Skip to main content

Neurophysiological Properties of Neuroleptic Agents in Animals

  • Chapter
Psychotropic Agents

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 55 / 1))

Abstract

When one tries to give an account of the action of neuroleptic agents on neurons in the central nervous system, it seems reasonable to start from the principle that drugs such as reserpine or CPZ impair impulse transmission at synapses where monoamines act as transmitter substances. Reserpine depletes NA from sympathetically innervated tissues (for literature see Carlsson et al., 1957b; Carlsson, 1966), and diminishes or abolishes the effect of electrical or chemical stimulation of adrenergic nerves due to lack of the transmitter (Bertler et al., 1956; Bertler et al., 1958; Muscholl and Vogt, 1957, 1958, Trendelenburg and Gravenstein, 1958). There is better time correlation between the depression of adrenergic impulse transmission and a reduced tissue uptake of NA than between the disturbed nerve function and the reduced NA levels in the tissues (Andén et al., 19641). Similarly, reserpine decreases the content of NA, DA, and 5HT in the brain and spinal cord (Shore and Brodie, 1957; Shore et al., 1957; Carlsson, 1959,1965; Andén et al., 1967b) and inhibits the accumulation of NA in the brain when the amine is administered into the lateral ventricles (Glowinski and Axelrod, 1965, 1966). It is now generally accepted that changes in central nervous functions produced by reserpine are due to lack of the monoamines as transmitters (Carlsson, 1964), i.e., reserpine acts presynaptically in inhibiting monoaminergic impulse transmission. However, there is considerable disagreement when an attempt is made to correlate central effects in terms of changes in animal behavior with the impairment of the function of a particular monoaminergic transmitter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian, G.K., Bunney, B.S.: Central dopaminergic neurons: neurophysiological identification and responses to drugs. In: Frontiers in Catecholamine Research, Snyder, S.H., Usdin, E., Eds., pp. 643–648, Pergamon Press, New York (1973)

    Google Scholar 

  • Aghajanian, G.K., Bunney, B.S.: Dopamine “autoreceptors”: pharmacological characterization by microionotophoretic single cell recording studies. Naunyn Schmiedebergs Arch. Pharmacol. 297, 1–7 (1977)

    PubMed  CAS  Google Scholar 

  • Agid, Y., Guyenet, P., Glowinski, J., Beaujouan, J.C., Javoy, F.: Inhibitory influence of the nigrostriatal dopamine system on the striatal cholinergic neurons in the rat. Brain Res. 86, 488–492 (1975)

    PubMed  CAS  Google Scholar 

  • Ahlman, H., Grillner, S., Udo, M.: The effect of 5-HTP on the static fusimotor activity and the tonic stretch reflex of an extensor muscle. Brain Res. 27, 393–396 (1971)

    PubMed  CAS  Google Scholar 

  • Ahn, H.S., Gardner, E., Makman, M.H.: Anterior pituitary adenylate cyclase: stimulation by dopamine and other monoamines. Eur. J. Pharmacol. 53, 313–317 (1979)

    PubMed  CAS  Google Scholar 

  • Andén, N.-E.: Antipsychotic drugs and catecholamine synapses. J. Psychiatr. Res. 77, 97–104 (1974)

    Google Scholar 

  • Andén, N.-E., Bédard, P.: Influences of cholinergic mechanisms on the function and turnover of brain dopamine. J. Pharm. Pharmacol. 23, 460–462 (1971)

    PubMed  Google Scholar 

  • Andén, N.-E., Stock, G.: Effect of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system. J. Pharm. Pharmacol. 25, 346–348 (1973)

    PubMed  Google Scholar 

  • Andén, N.-E., Lundberg, A., Rosengren, E., Vyklicky, L.: The effect of DOPA on spinal reflexes from the FRA (flexor reflex afférents). Experientia 79, 654–655 (1963)

    Google Scholar 

  • Andén, N.-E., Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.-Å., Larsson, K.: Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci. 3, 523–530 (1964a)

    PubMed  Google Scholar 

  • Andén, N.-E., Carlsson, A., Hillarp, N.-Â., Magnusson, T.: 5-Hydroxytryptamine release by nerve stimulation of the spinal cord. Life Sci. 3, 473–478 (1964 b)

    PubMed  Google Scholar 

  • Andén, N.-E., Häggendal, J., Magnusson, T., Rosengren, E.: The time course of the disappearance of noradrenaline and 5-hydroxytryptamine in the spinal cord after transection. Acta Physiol. Scand. 62, 115–118 (1964c)

    PubMed  Google Scholar 

  • Andén, N.-E., Jukes, M.G.M., Lundberg, A.: Spinal reflexes and monoamine liberation. Nature 202, 1222–1223 (1964d)

    PubMed  Google Scholar 

  • Andén, N.-E., Jukes, M.G.M., Lundberg, A., Vyklicky, L.: A new spinal flexor reflex. Nature 202, 1344–1345 (1964 e)

    PubMed  Google Scholar 

  • Andén, N.-E., Magnusson, T., Waldeck, B.: Correlation between noradrenaline uptake and adrenergic nerve function after reserpine treatment. Life Sci. 3, 19–25 (1964f)

    PubMed  Google Scholar 

  • Andén, N.-E., Roos, B.-E., Werdenius, B.: Effects of chlorpromazine, haloperidol and reserpine on the levels of phenolic acids in rabbit corpus striatum. Life Sci. 3, 149–158 (1964g)

    Google Scholar 

  • Andén, N.-E., Carlsson, A., Hillarp, N.-Â., Magnusson, T.: Noradrenaline release by nerve stimulation of the spinal cord. Life Sci. 4129–132 (1965a)

    PubMed  Google Scholar 

  • Andén, N.-E., Dahlström, A., Fuxe, K., Larsson, K.: Mapping out of catecholamine and 5-hydroxytryptamine neurons innervating the telencephalon and diencephalon. Life Sci. 4, 1275–1279 (1965b)

    PubMed  Google Scholar 

  • Andén, N.-E., Dahlström, A., Fuxe, K., Larsson, K.: Further evidence for the presence of nigro-neostriatal dopamine neurons in the rat. Am. J. Anat. 116, 329–334 (1965c)

    PubMed  Google Scholar 

  • Andén, N.-E., Dahlström, A., Fuxe, K., Larsson, K.: Functional role of the nigro-neostriatal dopamine neurons. Acta Pharmacol. Toxicol. 24, 263–274 (1966 a)

    Google Scholar 

  • Andén, N.-E., Dahlström, A., Fuxe, K., Olson, L., Ungerstedt, U.: Ascending noradrenaline neurons from the pons and the medulla oblongata. Experientia 22, 44–45 (1966 b)

    PubMed  Google Scholar 

  • Andén, N.-E., Dahlström, A., Fuxe, K., Olson, L., Ungerstedt, U.: Ascending monoamine neurons to the telecephalon and diencephalon. Acta Physiol. Scand. 67, 313–326 (1966 c)

    Google Scholar 

  • Andén, N.-E., Jukes, M.G.M., Lundberg, A.: The effect of DOPA on the spinal cord. 2. A pharmacological analysis. Acta Physiol. Scand. 67, 387–397 (1966 d)

    PubMed  Google Scholar 

  • Andén, N.-E., Jukes, M.G.M., Lundberg, A., Vyklicky, L.: The effect of DOPA on the spinal cord. 1. Influence on transmission from primary afferents. Acta Physiol. Scand. 67, 373–386 (1966e)

    PubMed  Google Scholar 

  • Andén, N.-E., Jukes, M.G.M., Lundberg, A., Vyklicky, L.: The effect of DOPA on the spinal cord. 3. Depolarization evoked in the central terminals of ipsilateral la afferents by volleys in the flexor reflex afferents. Acta Physiol. Scand. 68, 322–336 (1966)

    Google Scholar 

  • Andén, N.-E., Corrodi, H., Fuxe, K., Hökfelt, T.: Increased impulse flow in bulbospinal noradrenaline neurons produced by catecholamine receptor blocking agents. Eur. J. Pharmacol. 2, 59–64 (1967a)

    PubMed  Google Scholar 

  • Andén, N.-E., Fuxe, K., Hökfelt, T.: Effect of some drugs on central monamine nerve terminals lacking nerve impulse flow. Eur. J. Pharmacol. 7, 226–232 (1967b)

    Google Scholar 

  • Andén, N.-E., Rubenson, A., Fuxe, K., Hökfelt, T.: Evidence for dopamine receptor stimulation by apomorphine. J. Pharm. Pharmacol. 19, 627–629 (1967 c)

    PubMed  Google Scholar 

  • Andén, N.-E., Butcher, S.G., Corrodi, H., Fuxe, K., Ungerstedt, U.: Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur. J. Pharmacol. 77, 303–314 (1970a)

    Google Scholar 

  • Andén, N.-E., Corrodi, H., Fuxe, K., Hökfelt, B., Hökfelt, T., Rydin, C., Svensson, T.: Evidence for a central noradrenaline receptor stimulation by Clonidine. Life Sci. 9, 513–523 (1970b)

    PubMed  Google Scholar 

  • Andén, N.-E., Corrodi, H., Fuxe, K., Ungerstedt, U.: Importance of nervous impulse flow for the neuroleptic induced increase in amine turnover in central dopamine neurons. Eur. J. Pharmacol. 15, 193–199 (1971)

    PubMed  Google Scholar 

  • Andén, N.-E., Corrodi, H., Fuxe, K.: Effect of neuroleptic drugs on central catecholamine turnover assessed using tyrosine- and dopamine-β-hydroxylase inhibitors. J. Pharm. Pharmacol. 24, 177–182 (1972a)

    PubMed  Google Scholar 

  • Andén, N.-E., Engel, J., Rubenson, A.: Mode of action of L-Dopa on central noradrenaline mechanisms. Naunyn Schmiedebergs Arch. Pharmacol. 273, 1–10 (1972b)

    PubMed  Google Scholar 

  • Anderson, E.G., Holgerson, L.O.: Distribution of 5-hydroxytryptamine and norepinephrine in cat spinal cord. J. Neurochem. 13, 479–485 (1966)

    PubMed  CAS  Google Scholar 

  • Anderson, E.G., Haas, H., Hösli, L.: Comparison of effects of noradrenaline and histamine with cyclic AMP on brain stem neurons. Brain Res. 49, 471–475 (1973)

    PubMed  CAS  Google Scholar 

  • Angrist, B., Sathanathan, G., Wilk, S., Gershon, S.: Amphetamine psychosis: behavioral and biochemical aspects. J. Psychiatr. Res. 11, 13–23 (1974)

    PubMed  CAS  Google Scholar 

  • Anlezark, G.M., Meldrum, B.S.: Effects of apomorphine, ergocornine and piribedil on audiogenic Scizures in DBA/2 mice. Br. J. Pharmacol. 53, 419–421 (1975)

    PubMed  CAS  Google Scholar 

  • Anlezark, G., Pycock, C., Meldrum, B.: Ergot alkaloids as dopamine agonists: comparison in two rodent models. Eur. J. Pharmacol. 37, 295–302 (1976)

    PubMed  CAS  Google Scholar 

  • Anton, A.H., Sayre, D.F.: The distribution of dopamine and dopa in various animals and a method for their determination in diverse biological material. J. Pharmacol. Exp. Ther. 145, 326–336 (1964)

    PubMed  CAS  Google Scholar 

  • Arvidsson, J., Roos, B.-E., Steg, G.: Reciprocal effects on α- and γ-motoneurones of drugs influencing monoaminergic and cholinergic transmission. Acta Physiol. Scand. 67, 398–404 (1966)

    PubMed  CAS  Google Scholar 

  • Arvidsson, J., Jurna, L, Steg, G.: Striatal and spinal lesions eliminating reserpine and physo-stigmine rigidity. Life Sci. 6, 2017–2020 (1967)

    PubMed  CAS  Google Scholar 

  • Atweh, S., Kuhar, M.J.: Autoradiographic localization of opiate receptors in rat brain. III. The telencephalon. Brain Res. 134, 393–405 (1977)

    PubMed  CAS  Google Scholar 

  • Avanzino, G.L., Bradley, P.B., Comis, S.D., Wolstencroft, J.H.: A comparison of the actions of ergothioneine and chlorpromazine applied to single neurons by two different methods. Neuropharmacology 5, 331–332 (1966)

    CAS  Google Scholar 

  • Axelrod, J., Whitby, L.G., Hertting, G.: Effect of psychotropic drugs on the uptake of H3-nor-epinephrine by tissues. Science 133, 383–384 (1961)

    PubMed  CAS  Google Scholar 

  • Axelrod, J., Hertting, G., Potter, L.: Effect of drugs on the uptake and release of 3H-norepinephrine in the rat heart. Nature 194, 297 (1962)

    PubMed  CAS  Google Scholar 

  • Baker, R.G., Anderson, E.G.: The effect of L-3,4, dihydroxyphenylalanine on spinal activity. Pharmacologist 7, 142 (1965)

    Google Scholar 

  • Baker, R.G., Anderson, E.G.: The effects of L-3,4-dihydroxyphenylalanine on spinal activity. J. Pharmacol. Exp. Ther. 173, 212–223 (1970a)

    PubMed  CAS  Google Scholar 

  • Baker, R.G., Anderson, E.G.: The antagonism of the effects of L-3,4-dihydroxyphenylalanine on spinal reflexes by adrenergic blocking agents. J. Pharmacol. Exp. Ther. 173, 224–231 (1970 b)

    PubMed  CAS  Google Scholar 

  • Baraban, J.M., Wang, R.Y., Aghajanian, G.K.: Reserpine suppression of dorsal raphe neuronal firing: mediation by adrenergic system. Eur. J. Pharmacol. 52, 27–36 (1978)

    PubMed  CAS  Google Scholar 

  • Barasi, S., Roberts, M.H.T.: Responses of motoneurones to electrophoretically applied dopamine. Br. J. Pharmacol. 60, 29–34 (1977)

    PubMed  CAS  Google Scholar 

  • Barbeau, A.: The pathogenesis of Parkinson’s disease: a new hypothesis. Can. Med. Assc. J. 87, 802–807 (1962)

