Skip to main content

Abstract

Although muscular activity demands the most intense response in respiration and circulation to meet the oxygen supply and carbon dioxide removal, the operational mechanisms involved in the regulation of respiration and circulation during exercise are not fully understood. A great deal of information is available concerning the magnitude of changes in ventilation and blood flow, the shunting of blood and the increase in oxygen capacity, etc., but we still have many loopholes in our interpretation of mechanisms of exercise hyperpnea and exercise “hyper-rheoemia” — increase in blood flow (1, 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kao FF (1963) An experimental study of the pathways involved in exercise hyper-pnea employing cross-circulation techniques. In: Cunningham DJC, Lloyd BB (eds) The regulation of human respiration. Blackwell, Oxford, pp 461–502

    Google Scholar 

  2. Kao FF, Lahiri S, Wang C, Mei SS (1967) Ventilation and cardiac output in exercise: Interaction of chemical and work stimuli. Circ Res 20, 21 (suppl 1):179–191

    Google Scholar 

  3. Kao FF, Ray LH (1954) Respiratory and circulatory responses of anesthetized dogs to induced muscular work. Am J Physiol 179:249–254

    PubMed  CAS  Google Scholar 

  4. Kao FF, Ray LH (1954) Regulation of cardiac output in anesthetized dogs during induced muscular work. Am J Physiol 179:255–260

    PubMed  CAS  Google Scholar 

  5. Kao FF (1956) Regulation of respiration during muscular activity. Am J Physiol 185:145–151

    PubMed  CAS  Google Scholar 

  6. Kao FF, Suckling EE (1963) A method for producing muscular exercise in anesthetized dogs and its validity. J Appl Physiol 18:194–196

    Google Scholar 

  7. Kao FF, Michel CC, Mei SS (1964) Carbon dioxide and pulmonary ventilation in muscular exercise. J Appl Physiol 19:1075–1080

    PubMed  CAS  Google Scholar 

  8. Umbach W, Koepchen HP (eds) (1974) Central rhythmic and regulation: Circulation, respiration, extrapyramidal motor system. Hippokrates, Stuttgart

    Google Scholar 

  9. Kao FF (1977) Mechanisms of exercise hyperpnea — the peripheral neurogenic drive: An experimental study. In: Dempsey JA, Reed CE (eds) Muscular exercise and the lung. University of Wisconsin Press, Madison, pp 71–88

    Google Scholar 

  10. Dempsey JA, Reed CE (eds) (1977) Muscular exercise and the lung. University of Wisconsin Press, Madison

    Google Scholar 

  11. Yamamoto WS (1960) Mathematical analysis of the time course of alveolar CO2. J Appl Physiol 15:215–219

    PubMed  CAS  Google Scholar 

  12. Kao FF, Ray LH (1953) The role of the sensory tracts of the spinal cord in the regulation of breathing during induced exercise. XIX Int Congr Physiol Sci, Montreal, 1953, p 500

    Google Scholar 

  13. Euler C von, Trippenbach T (1976) Excitability changes of the inspiratory “off-switch” mechanism tested by electrical stimulation in nucleus parabrachialis in the cat. Acta Physiol Scand 97:175–188

    Article  Google Scholar 

  14. Euler C von, Trippenbach T (1976) On the respiratory phase-switching mechanisms. In: Duron B (ed) Respiratory centers and afferent system. INSERM, Paris, pp 11–18

    Google Scholar 

  15. Koepchen HP, Langhorst P, Seller H (1975) The problem of identification of autonomic neurons in the lower brain stem. Brain Res 87:375–393

    Article  PubMed  CAS  Google Scholar 

  16. Cherniack NS, Euler C von, Homma, I, Kao FF (1979) Experimentally induced Cheyne-Stokes breathing. Respir Physiol 37:185–200

    Article  PubMed  CAS  Google Scholar 

  17. Bradley GW, Euler C von, Marttila I, Roos B (1975) A model of the central and reflex inhibition of inspiration in the cat. Biol Cybern 19:105–116

    Article  PubMed  CAS  Google Scholar 

  18. Koepchen HP (1974) Introductory synopsis of the conference about central rhythmic and regulation. In: Umbach W, Koepchen HP (eds) Central rhythmic and regulation. Hippokrates, Stuttgart, pp.10–14

    Google Scholar 

  19. Koepchen HP (1976) Quantitative approach to neural control of ventilation. In: Loeschcke HH (ed) Acid-base hemeostasis of the brain extracellular fluid and the respiratory control system. Georg Thieme, Stuttgart, pp 164–186

    Google Scholar 

  20. Bradley GW, Euler C von, Marttila I, Roos B (1974) Steady state effects of CO2 and temperature on the relationship between lung volume and inspiratory duration (Hering-Breuer threshold curve). Acta Physiol Scand 92:351–363

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kao, F.F., Mei, S.S., Babich, A.M., Moss, I.R. (1980). Central Organization of Exercise Input. In: Koepchen, H.P., Hilton, S.M., Trzebski, A. (eds) Central Interaction Between Respiratory and Cardiovascular Control Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67603-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67603-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09948-2

  • Online ISBN: 978-3-642-67603-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics