phototropism in corn seedlings. Plant Physiol 60: 736–738PubMedCrossRefGoogle Scholar
  20. Shropshire W Jr, Withrow RB (1958) Action spectrum of phototropic tip-curvature of Avena. Plant Physiol 33: 360–365PubMedCrossRefGoogle Scholar
  21. Smith H (1975) Phytochrome and photomorphogenesis. McGraw Hill, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • E. Hartmann
    • 1
  • K. Schmid
    • 1
  1. 1.Institut für Allgemeine Botanik der Universität MainzMainzGermany

Personalised recommendations