    CAS  Google Scholar 

  • Barbeau, A., Sourkes, T.L.: Some biochemical aspects of extrapyramidal diseases. Rev. Can. Biol. 20, 197–203 (1961)

    PubMed  CAS  Google Scholar 

  • Bartholini, G.: Differential effect of neuroleptic drugs on dopamine turnover in the extrapyramidal and limbic system. J. Pharm. Pharmacol. 28, 429–433 (1976)

    PubMed  CAS  Google Scholar 

  • Bartholini, G., Pletscher, A.: Atropine-induced changes of cerebral dopamine turnover. Experi-entia 27, 1302–1303 (1971)

    CAS  Google Scholar 

  • Bartholini, G., Stadler, H.: Evidence for an intrastriatal GABA-ergic influence on dopamine neurones of the cat. Neuropharmacology 16, 343–347 (1977)

    PubMed  CAS  Google Scholar 

  • Baruk, H., Launay, J., Berges, J.: Action des drogues psychotropes sur le comportement psychomoteur animal. In: Psychotropic Drugs. S. Garattini and V. Ghetti, Eds., pp. 160–168, Elsevier Publishing Company, Amsterdam (1957)

    Google Scholar 

  • Bass, A.: Über eine Wirkung des Adrenalins auf das Gehirn. Z. ges. Neurol. Psychiat. 26, 600–601 (1914)

    CAS  Google Scholar 

  • Beaulnes, A., Viens, G.: Catatonie et catalepsie. Rev. Can. Biol. 20, 215–220 (1961)

    PubMed  CAS  Google Scholar 

  • Bein, H.J.: Zur Pharmakologie des Reserpin, eines neuen Alkaloides, aus Rauwolfia serpentina Benth. Experientia 9, 107–110 (1953)

    PubMed  CAS  Google Scholar 

  • Ben-Jonathan, N., Oliver, C., Weiner, H.J., Mical, R.S., Porter, J.C.: Dopamine in hypophysial portal plasma of the rat during the estrous cycle and throughout pregnancy. Endocrinology (Phil.) 100, 452–458 (1977)

    CAS  Google Scholar 

  • Berger, P.A.: Medical treatment of mental illness. Science 200, 974–981 (1978)

    PubMed  CAS  Google Scholar 

  • Bernhard, C.G., Skoglund, C.R.: Potential changes in spinal cord following intra-arterial administration of adrenaline and noradrenaline as compared with acetylcholine effects. Acta Physiol. Scand. 29, suppl. 106, 435–454 (1953)

    Google Scholar 

  • Bernhard, C.G., Skoglund, C.R., Therman, P.O.: Studies on the potential level in the ventral root under varying condition. Acta Physiol. Scand. 14, suppl. 47. pp. 1–10 (1947)

    Google Scholar 

  • Bernhard, C.G., Gray, J.A.B., Widén, L.: The difference in response of monosynaptic extensor and monosynaptic flexor reflexes to d-tubocurarine and adrenaline. Acta Physiol. Scand. 29, suppl. 106, 73–78 (1952)

    Google Scholar 

  • Bertler, Ä, Rosengren, E.: Occurence and distribution of dopamine in brain and other tissues. Experientia 75, 10–11 (1959)

    Google Scholar 

  • Bertler, Å, Carlsson, A., Rosengren, E.: Release by reserpine of catecholamines from rabbit’s hearts. Naturwissenschaften 43, 521 (1956)

    CAS  Google Scholar 

  • Bertler, Å, Carlsson, A., Lindqvist, M., Magnusson, T.: On the catecholamine levels in blood plasma after stimulation of the sympathoadrenal system. Experientia 14, 184–185 (1958)

    PubMed  CAS  Google Scholar 

  • Berzewski, H., Helmchen, H., Hippius, H., Hoffmann, H., Kanowski, S.: Das klinische Wirkungsspektrum eines neuen Dibenzodiazepin-Derivates. Arzneim. Forsch. 19, 495–498 (1969)

    Google Scholar 

  • Besson, M J., Chéramy, A., Feltz, P., Glowinski, J.: Dopamine: spontaneous and drug-induced release from the caudate nucleus in the cat. Brain Res. 32, 407–424 (1971)

    PubMed  CAS  Google Scholar 

  • Besson, M.J., Chéramy, Glowinski, J.: Effects of some psychotropic drugs on dopamine synthesis in the rat striatum. J. Pharmacol. Exp. Ther. 177, 196–205 (1971)

    PubMed  CAS  Google Scholar 

  • Biegler, D., Giles, S.A., Hockman, C.H.: Dopaminergic influences on swallowing. Neuropharmacology. 16, 245–252 (1977)

    Google Scholar 

  • Birge, C.A., Jacobs, L.S., Hammer, CT., Daughaday, W.H.: Catecholamine inhibition of prolactin secretion by isolated rat adenohypophyses. Endocrinology 86, 120–130 (1970)

    PubMed  CAS  Google Scholar 

  • Biscoe, T.J., Curtis, D.R.: Noradrenaline and inhibition of Renshaw cells. Science 151, 1230 – 1231 (1966)

    Google Scholar 

  • Biscoe, T.J., Straughan, D.W.: Micro-electrophoretic studies of neurones in the cat hippocampus. J. Physiol. (Lond.) 183, 341–359 (1966)

    CAS  Google Scholar 

  • Biscoe, T.J., Curtis, D.R., Ryall, R.W.: An investigation of catecholamine receptors of spinal interneurones. Neuropharmacology 5, 429–434 (1966)

    CAS  Google Scholar 

  • Bloom, F.E.: Minireview. To spritz or not to spritz: the doubtful value of aimless iontophoresis. Life Sci. 14, 1819–1834(1974)

    PubMed  CAS  Google Scholar 

  • Bloom, F.E.: The role of cyclic nucleotides in central synaptic functions. Rev. Physiol. Bio-chem. Pharmacol. 74, 1–103 (1975)

    CAS  Google Scholar 

  • Bloom, F.E., Costa, E., Oliver, A.P., Salmoiraghi, G.C.: Caudate nucleus neurons: their responsiveness to iontophoretically administered amines and the effects of anesthetic agents. Fed. Proc. 23, 249 (1964)

    Google Scholar 

  • Bloom, F.E., Costa, E., Salmoiraghi, G.C.: Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis. J. Pharmacol. Exp. Ther. 150, 244–252 (1965)

    PubMed  CAS  Google Scholar 

  • Bogdanksi, D.F., Weissbach, H., Udenfriend, S.: The distribution of serotonin, 5-hydroxytryp-tamine decarboxylase and monoamine oxidase in brain. J. Neurochem. 1, 272–278 (1957)

    Google Scholar 

  • Boggan, W.O., Sciden, L.S.: Dopa reversal of reserpine enhancement of audiogenic Scizure susceptibility in mice. Physiol. Behav. 6, 215–217 (1971)

    PubMed  CAS  Google Scholar 

  • Bonvallet, M., Dell, P., Hiebel, G.: Tonus sympathique et activité électrique corticale. Electro-encephalogr. Clin. Neurophysiol. 6, 119–144 (1954)

    CAS  Google Scholar 

  • Bonvallet, M., Hugelin, A., Dell, P.: Milieu intérieur et activité automatique des cellules réticu-laires mésencéphaliques. J. Physiol. (Paris) 48, 403–406 (1956)

    CAS  Google Scholar 

  • Borison, H.L.: Role of gastrointestinal innervation in digitalis emesis. J. Pharmacol. Exp. Ther. 104, 396–403 (1952)

    PubMed  CAS  Google Scholar 

  • Borison, H.L.: Area postrema: chemoreceptor trigger zone for vomiting — is that all? Life Sci. 14, 1807–1817 (1974)

    PubMed  CAS  Google Scholar 

  • Borison, H.L., Brizzee, K.R.: Morphology of emetic chemoreceptor trigger zone in cat medulla oblongata. Proc. Soc. Exp. Biol. Med. 77, 38–42 (1951)

    PubMed  CAS  Google Scholar 

  • Borison, H.L., Wang, S.C.: Physiology and pharmacology of vomiting. Pharmacol. Rev. 5, 193 (1953)

    CAS  Google Scholar 

  • Boyd, E.M., Cassell, W.A., Boyd, C.E.: Prevention of apomorphine-induced vomiting by (di-methylamino-l-n-propyl-3)-N-(2-chloro)-phenothiazine hydrochloride. Fed. Proc. 12, 303 (1953)

    Google Scholar 

  • Bradley, P.B.: Microelectrode approach to the neuropharmacology of the reticular formation. In: Psychotropic Drugs. S. Garattini and V. Ghetti, Eds., pp. 207–216. Elsevier Publishing Company, Amsterdam (1957)

    Google Scholar 

  • Bradley, P.B.: Electrophysiological evidence relating to the role of adrenaline in the central nervous system. Ciba Foundation Symposium on “Adrenergic Mechanisms”, pp. 410–420. Churchill Ltd., London (1960)

    Google Scholar 

  • Bradley, P.B., Elkes, J.: The effects of some drugs on the electrical activity of the brain. Brain 50,77–117(1957)

    Google Scholar 

  • Bradley, P.B., Hance, A.J.: The effect of chlorpromazine and methopromazine on the electrical activity of the brain in the cat. Electroencephalogr. Clin. Neurophysiol. 9, 191–215 (1957)

    PubMed  CAS  Google Scholar 

  • Bradley, P.B., Key, B.J.: The effect of drugs on arousal responses produced by electrical stimulation of the reticular formation of the brain. Electroencephalogr. Clin. Neurophysiol. 10, 97–110(1958)

    PubMed  CAS  Google Scholar 

  • Bradley, P.B., Mollica, A.: The effect of adrenaline and acetylcholine on single unit activity in the reticular formation of the decerebrate cat. Arch. Ital. Biol. 96, 168–186 (1958)

    Google Scholar 

  • Bradley, P.B., Wolstencroft, J.H.: Excitation and inhibition of brain stem neurons by noradrenaline and acetylcholine. Nature 196, 840 and 873 (1962)

    Google Scholar 

  • Bradley, P.B., Wolstencroft, J.H.: Actions of drugs on single neurones in the brain stem. Br. Med. Bull. 21, 15–18 (1965)

    PubMed  CAS  Google Scholar 

  • Bradley, P.B., Wolstencroft, J.H., Hösli, L., Avanzino, G.L.: Neuronal basis for the central action of chlorpromazine. Nature 212, 1425–1427 (1966)

    PubMed  CAS  Google Scholar 

  • Brand, E.D., Harris, T.D., Borison, H.L., Goodman, L.S.: The anti-emetic activity of 10-(γ-dimethylamino propyl)-2-chlorophenothiazine (chlorpromazine) in dog and cat. J. Pharmacol. Exp. Ther. 110, 86–92 (1954)

    PubMed  CAS  Google Scholar 

  • Brodie, B.B., Shore, P.A., Silver, S.L., Pulver, R.: Potentiating action of chlorpromazine and reserpine. Nature 175, 1133–1134 (1955)

    PubMed  CAS  Google Scholar 

  • Brodie, B.B., Sulser, F., Costa, E.: Theories on mechanism of action of psychotherapeutic drugs. Rev. Can. Biol. 20, 279–285 (1961)

    PubMed  CAS  Google Scholar 

  • Buchwald, N.A., Price, D.D., Vernon, L., Hull, C.D: Caudate intracellular response to thalamic and cortical inputs. Exp. Neurol. 38, 311–323 (1973)

    PubMed  CAS  Google Scholar 

  • Bunney, B.S., Aghajanian, G.K.: Electrophysiological effects of amphetamine on dopaminergic neurons. In: Frontiers in Catecholamine Research, S.H. Snyder, E. Usdin, Eds., pp. 957–962, Pergamon Press, Oxford (1973)

    Google Scholar 

  • Bunney, B.S., Aghajanian, G.K.: A comparison of the effects of chlorpromazine, 7-hy-droxychlorpromazine and chlorpromazine sulfoxide on the activity of central dopaminergic neurons. Life Sci. 15, 309–318 (1974)

    PubMed  CAS  Google Scholar 

  • Bunney, B.S., Aghajanian, G.K.: d-Amphetamine-induced inhibition of central dopaminergic neurons: mediation by a striato-nigral feedback pathway. Science 192, 391–393 (1976)

    PubMed  CAS  Google Scholar 

  • Bunney, B.S., Aghajanian, G.K., Roth, R.H.: Comparison of effect of L-DOPA, amphetamine and apomorphine on firing rate of rat dopaminergic neurones. Nature New Biol. 245, 123–125 (1973a)

    PubMed  CAS  Google Scholar 

  • Bunney, B.S., Walters, J.R., Roth, R.H., Aghajanian, G.K.: Dopaminergic neurones: effect of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. Exp. Ther. 185, 560–571 (1973 b)

    PubMed  CAS  Google Scholar 

  • Burt, D.R., Creese, I., Snyder, S.H.: Properties of [3H]haloperidol and [3H]dopamine binding associated with dopamine receptors in calf brain membranes. Mol. Pharmacol. 12, 800–812 (1976)

    PubMed  CAS  Google Scholar 

  • Butcher, S.G., Butcher, L.L.: Origin and modulation of acetylcholine activity in the neostriatum. Brain Res. 71, 167–171 (1974)

    PubMed  CAS  Google Scholar 

  • Butcher, L.L., Talbot, K., Bilizikjian, L.: Acetylcholinesterase neurones in dopamine-contain-ing regions of the brain. J. Neural. Transm. 37, 127–153 (1975)

    PubMed  CAS  Google Scholar 

  • Calne, D.B.: Developments in the treatment of Parkinsonism. New Engl. J. Med. 295, 1433–1434 (1976)

    PubMed  CAS  Google Scholar 

  • Capon, A.: Analyse de l’effect d’éveil exercé par l’adrénaline et la noradrénaline et d’autres amines sympathomimétiques sur l’électrocorticogramme du lapin non narcotisé. Arch. Int. Pharmacodyn. Ther. 127, 141–162 (1960)

    PubMed  CAS  Google Scholar 

  • Carenzi, A., Gillin, J.C., Guidotti, A., Schwartz, M.A., Trabucchi, M., Wyatt, R.J.: Dopamine-sensitive adenyl cyclase in human caudate nucleus. A study in control subjects and schizophrenic patients. Arch. Gen. Psychiatry 32, 1056–1059 (1975)

