On the Consistency of the Mathematical Models of Chemical Reactions

  • L. Arnold
Part of the Springer Series in Synergetics book series (SSSYN, volume 6)


There are two main principles according to which chemical reactions in a spatial domain are modeled:
  1. (i)

    global description (i.e. without diffusion, spatially homogeneous or ‘well-stirred’ case) versus local description (i.e. including diffusion, spatially inhomogeneous case),

  2. (ii)

    deterministic description (macroscopic, phenomenological, in terms of concentrations) versus stochastic description (on the level of numbers of particles, taking into account internal fluctuations).



Deterministic Model Infinitesimal Generator Flux Boundary Condition Jump Markov Process Stochastic Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amann, H.: Invariant Sets and Existence Theorems for Semilinear Parabolic and Elliptic Systems. J. Math. Anal. Appl. 65 (1978), 432 – 467.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arnold, L., and P. Kotelenez: Central Limit Theorem for the Stochastic Model of Chemical Reactions with Diffusion (in preparation).Google Scholar
  3. 3.
    Arnold, L., and M. Theodosopulu: Deterministic Limit of the Stochastic Model of Chemical Reactions with Diffusion. Adv. Appl. Prob. (1980).Google Scholar
  4. 4.
    Curtain, R. F., and A. J. Pritchard: Infinite Dimensional Linear Systems Theory. Lecture Notes in Control and Information Sciences 8. Springer, Berlin — Heidelberg — New York 1978.MATHCrossRefGoogle Scholar
  5. 5.
    Fife, P. C.: Asymptotic States for Equations of Reaction and Diffusion. Bull. Amer. Math. Soc. 84 (1978), 693 – 726.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fife, P. C.: Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomathematics 28. Springer, Berlin-Heidelberg- New York 1979.MATHGoogle Scholar
  7. 7.
    Haken, H.: Synergetics. Springer, Berlin-Heidelberg-New York 1978 (second edition).MATHGoogle Scholar
  8. 8.
    Kuiper, H. J.: Existence and Comparison Theorems for Nonlinear Diffusion Systems. J. Math. Anal. Appl. 60 (1977), 166 – 181.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kuo, H.-H.: Gaussian Measures in Banach Spaces. Lecture Notes in Mathematics 463. Springer, Berlin-Heidelberg-New York 1975.MATHGoogle Scholar
  10. 10.
    Kurtz, T.: Solutions of Ordinary Differential Equations as Limits of Pure Jump Markov Processes. J. Appl. Prob. 7 (1970), 49 – 58.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kurtz, T.: Limit Theorem for Sequences of Jump Markov Processes Approximating Ordinary Differential Processes. J. Appl. Prob. 8 (1971), 344 – 356.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kurtz, T.: Semigroups of Conditioned Shifts and Approximation of Markov Processes. Annals of Prob. 3 (1975), 618 – 642.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kurtz, T.: Strong Approximation Theorems for Density Dependent Markov Chains. Stoch. Proc. and their Appl. 6 (1978), 223 – 240.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Malek-Mansour, M.: Fluctuation et Transition de Phase de Non-equilibre dans les Systemes Chimiques. These.Université Libre de Bruxelles 1979.Google Scholar
  15. 15.
    Nicolis, G., and I. Prigogine: Selforganization in Nonequilibrium Systems. Wiley, New York 1977.Google Scholar
  16. 16.
    Papanicolaou, G. C.: Asymptotic Analysis of Stochastic Equations. In: Rosenblatt, M. (ed.): Studies in Probability Theory. Studies in Mathematics Vol. 18. The Mathematical Association of America 1978.Google Scholar
  17. 17.
    Van den Broeck, C., W. Horsthemke, and M. Malek-Mansour: On the Diffusion Operator of the Multivariate Master Equation. Physica 89 A (1977), 339 – 352.ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • L. Arnold
    • 1
  1. 1.Fachbereich Mathematik, Forschungsschwerpunkt Dynamische SystemeUniversität BremenBremen 33Germany

Personalised recommendations