    PubMed  CAS  Google Scholar 

  • Carlsson, A.: The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol. Rev. 11, 490–493 (1959)

    PubMed  CAS  Google Scholar 

  • Carlsson, A.: Discussion. In: Ciba Foundation Symposium on “Adrenergic Mechanisms”, p. 551, J.R. Vane, W. Wolstenholme, M. O’Connor Eds., Little, Brown & Co., Boston (1960)

    Google Scholar 

  • Carlsson, A.: Evidence for a role of dopamine in extrapyramidal functions. Acta Neuroveget. 26, 484–493 (1964)

    CAS  Google Scholar 

  • Carlsson, A.: Drugs which block the storage of 5-hydroxytryptamine and related amines. In: Handbook of Experimental Pharmacology. Vol. 19: 5-Hydroxytryptamine and Related In-dolealkylamines, O. Eichler and A. Farah, Eds., pp. 529–592, Springer-Verlag, Berlin (1965)

    Google Scholar 

  • Carlsson, A.: Pharmacological depletion of catecholamine stores. Pharmacol. Rev. 18, 541–549 (1966)

    PubMed  CAS  Google Scholar 

  • Carlsson, A., Lindqvist, M.: Effect of chlorpromazine and haloperidol on the formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol. Toxicol. (Kbh.) 20, 140–144 (1963)

    CAS  Google Scholar 

  • Carlsson, A., Waldeck, B.: Inhibition of 3H-metaraminol uptake by antidepressive and related agents. J. Pharm. Pharmacol. 17, 243–244 (1965)

    PubMed  CAS  Google Scholar 

  • Carlsson, A., Lindqvist, M., Magnusson, T.: 3,4-Dihydroxyphenylalanine and 5-hydroxytryp-tophan as reserpine antagonists. Nature 180, 1200 (1957a)

    PubMed  CAS  Google Scholar 

  • Carlsson, A., Rosengren, E., Bertler, Â, Nilsson, J.: Effect of reserpine on the metabolism of catechol amines. In: Psychotropic Drugs. S. Garattini, V. Ghetti, Eds., pp. 363–372, Elsevier Publishing Company, Amsterdam (1957b)

    Google Scholar 

  • Carlsson, A., Lindqvist, M., Magnusson, T., Waldeck, B.: On the presence of 3-hydroxytyra-mine in brain. Science 127, 471 (1958)

    PubMed  CAS  Google Scholar 

  • Carlsson, A., Falck, B., Hillarp, N.-Â.: Cellular localization of brain monoamines. Acta Physiol. Scand. 56, suppl. 196: 1–28 (1962)

    CAS  Google Scholar 

  • Carlsson, A., Magnusson, T., Rosengren, E.: 5-Hydroxytryptamine of the spinal cord normally and after transection. Experientia 19, 359 (1963)

    PubMed  CAS  Google Scholar 

  • Carlsson, A., Falck, B., Fuxe, K., Hillarp, N.-A.: Cellular localization of monoamines in the spinal cord. Acta Physiol. Scand. 60, 112–119 (1964)

    PubMed  CAS  Google Scholar 

  • Carlsson, A., Kehr, W., Lindqvist, M., Magnusson, T., Atack, C.V.: Regulation of monoamine metabolism in the central nervous system. Pharmacol. Rev. 24, 371–384 (1972)

    PubMed  CAS  Google Scholar 

  • Caron, M.G., Raymond, V., Lefkowitz, R.J., Labrie, F.: Dopaminergic receptors in the anterior pituitary gland, correlation of [3H]-dihydroergocryptine binding with the dopaminergic control of prolactin release. J. Biol. Chem. 253, 2244–2253 (1978)

    PubMed  CAS  Google Scholar 

  • Cassell, W.A., Boyd, C.E.: Prevention of apomorphine-induced vomiting by (dimethylamino-l-n-propyl-3)-N-(2-chloro)-phenothiazine hydrochloride. Fed. Proc. 12, 303 (1953)

    Google Scholar 

  • Cathala, H.P., Pocidalo, J.J.: Sur les effets de l’injection dans les ventricules cérébraux du chien du chlorhydrate de diméthylaminopropyl-N-chloro-phénothiazine (4560 RP). Action centrale de ce produit. C. R. Soc. Biol. (Paris) 146, 1709–1711 (1952)

    CAS  Google Scholar 

  • Chen, G., Ensor, C.R.: Antagonism studies on reserpine and certain CNS depressants. Proc. Soc. Exp. Biol. Med. 87, 602–608 (1954)

    PubMed  CAS  Google Scholar 

  • Chen, G., Ensor, C.R., Bohner, B.: A facilitation action of reserpine on the central nervous system. Proc. Soc. Exp. Biol. Med. 86, 507–510 (1954)

    PubMed  CAS  Google Scholar 

  • Chin, J.H., Smith, C.M.: Effects of some central nervous system depressants on the phasic and tonic stretch reflex. J. Pharmacol. Exp. Ther. 136, 276–283 (1962)

    PubMed  CAS  Google Scholar 

  • Chiueh, C.C., Moore, K.E.: Release of endogenously synthesized catechols from the caudate nucleus by stimulation of the nigro-striatal pathway and by the administration of d-am-phetamine. Brain Res. 50, 221–225 (1973)

    PubMed  CAS  Google Scholar 

  • Chiueh, C.C., Moore, K.E.: Effects of α-methyltyrosine on d-amphetamine-induced release of endogenously synthesized and exogenously administered catecholamines from the cat brain in vivo. J. Pharmacol. Exp. Ther. 190, 100–108 (1974)

    PubMed  CAS  Google Scholar 

  • Clement-Cormier, Y.C., Kebabian, J.W., Petzold, G.L., Greengard, P.: Dopamine-sensitive adenylate cyclase in mammalian brain: a possible site of action of antipsychotic drugs. Proc. Natl. Acad. Sci. USA 71, 1113–1117 (1974)

    PubMed  CAS  Google Scholar 

  • Clouet, D.H.: Narcotic Drugs: Biochemical Pharmacology. Plenum Press, New York (1971)

    Google Scholar 

  • Clubley, M., Elliott, R.C.: Centrally active drugs and the sympathetic nervous system of rabbits and cats. Neuropharmacology 16, 609–616 (1977)

    PubMed  CAS  Google Scholar 

  • Commissiong, J.W., Sedgwick, E.M.: A pharmacological study of the adrenergic mechanisms involved in the stretch reflex of the decerebrate rat. Br. J. Pharmacol. 50, 365–374 (1974)

    PubMed  CAS  Google Scholar 

  • Commissiong, J.W., Sedgwick, E.M.: Dopamine and noradrenaline in human spinal cord. Lancet I 347 (1975)

    Google Scholar 

  • Commissiong, J.W., Gentleman, S., Neff, N.H.: Spinal cord dopaminergic neurons: evidence for an uncrossed nigrospinal pathway. Neuropharmacology 18, 565–568 (1979)

    PubMed  CAS  Google Scholar 

  • Connor, J.D.: Caudate unit responses to nigral stimuli: evidence for a possible nigro-neostriatal pathway. Science 160, 899–900 (1968)

    PubMed  CAS  Google Scholar 

  • Connor, J.D.: Caudate nucleus neurones: correlation of the effects of substantia nigra stimulation with iontophoretic dopamine. J. Physiol. (Lond.) 208, 691–703 (1970)

    CAS  Google Scholar 

  • Cools, A.R.: The function of dopamine and its antagonism in the caudate nucleus of cats in relation to the stereotyped behaviour. Arch. Int. Pharmacodyn. Ther. 194, 259–269 (1971)

    PubMed  CAS  Google Scholar 

  • Cools, A.R.: Chemical and electrical stimulation of the caudate nucleus in freely moving cats: the role of dopamine. Brain Res. 58, 437–451 (1973)

    PubMed  CAS  Google Scholar 

  • Cools, A., Van Rossum, J.M.: Excitation-mediating and inhibition-mediating dopamine-recep-tors: a new concept towards a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data. Psychopharmacology (Berlin) 45, 243–254 (1976)

    CAS  Google Scholar 

  • Cools, A.R., Struyker Boudier, H.A.J., Van Rossum, J.M.: Dopamine receptors: relective agonists and antagonists of functionally distinct types within the feline brain. Eur. J. Pharmacol. 37, 283–293 (1976)

    PubMed  CAS  Google Scholar 

  • Cordeau, J.P., Moreau, A., Beaulnes, A., Laurin, C.: EEG and behavioural changes following microinjection of acetylcholine in the brain stem of cats. Arch. Ital. Biol. 101, 30–47 (1963)

    CAS  Google Scholar 

  • Corrodi, H., Fuxe, K., Hökfelt, T.: The effect of neuroleptics on the activity of central catecholamine neurones. Life Sci. 6, 761–714(1967)

    Google Scholar 

  • Corrodi, H., Fuxe, K., Hökfelt, T., Lidbrink, P., Ungerstedt, U.: Effect of ergot drugs on central catecholamine neurons: evidence for a stimulation of central dopamine neurons. J. Pharm. Pharmacol. 25, 409–412 (1973)

    PubMed  CAS  Google Scholar 

  • Costa, E.: Effects of hallucinogenic and tranquilizing drugs on serotonin evoked uterine contractions. Proc. Soc. Exp. Biol. Med. 91, 39–41 (1956)

    PubMed  CAS  Google Scholar 

  • Costa, E., Gessa, G.L., Hirsch, C., Kuntzman, R., Brodie, B.B.: On current status of serotonin as a brain neurohormone and on action of reserpine-like drugs. Ann. N. Y. Acad. Sci. 96, 118–130(1962)

    PubMed  CAS  Google Scholar 

  • Costall, B., Naylor, R.J.: Specific asymmetric behaviour induced by the direct chemical stimulation of neostriatal dopaminergic mechanisms. Naunyn Schmiedebergs Arch. Pharmacol. 285, 83–98 (1974a)

    PubMed  CAS  Google Scholar 

  • Costall, B., Naylor, R.J.: Mesolimbic involvement with behavioural effects indicating antipsychotic activity. Eur. J. Pharmacol. 27, 46–58 (1974b)

    PubMed  CAS  Google Scholar 

  • Costall, B., Naylor, R.J.: The importance of the ascending dopaminergic systems to the extrapyramidal and mesolimbic brain areas for the cataleptic action of the neuroleptic and cholinergic agents. Neuropharmacology 13, 353–364 (1974c)

    PubMed  CAS  Google Scholar 

  • Costall, B., Olley, J.E.: Cholinergic- and neuroleptic-induced catalepsy: Modification by lesions in the caudate-putamen. Neuropharmacology 10, 297–306 (1971a)

    PubMed  CAS  Google Scholar 

  • Costall, B., Olley, J.E.: Cholinergic and neuroleptic induced catalepsy: modification by lesions in the globus pallidus and substantia nigra. Neuropharmacology 10, 581–594 (1971b)

    PubMed  CAS  Google Scholar 

  • Costall, B., Naylor, R.J., Olley, J.E.: Catalepsy and circling behavior after intracerebral injections of neuroleptic, cholinergic and anticholinergic agents into the caudate-putamen, globus pallidus and substantia nigra of rat brain. Neuropharmacology 11, 645–663 (1972)

    PubMed  CAS  Google Scholar 

  • Courvoisier, S., Fournel, J., Ducrot, R., Kolsky, M., Koetschet, P.: Propriétés pharmacodyna-miques du chlorhydrate de chloro-3 (diméthylamino-3’-propyl)-10 phénothiazine (4.560 R.P.). Etude expérimentale d’un nouveau corps utilisé dans l’anesthésie potentialisé et dans l’hibernation artificielle. Arch. Int. Pharmacodyn. Ther. 92, 305–361 (1953)

    PubMed  CAS  Google Scholar 

  • Courvoisier, S., Ducrot, R., Mou, L.: Nouveaux aspects expérimentaux de l’activité centrale des dérivés de la phénothiazine. In: Psychotropic Drugs. S. Garattini, V. Ghetti, Eds., pp. 373–391, Elsevier Publishing Company, Amsterdam (1957)

    Google Scholar 

  • Cranmer, J.I., Brann, A.W., Bach, L.M.N.: An adrenergic basis for bulbar inhibition. Am. J. Physiol. 197, 835–838 (1959)

    PubMed  CAS  Google Scholar 

  • Creese, I., Snyder, S.H.: Nigrostriatal lesions enhance striated 3H-apomorphine and 3H-spiroperidol binding. Eur. J. Pharmacol. 56, 277–281 (1979)

    PubMed  CAS  Google Scholar 

  • Creese, I.N.R., Burt, D.R., Snyder, S.H.: Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 129, 481–483 (1976)

    Google Scholar 

  • Creese, I., Schneider, R., Snyder, S.H.: 3H-spiroperidol labels dopamine receptors in pituitary and brain. Eur. J. Pharmacol. 46, 377–381 (1977)

    PubMed  CAS  Google Scholar 

  • Crossman, A.R., Walker, R.J., Woodruff, G.N.: Picrotoxin antagonism of γ-aminobutyric acid inhibitory responses and synaptic inhibition in the rat substantia nigra. Br. J. Pharmacol. 49, 696–698 (1973)

    PubMed  CAS  Google Scholar 

  • Crossman, A.R., Walker, R.J., Woodruff, G.N.: Problems associated with iontophoretic studies in the caudate nucleus and substantia nigra. Neuropharmacology 13, 547–552 (1974)

    PubMed  CAS  Google Scholar 

  • Crow, T.J.: What is wrong with dopaminergic transmission in schizophrenia? Trends Neurosci. 2, 52–55 (1979)

    Google Scholar 

  • Curtis, D.R.: The action of 3-hydroxytyramine and some tryptamine derivatives upon spinal neurones. Nature 194, 292 (1962)

    PubMed  CAS  Google Scholar 

  • Curtis, D.R., Phillis, J.W., Watkins, J.C.: Cholinergic and non-cholinergic transmission in the mammalian spinal cord. J. Physiol. (Lond.) 158, 296–323 (1961)

    CAS  Google Scholar 

  • Dafny, N., Brown, M., Burks, T.F., Rigor, B.M.: Morphine tolerance and dependence: sensitivity of caudate nucleus neurons. Brain Res. 162, 363–368 (1979)

    PubMed  CAS  Google Scholar 

  • Dahlström, A., Fuxe, K.: Experimentally induced changes in the intraneuronal amine levels of bulbospinal neurone systems. Acta Physiol. Scand. 64, suppl. 247: 1–36 (1965a)

    Google Scholar 

  • Dahlström, A., Fuxe, K.: Evidence for the existence of monoamine-containing neurons in the central nervous system. Acta Physiol. Scand. 62, suppl. 232 (1965 b)

    Google Scholar 

  • Dahlström, A., Fuxe, K., Kernell, D., Sedvall, G.: Reduction of the monoamine stores in the terminals of bulbospinal neurones following stimulation in the medulla oblongata. Life Sci. 4, 1207–1212 (1965)

    PubMed  Google Scholar 

  • Da Prada, M., Pletscher, A.: On the mechanism of chlorpromazine-induced changes of cerebral homovanillic acid levels. J. Pharm. Pharmacol. 18, 628–630 (1966 a)

    PubMed  Google Scholar 

  • Da Prada, M., Pletscher, A.: Acceleration of the cerebral dopamine turnover by chlor-promazine. Experientia 22, 465–466 (1966 b)

    PubMed  Google Scholar 

  • Dasgupta, S.R., Werner, G.: Inhibitory action of chlorpromazine on motor activity. Arch. Int. Pharmacodyn. Ther. 100, 409–417 (1955)

    PubMed  CAS  Google Scholar 

  • Dasgupta, S.R., Mukherjee, K.L., Werner, G.: The activity of some central depressant drugs in acute decorticate and diencephalic preparations. Arch. Int. Pharmacodyn. Ther. 97, 149 – 156 (1954)

    PubMed  CAS  Google Scholar 

  • Dell, P.: Intervention of an adrenergic mechanism during brain stem reticular activation. In: Ciba Foundation Symposium (General Series) on “Adrenergic Mechanisms”, pp. 393–409, G.E.W. Wolstenholme, Maeve O’Connor., Eds., Churchill, London (1961)

    Google Scholar 

  • De Maio, D.: Clozapine, a novel major tranquilizer. Arzneim. Forsch. 22, 919–923 (1972)

    Google Scholar 

  • Dengler, HJ., Spiegel, H.E., Titus, E.O.: Effects of drugs on uptake of isotopic norepinephrine by cat tissues. Nature 191, 816–817 (1961)

    PubMed  CAS  Google Scholar 

  • De Robertis, E., Arnaiz, G., Alberici, M., Butcher, R., Sutherland, E.: Subcellular distribution of adenyl cyclase and cyclic phosphodiesterase in rat brain cortex. J. Biol. Chem. 242, 3487 – 3493 (1967)

    Google Scholar 

  • De Schaepdryver, A.F., Piette, Y., De Launois, A.L.: Brain amines and electroshock threshold. Arch. Int. Pharmacodyn. Ther. 140, 358–367 (1962)

    Google Scholar 

  • Dettmar, P.W., Cowan, A., Walter, D.S.: Naloxone antagonizes behavioural effects of d-am-phetamine in mice and rats. Neuropharmacology 17, 1041–1044 (1978)

    PubMed  CAS  Google Scholar 

  • De Wied, D.: Chlorpromazine and endocrine function. Pharmacol. Rev. 19, 251–288 (1967)

    Google Scholar 

  • Dunstan, R., Jackson, D.M.: The demonstration of a change in adrenergic receptor sensitivity in the central nervous system of mice after withdrawal from long term treatment with halo-peridol. Psychopharmacology (Berlin) 48, 105–114 (1976)

    CAS  Google Scholar 

  • Ellaway, P.H., Pascoe, J.E.: Blockage of a spinal pathway by chlorpromazine. J. Physiol. (Lond.) 183, 46–47 P (1966)

    Google Scholar 

  • Ellaway, P.H., Pascoe, J.E.: Noradrenaline as a transmitter in the spinal cord. J. Physiol. (Lond.) 197, 8–10 P (1968)

    Google Scholar 

  • Ellaway, P.H., Trott, J.R.: The mode of action of 5-hydroxytryptophan in facilitating a stretch reflex in the spinal cat. Exp. Brain Res. 22, 145–162 (1975)

    PubMed  CAS  Google Scholar 

  • Engberg, I., Marshall, K.C.: Mechanism of noradrenaline hyperpolarization in spinal cord mo-toneurones of the cat. Acta Physiol. Scand. 83, 142–144 (1971)

    PubMed  CAS  Google Scholar 

  • Engberg, I., Marshall, K.C.: Reversal potential for noradrenaline-induced hyperpolarization of spinal motoneurones of cats. J. Gen. Physiol. 61, 261 (1973)

    Google Scholar 

  • Engberg, I., Ryall, R.W.: The action of mono-amines upon spinal neurones. Life Sci. 4, 2223–2227 (1965)

    CAS  Google Scholar 

  • Engberg, I., Ryall, R.W.: The inhibitory action of noradrenaline and other monoamines on spinal neurones. J. Physiol. (Lond.) 185, 298–322 (1966)

    CAS  Google Scholar 

  • Engberg, I., Thaller, A.: Hyperpolarizing actions of noradrenaline in spinal motoneurones. Acta Physiol. Scand. 80, 34A–35A (1970)

    PubMed  CAS  Google Scholar 

  • Engberg, I., Lundberg, A., Ryall, R.W.: Is the tonic decerebrate inhibition of reflex paths mediated by monoaminergic pathways? Acta Physiol. Scand. 72, 123–133 (1968)

    CAS  Google Scholar 

  • Engberg, I., Flatman, J.A., Kadzielawa, K.: The hyperpolarization of motoneurones by elec-trophoretically applied amines and other agents. Acta Physiol. Scand. 91, 3 A–4A (1974)

    Google Scholar 

  • Ernst, A.M.: Relation between the action of dopamine and apomorphine and their O-methyl-ated derivatives upon the CNS. Psychopharmacologia 7, 391–399 (1967)

    Google Scholar 

  • Esplin, D.W., Heaton, D.G.: Effects of reserpine on spinal cord synaptic transmission. J. Pharmacol. Exp. Ther. 121, 267–271 (1955)

    Google Scholar 

  • Fedina, L., Lundberg, A., Vyklicky, L.: The effect of a noradrenaline liberator (4,alpha-di-methyl-meta-tyramine) on reflex transmission in spinal cats. Acta Physiol. Scand. 83,495–504 (1971)

    PubMed  CAS  Google Scholar 

  • Feldberg, W., Sherwood, S.L.: Injections of drugs into the lateral ventricle of the cat. J. Physiol. (Lond.) 123, 148–167 (1954)

    CAS  Google Scholar 

  • Fellows, E.J., Cook, L.: The comparative pharmacology of a number of phenothiazine derivatives. In: Psychotropic Drugs. S. Garattini, V. Ghetti, Eds., pp. 397–404, Elsevier Publishing Company, Amsterdam (1957)

    Google Scholar 

  • Feltz, P.: Dopamine, aminoacids and caudate unitary responses to nigral stimulation. J. Physiol. (Lond.) 205, 8–9 P (1969)

    Google Scholar 

  • Feltz, P.: Relation nigro-striatale: essai de differentiation des excitations et inhibitions par micro-iontophorèse de dopamine. J. Physiol. (Paris) 62,151 (1970)

    Google Scholar 

  • Feltz, P.: Monoamines and the excitatory nigro-striatal linkage. Experientia 27, 1111–1112 (1971a)

    Google Scholar 

  • Feltz, P.: Sensitivity to haloperidol of caudate neurones excited by nigral stimulation. Eur. J. Pharmacol. 14, 360–364 (1971b)

    PubMed  CAS  Google Scholar 

  • Feltz, P.: γ-Aminobutyric acid and a caudato-nigral inhibition. Can. J. Physiol. Pharmacol. 49, 1113–1115 (1971c)

    PubMed  CAS  Google Scholar 

  • Feltz, P., Albe-Fessard, D.: A study of an ascending nigrocaudate pathway. Electroence-phalogr. Clin. Neurophysiol. 33, 179–193 (1972)

    CAS  Google Scholar 

  • Feltz, P., De Champlain, J.: Persistence of caudate unitary responses to nigral stimulation after destruction and functional impairment of the striatal dopaminergic terminals. Brain Res. 43, 595–600 (1972 a)

    PubMed  CAS  Google Scholar 

  • Feltz, P., De Champlain, J.: Enhanced sensitivity of caudate neurons to microiontophoretic injections of dopamine in 6-hydroxydopamine treated rats. Brain Res. 43, 601–605 (1972 b)

    PubMed  CAS  Google Scholar 

  • Feltz, P., Mackenzie, J.S.: Properties of caudate unitary responses to repetitive nigral stimulation. Brain Res. 13, 612–616 (1969)

    PubMed  CAS  Google Scholar 

  • Flach, F.: Clinical effectiveness of reserpine. Ann. N. Y. Acad. Sci. 61, 161–166 (1955)

    PubMed  CAS  Google Scholar 

  • Flückiger, E., Wagner, H.R.: 2-Br-α-Ergokryptin: Beeinflussung von Fertilität und Laktation bei der Ratte. Experientia 24, 1130–1131 (1968)

    PubMed  Google Scholar 

  • Fonnum, F., Grofová, I, Rinvik, E., Storm-Mathisen, J., Walberg, F.: Origin and distribution of glutamine decarboxylase in the substantia nigra of the cat. Brain Res. 71, 77–92 (1974)

    PubMed  CAS  Google Scholar 

  • Forssberg, H., Grillner, S.: The locomotion of the acute spinal cat injected with Clonidine i.v. Brain Res. 50, 184–186 (1973)

    PubMed  CAS  Google Scholar 

  • Frantz, A.G.: Catecholamines and the control of prolactin secretion in humans. Prog. Brain Res. 39, 311–322(1973)

    PubMed  CAS  Google Scholar 

  • Frigyesi, T.L., Purpura, D.P.: Electro-physiological analysis of reciprocal caudato-nigral relations. Brain Res. 6, 440–456 (1967)

    PubMed  CAS  Google Scholar 

  • Fu, T.-C., Jankowska, E., Lundberg, A.: Reciprocal Ia inhibition during the late reflexes evoked from the flexor reflex afferents after DOPA. Brain Res. 85, 99–102 (1975)

    PubMed  CAS  Google Scholar 

  • Fuxe, K., Gunne, L.-M.: Depletion of the amine stores in brain catecholamine terminals on amygdaloid stimulation. Acta Physiol. Scand. 62, 493–494 (1964)

    PubMed  CAS  Google Scholar 

  • Fuxe, K., Hökfelt, T., Johansson, O., Jonsson, G., Lidbrink, P., Ljungdahl, Å: The origin of the dopamine nerve terminals in limbic and frontal cortex. Evidence for meso-cortico dopamine neurons. Brain Res. 82, 349–355 (1974)

    CAS  Google Scholar 

  • Gaddum, J.H., Vogt, M.: Some central actions of 5-hydroxytryptamine and various antagonists. Br. J. Pharmacol. 11, 175–179 (1956)

    CAS  Google Scholar 

  • Gaitondé, B.B., McCarthy, L.E., Borison, H.L.: Central emetic action and toxic effects of digitalis in cats. J. Pharmacol. Exp. Ther. 147, 409–415 (1965)

    PubMed  Google Scholar 

  • Gale, K., Moroni, F., Kumakura, K., Guidotti, A.: Opiate-receptors in substantia nigra: role in the regulation of striatal tyrosine hydroxylase activity. Neuropharmacology 18, 427–430 (1979)

    PubMed  CAS  Google Scholar 

  • Gangloff, H., Monnier, M.: Topische Bestimmung des zerebralen Angriffs von Reserpin (Ser-pasil). Experientia 11, 404–407 (1955)

    PubMed  CAS  Google Scholar 

  • Geffen, L.B., Jessell, T.M., Cuello, A.C., Iversen, L.L.: Release of dopamine from dendrites in rat substantia nigra. Nature 260, 258–260 (1976)

    PubMed  CAS  Google Scholar 

  • Gérardy, J., Quinaux, N., Maeda, T., Dresse, A.: Analyse des monoamines du locus coeruleus et d’autres structures cérébrales par Chromatographie sur couche mince. Arch. Int. Pharma-codyn. Ther. 177, 492–496 (1969)

    Google Scholar 

  • Gey, K.F., Pletscher, A.: Effects of chlorpromazine on the metabolism of dl-2-C14-Dopa in the rat. J. Pharmacol. Exp. Ther. 145, 337–343 (1964)

    PubMed  CAS  Google Scholar 

  • Glaviano, V.V., Wang, S.C.: Dual mechanism of anti-emetic action of 10 (γ-dimethylaminopro-pyl)-2-chlorphenothiazine hydrochloride (chlorpromazine) in dogs. J. Pharmacol. Exp. Ther. 114, 358–366 (1955)

    PubMed  CAS  Google Scholar 

  • Glow, P.: Some aspects of the effects of acute reserpine treatment on behaviour. J. Neurol. Neurosurg. Psychiatry 22, 11–32 (1959)

    PubMed  CAS  Google Scholar 

  • Glowinski, J., Axelrod, J.: Effect of drugs on the uptake, release, and metabolism of H3-nor-epinephrine in the rat brain. J. Pharmacol. Exp. Ther. 149, 43–49 (1965)

    PubMed  CAS  Google Scholar 

  • Glowinski, J., Axelrod, J.: Effects of drugs on the disposition of 3H-norepinephrine in the rat brain. Pharmacol. Rev. 18, 775–785 (1966)

    PubMed  CAS  Google Scholar 

  • Glowinski, J., Iversen, L.L.: Regional studies of catecholamines in the rat brain. I. The disposition of [3H] norepinephrine, [3H] dopamine and [3H] dopa in various regions of the brain. J. Neurochem. 13, 655–669 (1966)

    PubMed  CAS  Google Scholar 

  • Gokhale, S.D., Gulati, O.D., Parikh, H.M.: An investigation of the adrenergic blocking action of chlorpromazine. Br. J. Pharmacol. 23, 508–520 (1964)

    CAS  Google Scholar 

  • Goldstein, M., Anagnoste, B., Owen, W.S., Battista, A.F.: The effects of ventromedial segmental lesions on the disposition of dopamine in the caudate nucleus of the monkey. Brain Res. 4, 298–300 (1967)

    PubMed  CAS  Google Scholar 

  • Goldstein, M., Anagnoste, B., Shirron, C.: The effect of trivastal, haloperidol and dibutyryl cyclic AMP on [14C] dopamine synthesis in rat striatum. J. Pharm. Pharmacol. 25, 348–351 (1973)

    PubMed  CAS  Google Scholar 

  • Goldstein, M., Lieberman, A., Battista, A.F., Lew, J.Y., Matsumoto, Y.: Experimental and clinical studies on bromocriptine in the Parkinsonism syndrome. Acta Endocrinol. (Co-penh.) 88, suppl. 216, 57–66 (1978)

    CAS  Google Scholar 

  • Gonzalez-Vegas, J.A.: Antagonism of dopamine-mediated inhibition in the nigro-striatal pathway: a mode of action of some catatonia-inducing drugs. Brain Res. 80, 219–228 (1974)

    PubMed  CAS  Google Scholar 

  • Graham, A.W., Aghajanian, G.K.: Effects of amphetamine on single cell activity in a catecholamine nucleus, the locus coeruleus. Nature 234, 100–102 (1971)

    PubMed  CAS  Google Scholar 

  • Granit, R.: Receptors and Sensory Perception. Yale University Press, New Haven (1955)

    Google Scholar 

  • Griffith, J.D., Cavanaugh, J., Held, J., Oates, J.A.: Dextroamphetamine, evaluation of psy-chomimetic properties in man. Arch. Gen. Psychiatry 26, 97–100 (1972)

    PubMed  CAS  Google Scholar 

  • Grillner, S.: The influence of DOPA on the static and the dynamic fusimotor activity to the triceps surae of the spinal cat. Acta Physiol. Scand. 77, 490–509 (1969)

    PubMed  CAS  Google Scholar 

  • Grillner, S.: Locomotion in the spinal cat. In: Control of Posture and Locomotion. R.B. Stein, K.B. Pearson, R.S. Smith, and J.B. Redford, Eds., pp. 515–535, Plenum Press, New York (1973)

    Google Scholar 

  • Gross, H., Langner, E.: Das Wirkungsprofil eines chemisch neuartigen Breitbandneurolepti-kums der Dibenzodiazepingruppe. Wien. Med. Wochenschr. 116, 814–816 (1966)

    PubMed  CAS  Google Scholar 

  • Grossmann, W., Jurna, I., Nell, T.: The effect of reserpine and DOPA on reflex activity in the rat spinal cord. Exp. Brain Res. 22, 351–361 (1975)

    CAS  Google Scholar 

  • Grossmann, W., Jurna, I., Nell, T., Theres, C.: The dependence of the anti-nociceptive effect of morphine and other analgesic agents on spinal motor activity after central monoamine depletion. Eur. J. Pharmacol. 24, 67–77 (1973)

    PubMed  CAS  Google Scholar 

  • Groves, P.M., Rebec, G.V., Harvey, J.A.: Alteration of the effects of (+)-amphetamine on neuronal activity in the striatum following lesions of the nigrostriatal bundle. Neuropharmacology 14, 369–376 (1975 a)

    PubMed  CAS  Google Scholar 

  • Groves, P.M., Wilson, C.J., Young, S.J., Rebec, G.V.: Self-inhibition by dopaminergic neurons. An alternative to the “neuronal feedback loop” hypothesis for the mode of action of certain psychotropic drugs. Science 190, 522–529 (1975 b)

    PubMed  CAS  Google Scholar 

  • Gulley, R.L., Smithberg, M.: Synapses in the rat substantia nigra. Tissue Cell 3, 691–700 (1971)

    PubMed  CAS  Google Scholar 

  • Guyenet, P.G., Agid, Y., Javoy, F., Beaujouan, J.C., Rossier, J., Glowinsky, J.: Effects of dopaminergic receptor agonists and antagonists on the activity of the neo-striatal cholinergic system. Brain Res. 84, 227–244 (1975 a)

    PubMed  CAS  Google Scholar 

  • Guyenet, P.G., Javoy, F., Agid, Y., Beaujouan, J.C., Glowinski, J.: Dopamine receptors and cholinergic neurons in the rat neostriatum. Adv. Neurol. 943–51 (1975 b)

    PubMed  CAS  Google Scholar 

  • Gyermek, L.: Chlorpromazine: a serotonin antagonist? Lancet II: 724 (1955)

    Google Scholar 

  • Häggendal, J., Hamberger, B.: Quantitative in vitro studies on noradrenaline uptake and its inhibition by amphetamine, desipramine and chlorpromazine. Acta Physiol. Scand. 70, 277–280 (1967)

    PubMed  Google Scholar 

  • Hamberger, B.: Reserpine-resistant uptake of catecholamines in isolated tissues of the rat. Acta Physiol. Scand. 71, 1–56 (1967)

    Google Scholar 

  • Harris, J.E.: Beta adrenergic receptor-mediated adenosine cyclic 3′,5′-monophosphate accumulation in the rat corpus striatum. Mol. Pharmacol. 12, 546–558 (1976)

    PubMed  CAS  Google Scholar 

  • Harris, J.E., Baldessarini, R., Wheeler, S.: Stimulation of tyrosine hydroxylation in striatal syn-aptosomes by derivatives of adenosine 3′,5′-cyclic phosphate. Fed. Proc. 33, 521 (1974a)

    Google Scholar 

  • Harris, J.E., Morgenroth III, V.H., Roth, R.H., Baldessarini, R.J.: Regulation of catecholamine synthesis in the rat brain in vitro by cyclic AMP. Nature 252, 156–158 (1974 b)

    PubMed  CAS  Google Scholar 

  • Heal, D.J., Phillips, A.G., Green, A.R.: Studies on the locomotor activity produced by injection of dibutyryl cyclic 3′5′AMP into the nucleus accumbens of rats. Neuropharmacology 17, 265–270 (1978)

    PubMed  CAS  Google Scholar 

  • Heinz, G., Jurna, I.: The anti-nociceptive effect of reserpine and haloperidol mediated by the nigro-striatal system: antagonism by naloxone. Naunyn Schmiedebergs Arch. Pharmacol. 306, 97–100 (1979)

    PubMed  CAS  Google Scholar 

  • Henatsch, H.D., Ingvar, D.H.: Chlorpromazin und Spastizität: Eine experimentelle elektrophy-siologische Untersuchung. Arch. Psychiatr. Z. Neurol. 195, 77–93 (1956)

    CAS  Google Scholar 

  • Herman, E.H., Barnes, C.D.: Evidence for an action of chlorpromazine on the spinal cord. Fed. Proc. 23, 456 (1964)

    Google Scholar 

  • Hernández-Peôn, R.: Central neuro-humoral transmission in sleep and wakefulness. In: Sleep Mechanisms. Progress in Brain Research, Vol. 18, pp. 96–117. Akert, K., Bally, C., Schadé, J.P., Eds., Elsevier Publishing Company, Amsterdam (1963)

    Google Scholar 

  • Hertting, G., Axelrod, J., Whitby, L.G.: Effect of drugs on the uptake and metabolism of H3-norepinephrine. J. Pharmacol. Exp. Ther. 134, 146–153 (1961)

    CAS  Google Scholar 

  • Herz, A., Gogolák, G.: Mikroelektrophoretische Untersuchungen am Septum des Kaninchens. Pflügers Arch. 285, 317–330 (1965)

    CAS  Google Scholar 

  • Herz, A., Nacimiento, A.: Über die Wirkung von Pharmaka auf Neurone des Hippocampus nach mikroelektrophoretischer Verabfolgung. Naunyn Schmiedebergs Arch. Pharmacol. 257,295–314(1965)

    Google Scholar 

  • Herz, A., Von Freytag-Loringhoven, H.: Über die synaptische Erregung im Corpus striatum und deren antagonistische Beeinflussung durch mikroelektrophoretisch verabfolgte Glutaminsäure und Gamma-Aminobuttersäure. Pflügers Arch. Ges. Physiol. 229, 167–184 (1968)

    Google Scholar 

  • Herz, A., Zieglgänsberger, W.: Synaptic excitation in the corpus striatum inhibited by microelectrophoretically administered dopamine. Experientia 22, 839–840 (1966)

    PubMed  CAS  Google Scholar 

  • Herz, A., Zieglgänsberger, W.: The influence of microelectrophoretically applied biogenic amines, cholinomimetics and procaine on synaptic excitation in the corpus striatum. Neuropharmacology 7, 221–230 (1968)

    CAS  Google Scholar 

  • Hiebel, G., Bonvallet, M., Dell, P.: Action de la chlorpromazine (“Largactil”, 4560 RP) au niveau du système nerveux central. Hop. Paris 30, 2346–2353 (1954)

    CAS  Google Scholar 

  • Hillarp, N.- Å., Fuxe, K., Dahlström, A.: Demonstration and mapping of central neurons containing dopamine, noradrenaline, and 5-hydroxytryptamine and their reactions to psycho-pharmaca. Pharmacol. Rev. 18, 121–141(1966)

    Google Scholar 

  • Hilton, S.M., Zbrozyna, A.W.: Amygdaloid region for defence reactions and its efferent pathway to the brain stem. J. Physiol. (Lond.) 165, 160–173 (1963)

    CAS  Google Scholar 

  • Hoffer, B.J., Siggins, G.R., Bloom, F.E.: Cyclic 3′,5′-adenosine monophosphate (c-AMP) mediation of the response of rat cerebellar Purkinje cells to norepinephrine (NE): Blockade with prostaglandins. Pharmacologist 11, 238 (1969)

    Google Scholar 

  • Hofmann, M., Battaini, F., Tonon, G., Trabucchi, M. Spano, P.: Interaction of sulpiride and ergot derivatives on rat brain DOPAC concentration and prolactin secretion in vivo. Eur. J. Pharmacol. 56, 15–20 (1979)

    PubMed  CAS  Google Scholar 

  • Hong, J.S., Yang, H.-Y.T., Costa, E.: On the location of methionine enkephalin neurons in rat striatum. Neuropharmacology 16, 451–453 (1977)

    PubMed  CAS  Google Scholar 

  • Horn, A.S., Snyder, S.H.: Chlorpromazine and dopamine: conformational similarities that correlate with the antischizophrenic activity of phenothiazine drugs. Proc. Natl. Acad. Sci. USA 68, 2325–2328 (1971)

    PubMed  CAS  Google Scholar 

  • Hornykiewicz, O.: Dopamine (3-hydroxytyramine) and brain function. Pharmacol. Rev. 18, 925–964 (1966)

    CAS  Google Scholar 

  • Huang, M., Ho, A.K.S., Daly, J.W.: Accumulation of adenosine cyclic 3′,5′-monophosphate in rat cerebral cortical slices. Stimulatory effect of alpha and beta adrenergic agents after treatment with 6-hydroxydopamine, 2,3,5-trihydroxyphenethylamine and dihydroxytryp-tamines. Mol. Pharmacol. 9, 711–717 (1973)

    PubMed  CAS  Google Scholar 

  • Hudson, R.D.: Effects of chlorpromazine on spinal cord reflex mechanisms. Neuropharmacology 5, 43–58 (1966)

    CAS  Google Scholar 

  • Hudson, R.D., Domino, E.F.: Effects of chlorpromazine on some motor reflexes. Neuropharmacology 2, 143–162 (1963)

    CAS  Google Scholar 

  • Hudson, R.D., Domino, E.F.: Comparative effects of three substituted phenothiazines on the patellar reflex and mean arterial blood pressure of the rabbit. Arch. Int. Pharmacodyn. Ther. 147, 36–42 (1964)

    PubMed  CAS  Google Scholar 

  • Huidobro, F.: Some pharmacological properties of chloro-3(dimethylamine-3′ propyl)10-phe-nothiazine or 4.560 R. P. Arch. Int. Pharmacodyn. Ther. 98, 308–319 (1954)

    PubMed  CAS  Google Scholar 

  • Hull, C.D., Bernardi, G., Buchwald, N.A.: Intracellular responses of caudate neurons to brain stem stimulation. Brain Res. 22, 163–179 (1970)

    PubMed  CAS  Google Scholar 

  • Hull, C.D., Bernardi, G., Price, D.D., Buchwald, N.A.: Intracellular responses of caudate neurons to temporaly and spatially combined stimuli. Exp. Neurol. 38, 324–336 (1973)

    PubMed  CAS  Google Scholar 

  • Hyttel, J.: Effects of neuroleptics on 3H-haloperidol and 3H-cis(Z)-flupenthixol binding and on adenylate cyclase activity in vitro. Life Sci. 23, 551–556 (1978)

    PubMed  CAS  Google Scholar 

  • Irwin, S., Houde, R.W., Bennet, D.R., Hendershot, L.C., Seevers, M.H.: The effects of morphine, methadone and meperidine on some reflex responses in spinal animals to nociceptive stimulation. J. Pharmacol. Exp. Ther. 101, 132–143 (1951)

    PubMed  CAS  Google Scholar 

  • Iversen, L.L.: The inhibition of noradrenaline uptake by drugs. In: Advances in Drug Research. Harper, N.J., Simmonds, A.B., Eds., 2, 1–46, Academic Press, London (1965)

    Google Scholar 

  • Iversen, L.L.: Dopamine receptors in the brain (A dopamine-sensitive adenylate cyclase models synaptic receptors, illuminating antipsychotic drug action). Science 188, 1084–1089 (1975)

    PubMed  CAS  Google Scholar 

  • Iversen, L.L.: More than one type of dopamine receptor in brain? Trends Neuro Sci. 1, V–VI (1978 a)

    Google Scholar 

  • Iversen, L.L.: Biochemical and pharmacological studies: the dopamine hypothesis. In: Schizophrenia: Towards a New Synthesis. J. K. Wing, Ed., Academic Press, London, pp. 89–116 (1978 b)

    Google Scholar 

  • Ivy, A.C., Goetzel, F.R., Harris, S.C., Burril, D.Y.: The analgesic effect of intracarotid and intravenous injection of epinephrine in dogs and of subcutaneous injection in man. Quart. Bull. Northwestern University Med. School 18, 298–306 (1944)

    CAS  Google Scholar 

  • Iwamoto, E., Way, L.: Circling behaviour and stereotypy induced by intranigral opiate microinjections. J. Pharmacol. Exp. Ther. 203, 347–359 (1977)

    PubMed  CAS  Google Scholar 

  • Iwatsubo, K., Clouet, D.H.: Dopamine-sensitive adenylate cyclase of the caudate nucleus of rats treated with morphine or haloperidol. Biochem. Pharmacol. 24, 1499–1503 (1975)

    PubMed  CAS  Google Scholar 

  • Iwatsubo, K., Clouet, D.H.: Effects of morphine and haloperidol on the electrical activity of rat nigrostriatal neurons. J. Pharmacol. Exp. Ther. 202, 429–436 (1977)

    PubMed  CAS  Google Scholar 

  • Jacobowitz, D.M., Goldberg, A.M.: Determination of acetylcholine in discrete regions of the rat brain. Brain Res. 122, 575–577 (1971)

    Google Scholar 

  • James, T.A., Massey, S.: Evidence for a possible dopaminergic link in the action of acetylcholine in the rat substantia nigra. Neuropharmacology 17, 687–690 (1978)

    PubMed  CAS  Google Scholar 

  • Jankowska, E., Jukes, M.G.M., Lund, S., Lundberg, A.: Reciprocal innervation through inter-neuronal inhibition. Nature 206, 198–199 (1965)

    PubMed  CAS  Google Scholar 

  • Jankowska, E., Jukes, M.G.M., Lund, S., Lundberg, A.: The effect of dopa on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha-mo-toneurones of flexors and extensors. Acta Physiol. Scand. 70, 369–388 (1967 a)

    PubMed  CAS  Google Scholar 

  • Jankowska, E., Jukes, M.G.M., Lund, S., Lundberg, A.: The effect of DOPA on the spinal cord. 6. Halfcentre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol. Scand. 70, 389–402 (1967 b)

    PubMed  CAS  Google Scholar 

  • Janssen, P.A.J.: The pharmacology of haloperidol. Int. J. Neuropsychiatr. 3, suppl. 1, S 10—S 18 (1967)

    Google Scholar 

  • Janssen, P.A.J., Allewijn, F.T.N.: The distribution of the butyrophenones haloperidol, trifluperidol, moperone, and clofluperidol in rats, and its relationship with their neuroleptic activity. Arzneim. Forsch. 19, 199–208 (1969)

    CAS  Google Scholar 

  • Janssen, P.A.J., Niemegeers, C.J.E., Schellekens, K.H.L.: Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Part I: “Neuroleptic activity spectra” for rats. Arzneim. Forsch. 15, 104–117 (1965 a)

    CAS  Google Scholar 

  • Janssen, P.A.J., Niemegeers, C.J.E., Schellekens, K.H.L.: Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Part II: “Neuroleptic activity spectra” for dogs. Arzneim. Forsch. 15, 1196–1206 (1965 b)

    Google Scholar 

  • Janssen, P.A.J., Niemegeers, C.J.E., Schellekens, K.H.L., Dresse, A., Lenaerts, F.M., Pinchard, A., Schaper, W.K.A., Van Nueten, J.M., Verbruggen, F.J.: Pimozide, a chemically novel, highly potent and orally long-acting neuroleptic drug. Part I: The comparative pharmacology of pimozide, haloperidol, and chlorpromazine. Arzneim. Forsch. 18, 261–279 (1968a)

    CAS  Google Scholar 

  • Janssen, P.A.J., Soudijn, W., Van Wijngaarden, L, Dresse, A.: Pimozide, a chemically novel, highly potent and orally long-acting neuroleptic drug. Part III: Regional distribution of pimozide and haloperidol in the dog brain. Arzneim. Forsch. 18, 282–287 (1968 b)

    CAS  Google Scholar 

  • Javoy, P., Agid, Y., Bouvet, D., Glowinski, J.: Changes in neostriatal DA metabolism after car-bachol or atropine microinjections into the substantia nigra. Brain Res. 68, 253–260 (1974)

    PubMed  CAS  Google Scholar 

  • Jenney, E.H.: Changes in convulsant thresholds after Rauwolfia serpentina, reserpine and veriloid. Fed. Proc. 13, 370–371 (1954)

    Google Scholar 

  • Jobe, P.C., Geiger, P.F., Ray, T.B., Woods, T.W., Mims, M.E.: The relative significance of spinal cord norepinephrine and 5-hydroxytryptamine in electrically induced Scizure in the rat. Neuropharmacology 77, 185–190 (1978)

    Google Scholar 

  • Johnson, A.M., Loew, D.M., Vigouret, J.M.: Stimulant properties of bromocriptine on central dopamine receptors in comparison to apomorphine, (+)-amphetamine and L-DOPA. Br. J. Pharmacol. 56, 59–68 (1976)

    PubMed  CAS  Google Scholar 

  • Johnstone, E.C., Crow, T.J., Frith, C.D., Carney, M.W.P., Price, J.S.: Mechanism of the antipsychotic effect in the treatment of acute schizophrenia. Lancet I: 848–851 (1978)

    Google Scholar 

  • Jordan, L.M., Lake, N., Phillis, J.W.: Mechanism of noradrenaline depression of cortical neurones: a species comparison. Eur. J. Pharmacol. 20, 381–384 (1972)

    PubMed  CAS  Google Scholar 

  • Juorio, A.V., Sharman, D.F., Trajkov, T.: The effect of drugs on the homovanillic acid content of the corpus striatum of some rodents. Br. J. Pharmacol. 26, 385–392 (1966)

    CAS  Google Scholar 

  • Jurna, L: Dämpfung repetivier Aktivierungsvorgänge an der spinalen Motorik durch Morphin. In: Schmerz (Pain). R. Janzen, W.D. Keidel, A. Herz, C. Steichele, J.P. Payne and R.A.P. Burt, Eds., pp. 267–269. Stuttgart: Thieme 1972

    Google Scholar 

  • Jurna, I.: Striatal monoamines and reserpine and chlorpromazine rigidity. Pharmacol. Ther. [B] 2, 113–128 (1976a)

    CAS  Google Scholar 

  • Jurna, I.: The cholinergic rigidity. Pharmacol. Ther. [B] 2, 413–421 (1976b)

    CAS  Google Scholar 

  • Jurna, I., Heinz, G.: Anti-nociceptive effect of morphine, opioid analgesics and haloperidol injected into the caudate nucleus of the rat. Naunyn Schmiedebergs Arch. Pharmacol. 309, 145–151 (1979)

    PubMed  CAS  Google Scholar 

  • Jurna, L, Lanzer, G.: Inhibition of the effect of reserpine on motor control by drugs which influence reserpine rigidity. Naunyn Schmiedebergs Arch. Pharmacol. 262, 309–324 (1969)

    CAS  Google Scholar 

  • Jurna, I., Lundberg, A.: The influence of an inhibitor of dopamine-beta-hydroxylase on the effect of DOPA on transmission in the spinal cord. In: Structure and Functions of Inhibitory Neuronal Mechanisms, pp. 215–219, C. von Euler, S. Skoglund, U. Söderberg, Eds., Pergamon Press, Oxford, New York (1968)

    Google Scholar 

  • Jurna, L, Regélhy, B.: The antagonism between reserpine some antiparkinson drugs in elec-troScizure. Naunyn Schmiedebergs Arch. Pharmacol. 259, 442–459 (1968)

    CAS  Google Scholar 

  • Jurna, I., Theres, C.: The effect of phenytoin and metamphetamine on spinal motor activity. Naunyn Schmiedebergs Arch. Pharmacol. 265, 244–259 (1969)

    CAS  Google Scholar 

  • Jurna, I., Theres, C., Bachmann, T.: The effect of physostigmine and tetrabenazine on spinal motor control and its inhibition by drugs which influence reserpine rigidity. Naunyn Schmiedebergs Arch. Pharmacol. 263, 427–438 (1969)

    CAS  Google Scholar 

  • Jurna, I., Nell, T., Schreyer, L: Motor disturbance induced by tremorine and oxotremorine. Naunyn Schmiedebergs Arch. Pharmacol. 267, 80–98 (1970)

    PubMed  CAS  Google Scholar 

  • Jurna, I., Grossmann, W., Nell, T.: Depression by amantadine of drug-induced rigidity in the rat. Neuropharmacology 11, 559–564 (1972a)

    PubMed  CAS  Google Scholar 

  • Jurna, I., Ruzdic, N., Nell, T., Grossmann, W.: The effect of α-methyl-p-tyrosine and substantia nigra lesions on spinal motor activity in the rat. Eur. J. Pharmacol. 20, 341–350 (1972b)

    PubMed  CAS  Google Scholar 

  • Jurna, I., Grossmann, W., Theres, C.: Inhibition by morphine of repetitive activation of cat spinal motoneurons. Neuropharmacology 12, 983–993 (1973)

    PubMed  CAS  Google Scholar 

  • Jurna, I., Brenner, M., Drum, P.: Abolition of spinal motor disturbance by injections of dopamine receptor agonists, atropine and GABA into the caudate nucleus. Neuropharmacology 77, 35–44 (1978a)

    Google Scholar 

  • Jurna, I., Heinz, G., Blinn, G., Nell, T.: The effect of substantia nigra stimulation and morphine on α-motoneurones and the tail-flick response. Eur. J. Pharmacol. 51, 239–250 (1978 b)

    PubMed  CAS  Google Scholar 

  • Kaelber, W.W., Joynt, R.J.: Tremor production in cats given chlorpromazine. Proc. Soc. Exp. Biol. Med. 92, 399–402 (1956)

    PubMed  CAS  Google Scholar 

  • Kalisker, A., Rutledge, C.O., Perkins, J.P.: Effect of nerve degeneration by 6-hydroxydopamine on chatecholamine-stimulated adenosine 3′,5′-monophosphate formation in rat cerebral cortex. Mol. Pharmacol. 9, 619–629 (1973)

    CAS  Google Scholar 

  • Kamberi, I.A., Mical, L.S., Porter, J.C.: Effect of anterior pituitary perfusion and intraventricular injection of catecholamines and indolamines in LH release. Endocrinology 87, 1–12 (1970)

    PubMed  CAS  Google Scholar 

  • Karobath, M., Leitich, H.: Antipsychotic drugs and dopamine-stimulated adenylate cyclase prepared from corpus striatum of rat brain. Proc. Natl. Acad. Sci. USA 77, 2915–2918 (1974)

    Google Scholar 

  • Kebabian, J.W.: Multiple classes of dopamine receptors in mammalian central nervous system: the involvement of dopamine-sensitive adenyl cyclase. Life Sci. 23, 479–484 (1978)

    PubMed  CAS  Google Scholar 

  • Kebabian, J.W., Calne, D.B.: Multiple receptors for dopamine. Nature 277, 93–96 (1979)

    PubMed  CAS  Google Scholar 

  • Kebabian, J.W., Greengard, P.: Dopamine-sensitive adenyl cyclase: possible role in synaptic transmission. Science 174, 1346–1349 (1971)

    PubMed  CAS  Google Scholar 

  • Kebabian, J.W., Saavedra, J.M.: Dopamine-sensitive adenylate cyclase occurs in a region of substantia nigra containing dopaminergic dendrites. Science 193, 683–685 (1976)

    PubMed  CAS  Google Scholar 

  • Kebabian, J.W., Petzold, G.L., Greengard, P.: Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the dopamine receptor. Proc. Natl. Acad. Sci. USA 69, 2145–2149 (1972)

    PubMed  CAS  Google Scholar 

  • Kehr, W., Carlsson, A., Lindqvist, M., Magnusson, T., Atack, C.: Evidence for a receptor-mediated feedback control of striatal tyrosine hydroxylase activity. J. Pharm. Pharmacol. 24, 744–747 (1972)

    PubMed  CAS  Google Scholar 

  • Kelly, P.H., Miller, R.J.: The interaction of neuroleptic and muscarinic agents with central dopaminergic system. Br. J. Pharmacol. 54, 115–121 (1975)

    PubMed  CAS  Google Scholar 

  • Kelly, P.H., Moore, K.E.: Mesolimbic dopaminergic neurones in the rotational model of nigro-striatal function. Nature 263, 695–696 (1976)

    PubMed  CAS  Google Scholar 

  • Kelly, P.H., Moore, K.E.: Dopamine concentrations in the rat brain following injections into the substantia nigra of baclofen, γ-aminobutyric acid, y-hydroxybutyric acid, apomorphine and amphetamine. Neuropharmacology 17, 169–174 (1978)

    PubMed  CAS  Google Scholar 

  • Kety, S.S., Javoy, F., Thierry, A.-M., Julou, L., Glowinski, J.: A sustained effect of electroconvulsive shock on the turnover of norepinephrine in the central nervous system of the rat. Proc. Natl. Acad. Sci. USA 58, 1249–1254 (1967)

    PubMed  CAS  Google Scholar 

  • Key, B.J.: Electrocortical changes induced by perfusion of catecholamines into the brainstem reticular formation. Neuropharmacology 14, 41–51 (1975)

    PubMed  CAS  Google Scholar 

  • Killam, E.K., Killam, K.F.: A comparison of the effects of reserpine and chlorpromazine to those of barbiturates on central afferent systems in the cat. J. Pharmacol. Exp. Ther. 116, 35 (1956)

    Google Scholar 

  • Killam, E.K., Killam, K.F., Shaw, T.: The effects of psychotherapeutic compounds on central afferent and limbic pathways. Ann. N. Y. Acad. Sci. 66, 784–805 (1957)

    PubMed  CAS  Google Scholar 

  • Kim, J.-S., Hassler, R.: Effects of acute haloperidol on the gamma-aminobutyric acid system in rat striatum and substantia nigra. Brain Res. 88, 150–153 (1975)

    PubMed  CAS  Google Scholar 

  • Kim, J.S., Bak, I.J., Hassler, R., Okada, Y.: Role of γ-aminobutyric acid (GABA) in the extrapyramidal motor system. 2. Some evidence for the existence of a type of GABA-rich strio-nigral neurons. Brain Res. 14, 95–104 (1971)

    CAS  Google Scholar 

  • King, J.L.: The cortico-spinal tract of the rat. Anat. Rec. 4, 245–252 (1910)

    Google Scholar 

  • Kinross-Wright, V.: Chlorpromazine and reserpine in the treatment of psychoses. Ann. N.Y. Acad. Sci. 61, 174–182 (1955)

    PubMed  CAS  Google Scholar 

  • Kitai, S.T., Wagner, A., Precht, W., Ohno, T.: Nigro-caudate and caudato-nigral relationship: an electrophysiological study. Brain Res. 85, 44–48 (1975)

    PubMed  CAS  Google Scholar 

  • Kitai, S.T., Sugimori, M., Kocsis, J.D.: Excitatory nature of dopamine in the nigro-caudate pathway. Exp. Brain Res. 24, 351–363 (1976)

    CAS  Google Scholar 

  • Klawans, H.L.: The pharmacology of Parkinsonism (a review). Dis. Nerv. Syst. 29, 805–817 (1968)

    PubMed  CAS  Google Scholar 

  • Klawans, H.L., Rubovits, R.: An experimental model of tardive dykinesia. J. Neural. Transm. 33, 235–246 (1972)

    PubMed  Google Scholar 

  • Kleinberg, D.L., Noel, G.L., Frantz, A.G.: Chlorpromazine stimulation and L-DOPA suppression of plasma prolactin in man. J. Clin. Endocrinol. Metab. 33, 873–876 (1971)

    CAS  Google Scholar 

  • Kline, N.S., Stanley, A.M.: Use of reserpine in a neuropsychiatrie hospital. Ann. N. Y. Acad. Sci. 61, 85–91 (1955)

    PubMed  CAS  Google Scholar 

  • Kobinger, W.: Reversibility of a facilitatory action of reserpine on the central nervous system, by methylamphetamine. Experientia 14, 337–338 (1958)

    PubMed  CAS  Google Scholar 

  • Koe, B.K., Weissman, A.: p-chlorophenylalanine: a specific depletor of brain serotonin. J. Pharmacol. Exp. Ther. 154, 499–516 (1966)

    PubMed  CAS  Google Scholar 

  • Kolmodin, G.M., Skoglund, C.R.: Properties and functional differentiation of interneurons in the ventral horn of the cat’s lumbar cord as revealed by intracellular recording. Experientia 10, 505–506 (1954)

    PubMed  CAS  Google Scholar 

  • Korf, J., Zieleman, M., Westerink, B.H.C.: Dopamine release in substantia nigra. Nature 260, 257–258 (1976)

    PubMed  CAS  Google Scholar 

  • Kosterlitz, H.W., Collier, H.O.J., Villareal, J.E.: Agonist and Antagonist Actions of Narcotic Analgesic Drugs. Macmillan, London (1972)

    Google Scholar 

  • Kreindler, A., Steriade, M., Zuckermann, E., Chimon, D.: The influence of chlorpromazine upon cerebello-cortical and cerebellospinal circuits. Electroencephalogr. Clin. Neuro-physiol. 10, 515–520 (1958)

    CAS  Google Scholar 

  • Krnjevic, K., Phillis, J.W.: Actions of certain amines on cerebral cortical neurones. Br. J. Pharmacol. 20, 471–490 (1963)

    CAS  Google Scholar 

  • Kruglov, N.A., Sinitsyn, L.N.: The effect of aminozine and mepazine on the cerebellar and bulbar inhibitory mechanisms. Farmak. Toksikol. 22, 97–101 (1959)

    Google Scholar 

  • Kuschinsky, K., Hornykiewicz, O.: Morphine catalepsy in the rat: relation to striatal dopamine metabolism. Eur. J. Pharmacol. 19, 119–122 (1972)

    PubMed  CAS  Google Scholar 

  • Laborit, H., Huguenard, P.: L’hibernation artificielle par moyens pharmacodynamiques et physiques. Presse Med. 59, 1329 (1951)

    PubMed  CAS  Google Scholar 

  • Ladinsky, H., Consolo, S., Bianchi, S., Samanin, R., Ghezzi, D.: Cholinergic-dopaminergic interaction in the striatum: the effect of 6-hydroxydopamine or pimozide treatment on the increased striatal acetylcholine levels induced by apomorphine, piribedil and d-amphetamine. Brain Res. 84, 221–226 (1975)

    PubMed  CAS  Google Scholar 

  • Lake, N., Jordan, L.M.: Failure to confirm cyclic AMP as second messenger for norepinephrine in rat cerebellum. Science 183, 663–664 (1974)

    PubMed  CAS  Google Scholar 

  • Lake, N., Jordan, L.M., Phillis, J.W.: Mechanisms of noradrenaline action in cat cerebral cortex. Nature New Biol. 240, 249–250 (1972)

    PubMed  CAS  Google Scholar 

  • Lake, N., Jordan, L.M., Phillis, J.W.: Evidence against cyclic adenosine 3′,5′-monophosphate (cAMP) mediation of noradrenaline depression of cerebral cortical neurones. Brain Res. (60,411–421 (1973)

    PubMed  CAS  Google Scholar 

  • Launay, J. Despature, M.: Syndromes psycho-moteurs et syndromes extra-pyramidaux au cours de traitements prolongés par la chlorpromazine. Ann. Med. Psychol. (Paris) 114, 340–344 (1956)

    CAS  Google Scholar 

  • Laverty, R., Sharman, D.F.: Modification by drugs of the metabolism of 3,4-dihydroxyphenyl-ethylamine, noradrenaline and 5-hydroxytryptamine in the brain. Br. J. Pharmacol. 24, 759–772 (1965)

    CAS  Google Scholar 

  • Legge, K.F., Randic, M., Straughan, D.W.: The pharmacology of neurones in the pyriform cortex. Br. J. Pharmacol. 26, 87–107 (1966)

    CAS  Google Scholar 

  • Lee, C.-Y., Akera, T., Stolman, S., Brody, T.M.: Saturable binding of dihydromorphine and naloxon to rat brain tissue in vitro. J. Pharmacol. Exp. Ther. 194, 583–592 (1975)

    PubMed  CAS  Google Scholar 

  • Lee, C.M., Wong, P.C.L., Chan, S.H.H.: The involvement of dopaminergic neurotransmission in the inhibitory effect of morphine on caudate neurone activities. Neuropharmacology 16, 571–576 (1977)

    PubMed  CAS  Google Scholar 

  • Lee, T., Seeman, P., Tourtelotte, W.W., Farley, I.J., Hornykiewicz, O.: Binding of 3H-neuroleptics and 3H-apomorphine in schizophrenic brains. Nature 274, 897–900 (1978)

    PubMed  CAS  Google Scholar 

  • Lee, H.K., Chai, C.Y., Chung, P.M., Wang, S.C.: Central antiemetic actions of pimozide and haloperidol in the dog. Neuropharmacology 18, 341–346 (1979)

    PubMed  CAS  Google Scholar 

  • Lehmann, A.: Contribution à l’étude psycho-physiologique et neuropharmacologique de l’épi-lepsie acoustique de la souris et du rat. II. Etude expérimentale. Agressologie 5, 311–351 (1964)

    PubMed  CAS  Google Scholar 

  • Lehmann, A.: Audiogenic Scizures data in mice supporting new theories of biogenic amines mechanisms in the central nervous system. Life Sci. 6, 1423–1431 (1967)

    PubMed  CAS  Google Scholar 

  • Leimdorfer, A.: Über zentrale Wirkungen von Adrenalin. Wien. Klin. Wochenschr. 60, 382 – 385 (1948)

    PubMed  CAS  Google Scholar 

  • Leimdorfer, A.: The action of sympathomimetic amines on the central nervous system and the blood sugar. Mechanism of action. J. Pharmacol. Exp. Ther. 98, 62–71 (1950)

    CAS  Google Scholar 

  • Leimdorfer, A., Metzner, W.R.T.: Analgesia and anaesthesia induced by epinephrine. Am. J. Physiol. 157, 116–121 (1949)

    PubMed  CAS  Google Scholar 

  • Leonard, B.E.: Drug-induced changes in brain tyrosine hydroxylase activity in vivo. Neuropharmacology 16, 41–52(1977)

    Google Scholar 

  • Levin, R.M., Weiss, B.: Mechanism by which psychotropic drugs inhibit adenosine cyclic 3′,5′-monophosphate phosphodiesterase of brain. Mol. Pharmacol. 12, 581–589 (1976)

    PubMed  CAS  Google Scholar 

  • Leysen, J., Laduron, P.: Differential distribution of opiate and neuroleptic receptors and the dopamine sensitive adenylate cyclase in rat brain. Life Sci. 20, 281–288 (1972)

    Google Scholar 

  • Lindvall, O., Björklund, A.: The organization of the ascending catecholamine neurone system in the rat brain as revealed by glyoxylic acid fluorescence method. Acta Physiol. Scand. [Suppl.] 412, 1–48 (1974)

    CAS  Google Scholar 

  • Lindvall, O., Björklund, A., Moore, R.Y., Stenevi, U.: Mesencephalic dopamine neurons projecting to neocortex. Brain Res. 81, 325–331 (1974)

    PubMed  CAS  Google Scholar 

  • Linowiecki, A.J.: The comparative anatomy of the pyramidal tract. J. Comp. Neurol. 24, 509–530 (1914)

    Google Scholar 

  • Loizou, L.A.: Projections of the nucleus coeruleus in the albino rat. Brain Res. 15, 563–560 (1969)

    PubMed  CAS  Google Scholar 

  • Longo, V.G., Silvestrini, B.: Effect of adrenergic and cholinergic drugs injected by intracarotid route on electrical activity of brain. Proc. Soc. Exp. Biol. Med. 95, 43–41(1957)

    PubMed  CAS  Google Scholar 

  • Longo, V.G., von Berger, G.P., Bovet, D.: Action of nicotine and of the “ganglioplégiques centraux” on the electrical activity of the brain. J. Pharmacol. Exp. Ther. 111, 349–359 (1954)

    PubMed  CAS  Google Scholar 

  • Lu, K.-H., Amenomori, Y., Chen, C.-L., Meites, J.: Effects of central acting drugs on serum and pituitary prolactin levels in rats. Endocrinology (Philadelphia) 87, 667–672 (1970)

    CAS  Google Scholar 

  • Lundberg, A.: Monoamines and spinal reflexes. In: Studies in Physiology. D.R. Curtis and A.K. Mclntyre, Eds., pp. 186–190, Springer-Verlag, Berlin (1965)

    Google Scholar 

  • Lynch, G.S., Lucas, PA., Deadwyler, S.A.: The demonstration of acetylcholinesterase-contain-ing neurones within the caudate nucleus of the rat. Brain Res. 45, 617–621 (1972)

    PubMed  CAS  Google Scholar 

  • MacLeod, R.M.: Regulation of prolactin secretion. In: Frontiers in Neuroendocrinology, Vol. 4. L. Martini, W.F. Ganong, Eds., New York, Raven Press, pp. 169–194 (1976)

    Google Scholar 

  • MacLeod, R.M., Fontham, E.H., Lehmeyer, J.E.: Prolactin and growth hormone production as influenced by catecholamines. Neuroendocrinology 6, 283–294 (1970)

    PubMed  CAS  Google Scholar 

  • Magnusson, T.: Effect of chronic transection on dopamine, noradrenaline and 5-hydroxytryp-tamine in the rat spinal cord. Naunyn Schmiedebergs Arch. Pharmacol. 278, 13–22 (1973)

    PubMed  CAS  Google Scholar 

  • Magnusson, T., Rosengren, E.: Catecholamines of the spinal cord normally and after transection. Experientia 19, 229–230 (1963)

    CAS  Google Scholar 

  • Maler, L., Fibiger, H.C., McGeer, P.L.: Demonstration of the nigro striatal projection by silver staining after nigral injection of 6-hydroxydopamine. Exp. Neurol. 40, 505–515 (1973)

    PubMed  CAS  Google Scholar 

  • Malhotra, C.L., Sidhu, R.K.: The anti-emetic activity of alkaloids of Rauwolfia serpentina. J. Pharmacol. Exp. Ther. 116, 123–129 (1956)

    PubMed  CAS  Google Scholar 

  • Malmfors, T.: Studies on adrenergic nerves. The use of rat and mouse iris for direct observations on their physiology and pharmacology at cellular and subcellular levels. Acta Physiol. Scand. 64, Suppl. 248, 1–93 (1963)

    Google Scholar 

  • Mantegazzini, P., Poeck, K., Santibafiez, H.G.: The action of adrenaline and noradrenaline on the cortical electrical activity of the “encéphale isolé” cat. Arch. Ital. Biol. 97, 222–242 (1959)

    Google Scholar 

  • Marley, E., Vane, J.R.: Tryptamine receptors in the central nervous system. Nature 198, 441–444 (1963)

    CAS  Google Scholar 

  • Marsden, C.D., Milson, J., Parkes, J.D., Pycock, C., Tarsy, D.: The effect of cholinergic and anticholinergic drugs on rotational behavior in mice with destruction of one nigrostriatal pathway. J. Physiol. (Lond.) 249, 64p–65p (1975)

    Google Scholar 

  • Martin, W.R., Demaar, E.W.J., Unna, K.R.: Chlorpromazine: I. The action of chlorpromazine and related phenothiazines on the EEG and its activation. J. Pharmacol. Exp. Ther. 122, 343–358 (1958)

    PubMed  CAS  Google Scholar 

  • Martin, W.R., Riehl, J.L., Unna, K.R.: Chlorpromazine. III. The effects of chlorpromazine and chlorpromazine sulfoxide on vascular responses to L-epinephrine and levarterenol. J. Pharmacol. Exp. Ther. 130, 37–45 (1960)

    PubMed  CAS  Google Scholar 

  • Mason, S.T., Iversen, S.D.: Learning in the absence of forebrain noradrenaline. Nature 258, 422–424 (1975)

    PubMed  CAS  Google Scholar 

  • Mason, S.T., Iversen, S.D.: Effects of selective forebrain noradrenaline loss on behavioural inhibition in the rat. J. Comp. Physiol. Psychol. 91, 165–173 (1977)

    PubMed  CAS  Google Scholar 

  • Mason, S.T., Iversen, S.D.: Reward, attention and the dorsal noradrenergic bundle. Brain Res. 150, 135–148 (1978)

    PubMed  CAS  Google Scholar 

  • Matthysse, S.: Antipsychotic drug actions: A clue to the neuropathology of schizophrenia? Fed. Proc. 32, 200–205 (1973)

    CAS  Google Scholar 

  • Mayer, D.J., Price, D.D.: Central nervous system mechanisms of analgesia. Pain 2, 379–404 (1976)

    PubMed  CAS  Google Scholar 

  • McAfee, D.A., Greengard, P.: Adenosine 3′,5′-monophosphate: electrophysiological evidence for a role in synaptic transmission. Science 178, 310–312 (1972)

    PubMed  CAS  Google Scholar 

  • McGeer, E.G., McGeer, P.L.: Catecholamine content of spinal cord. Can. J. Biochem. Physiol. 40, 1141–1151 (1962)

    CAS  Google Scholar 

  • McGeer, E.G., McGeer, P.L., McLennan, H.: The inhibitory action of 3-hydroxytyramine, gamma-aminobutyric acid (GABA) and some other compounds towards the crayfish stretchreceptor neuron. J. Neurochem. 8, 36–49 (1961)

    Google Scholar 

  • McGeer, E.G., Fibiger, H.C., McGeer, P.L., Brooke, S.: Temporal changes in amine synthesizing enzymes of rat extrapyramidal structures after hemitransection or 6-hydroxydopamine administration. Brain Res. 52, 289–300 (1973)

    PubMed  CAS  Google Scholar 

  • McGeer, P.L., Fibiger, H.C., Hattori, T., Singh, V.K., McGeer, E.G., Maler, L.: Biochemical neuroanatomy of the basal ganglia. In: Neurohumoral Coding and Brain Function, Advances in Behaviour and Biology 10, 27–48, R.D. Myers, R.R. Drucker-Colin, Eds. (1974a)

    Google Scholar 

  • McGeer, P.L., Grewaal, D.S., McGeer, E.G.: Influence of noncholinergic drugs on rat striatal acetylcholine levels. Brain Res. 80, 211–217 (1974b)

    PubMed  CAS  Google Scholar 

  • McGeer, E.G., McGeer, P.L., Grewaal, D.S., Singh, V.K.: Striatal cholinergic interneurons and their relation to dopaminergic nerve endings. J. Pharmacol. (Paris) 6, 143–152 (1975)

    Google Scholar 

  • McGeer, P.L., McGeer, E.G., Wada, J.A.: Central aromatic amine levels and behavior. II. Serotonin and catecholamine levels in various cat brain areas following administration of psycho-active drugs on amine precursors. Arch. Neurol. 9, 81–89 (1963)

    Google Scholar 

  • McGillard, K.L., Takemori, A.E.: The effect of dopaminergic modifiers on morphine-induced analgesia and respiratory depression, Eur. J. Pharmacol. 54, 61–68 (1979)

    Google Scholar 

  • McKenzie, G.M., Sadof, M.: Effects of morphine and chlorpromazine on apomorphine-induced stereotyped behaviour. J. Pharm. Pharmacol. 26, 280–282 (1974)

    PubMed  CAS  Google Scholar 

  • McLennan, H.: The effect of some catecholamines upon a monosynaptic reflex pathway in the spinal cord. J. Physiol. (Lond.) 158, 411–425 (1961)

    CAS  Google Scholar 

  • McLennan, H., York, D.H.: The action of dopamine on neurons of the caudate nucleus. J. Physiol. (Lond.) 189, 393–402 (1967)

    CAS  Google Scholar 

  • McNair, J.L., Sutin, J., Tsubokawa, T.: Suppression of cell firing in the substantia nigra by caudate nucleus stimulation. Exp. Neurol. 37, 395–411 (1972)

    PubMed  CAS  Google Scholar 

  • Melville, K.I.: Observations on the adrenergic-blocking and antifibrillatory actions of chlorpromazine. Fed. Proc. 13, 386–387 (1954)

    Google Scholar 

  • Messing, R.B., Lytle, L.D.: Serotonin-containing neurons: their possible role in pain and analgesia. Pain 4, 1–21 (1977)

    PubMed  CAS  Google Scholar 

  • Miller, R.J., Iversen, L.L.: Effect of chlorpromazine and some of its metabolites on the dopa-mine-sensitive adenylate cyclase of rat brain striatum. J. Pharm. Pharmacol. 26, 142–144 (1974)

    PubMed  CAS  Google Scholar 

  • Miller, R.J., Horn, A.S., Iversen, L.L.: The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3′,5′-monophosphate production in rat neostriatum and limbic forebrain. Mol. Pharmacol. 10, 759–766 (1974)

    CAS  Google Scholar 

  • Minneman, K.P., Quik, M., Emson, P.C.: Receptor linked cyclic AMP systems in rat neostriatum: differential localization revaled by kainic acid injection. Brain Res. 151, 507–521 (1978)

    PubMed  CAS  Google Scholar 

  • Moore, R.Y., Bhatnagar, R.K., Heller, A.: Anatomical and chemical studies of a nigro-neostriatal projection in the cat. Brain Res. 30, 119–135 (1971)

    PubMed  CAS  Google Scholar 

  • Morest, D.K.: A study of the structure of the area postrema with Golgi methods. Am. J. Anat. 107, 291–303 (1960)

    PubMed  CAS  Google Scholar 

  • Morest, D.K.: Experimental study of the projections of the nucleus of the tractus solatarius and the area postrema in the cat. J. Comp. Neurol. 130, 277–300 (1966)

    Google Scholar 

  • Morpurgo, C.: Effects of anti-Parkinson drugs on a phenothiazine induced catatonic reaction. Arch. Int. Pharmacodyn. Ther. 137, 84–90 (1962)

    PubMed  CAS  Google Scholar 

  • Munoz, C., Goldstein, L.: Quantitative EEG studies on the action of adrenergic blocking drugs upon the analeptic effects of DL amphetamine in rabbits. Pharmacologist 2, 80 (1960)

    Google Scholar 

  • Murrin, L.C., Morgenroth, V.H., Roth, R.H.: Dopaminergic neurons: effects of electrical stimulation on tyrosine hydroxylase. Mol. Pharmacol. 12, 1070–1081 (1976)

    PubMed  CAS  Google Scholar 

  • Muscholl, E., Vogt, M.: The action of reserpine on sympathetic ganglia. J. Physiol. (Lond.) 136,7 P (1957)

    Google Scholar 

  • Muscholl, E., Vogt, M.: The action of reserpine on the peripheral sympathetic system. J. Physiol. (Lond.) 141, 132–155 (1958)

    CAS  Google Scholar 

  • Nagy, J.I., Lee, T., Seeman, P., Fibiger, H.C.: Direct evidence for presynaptic and postsynaptic dopamine receptors in brain. Nature 274, 278–281 (1978)

    PubMed  CAS  Google Scholar 

  • Nathan, P.W.: Pain. Brit. med. Bull. 33, 149–156 (1977)

    CAS  Google Scholar 

  • Ng, K.Y., Chase, T.N., Colburn, R.W., Kopin, I.J.: L-Dopa induced release of cerebral monoamines. Science 170, 76–77 (1970)

    PubMed  CAS  Google Scholar 

  • Nieoullon, A., Chéramy, A., Glowinski, J.: Release of dopamine in vivo from cat substantia nigra. Nature 266, 375–377 (1977 a)

    PubMed  CAS  Google Scholar 

  • Nieoullon, A., Cheramy, A., Glowinski, J.: Nigral and striatal dopamine release under sensory stimuli. Nature 269, 340–342 (1977 b)

    PubMed  CAS  Google Scholar 

  • Nieoullon, A., Cheramy, A., Glowinski, J.: Interdependence of the nigrostriatal dopaminergic systems on the two sides of the brain in the cat. Science 198, 416–418 (1977 c)

    PubMed  CAS  Google Scholar 

  • Nieoullon, A., Cheramy, A., Leviel, V., Glowinski, J.: Effects of the unilateral nigral application of dopaminergic drugs on the in vivo release of dopamine in the two caudate nuclei of the cat. Euro. J. Pharmacol. 53, 289–296 (1979)

    CAS  Google Scholar 

  • Nybäck, H., Sedvall, G.: Effect of chlorpromazine on accumulation and disappearance of catecholamines formed from tyrosine-C14in brain. J. Pharmacol. Exp. Ther. 162, 294–301 (1968)

    PubMed  Google Scholar 

  • Nybäck, H., Sedvall, G.: Effect of nigral lesion on chlorpromazine-induced acceleration of dopamine synthesis from [14C]tyrosine. J. Pharm. Pharmacol. 23, 322–326 (1971)

    PubMed  Google Scholar 

  • Nybäck, H., Sedvall, G., Kopin, I.J.: Accelerated synthesis of dopamine-C14from tyrosine-C14in rat brain after chlorpromazine. Life Sci. 6, 2307–2312 (1967)

    PubMed  Google Scholar 

  • Nybäck, H., Borzecki, Z., Sedvall, G.: Accumulation and disappearance of catecholamines formed from tyrosine-14C in mouse brain; effect of some psychotropic drugs. Eur. J. Pharmacol. 4, 395–403 (1968)

    PubMed  Google Scholar 

  • Okada, Y., Hassler, R.: Uptake and release of γ-aminobutyric acid (GABA) in slices of substantia nigra of rat. Brain Res. 49, 214–217 (1973)

    PubMed  CAS  Google Scholar 

  • O’Keeffe, R., Sharman, D.F., Vogt, M.: Effect of drugs used in psychoses on cerebral dopamine metabolism. Br. J. Pharmacol. 38, 287–304 (1970)

    PubMed  Google Scholar 

  • Olpe, H.-R., Koella, W.P.: Inhibition of nigral and neocortical cells by γ-hydroxy butyrate: a microiontophoretic investigation. Eur. J. Pharmacol. 53, 359–364 (1979)

    PubMed  CAS  Google Scholar 

  • Owen, F., Cross, A.J., Crow, T.J., Longen, A., Poulter, M., Riley, G.J.: Increased dopamine-receptor sensitivity in schizophrenia. Lancet II: 223–226 (1978)

    Google Scholar 

  • Paalzow, G., Paalzow, L.: Clonidine antinociceptive activity: effects of drugs influencing central monoaminergic and cholinergic mechanisms in the rat. Naunyn Schmiedebergs Arch. Pharmacol. 292, 119–126 (1976)

    CAS  Google Scholar 

  • Palmer, G.C.: Increased cyclic AMP response to norepinephrine in the rat brain following 6-hydroxydopamine. Neuropharmacology 11, 145–149 (1972)

    PubMed  CAS  Google Scholar 

  • Palmer, G.C., Jones, D.J., Medina, M.A., Stavinoha, W.B.: Action of psychoactive drugs on cyclic AMP levels in mouse cerebral cortex and lung following microwave irradiation. Pharmacologist 17, 233 (1975)

    Google Scholar 

  • Palmer, G.C., Jones, D.J., Medina, M.A., Stavinoha,W.B.: Influence of injected psychoactive drugs on cyclic AMP levels in mouse brain and lung following microwave irradiation. Neuropharmacology 16, 435–443 (1977)

    PubMed  CAS  Google Scholar 

  • Palmer, G.C., Jones, D.J., Medina, M.A., Palmer, S.J., Stavinoha, W.B.: Actions in vitro and in vivo of chlorpromazine and haloperidol on cyclic nucleotide systems in mouse cerebral cortex and cerebellum. Neuropharmacology 17, 491–498 (1978)

    PubMed  CAS  Google Scholar 

  • Pepeu, G.: Involvement of central transmitters in narcotic analgesia. In: Advances in Pain Research and Therapy. J.J. Bonica, D. Albe-Fessard, Eds., Vol. 1: 595–600, Raven Press, New York (1976)

    Google Scholar 

  • Perkins, J.P., Moore, M.M.: Characterization of the adrenergic receptors mediating a rise in cyclic 3′,5′-adenosine monophosphate in rat cerebral cortex. J. Pharmacol. Exp. Ther. 185, 371–378 (1973)

    PubMed  CAS  Google Scholar 

  • Peroutka, S.J., U’Prichard, D.C., Greenberg, D.A., Snyder, S.H.: Neuroleptic drug interactions with norepinephrine alpha receptor binding sites in rat brain. Neuropharmacology 16, 549–556 (1977)

    PubMed  CAS  Google Scholar 

  • Persson, S.-Å.: Effect of morphine on the accumulation of DOPA after decarboxylase inhibition in the rat. Eur. J. Pharmacol. 55, 121–128 (1979)

    PubMed  CAS  Google Scholar 

  • Pert, C.B., Snyder, S.H.: Opiate receptor: demonstration in nervous tissue. Science 779, 1011 – 1014 (1973)

    Google Scholar 

  • Pert, C.B., Kuhar, M.J., Snyder, S.H.: Autoradiographic localization of the opiate receptor in rat brain. Life Sci. 16, 1849–1854 (1975)

    PubMed  CAS  Google Scholar 

  • Phillis, J.W., Tebēcis, A.K.: The effects of pentobarbitone sodium on acetylcholine excitation and noradrenaline inhibition of thalamic neurones. Life Sci. 6, 1621–1625 (1967 a)

    PubMed  CAS  Google Scholar 

  • Phillis, J.W., Tebëcis, A.K.: The responses of thalamic neurones to iontophoretically applied monoamines. J. Physiol. (Lond.) 192, 715–745 (1967 b)

    CAS  Google Scholar 

  • Phillis, J.W., York, D.H.: Strychnine block of neural and drug induced inhibition in the cerebral cortex. Nature 216, 922–923 (1967)

    PubMed  CAS  Google Scholar 

  • Phillis, J.W., Tebëcis, A.K., York, D.H.: Depression of spinal motoneurones by noradrenaline, 5-hydroxytryptamine and histamine. Eur. J. Pharmacol. 4, 471–475 (1968)

    PubMed  CAS  Google Scholar 

  • Pijnenburg, A.J.J., Van Rossum, J.M.: Stimulation of locomotor activity following injection of dopamine into the nucleus accumbens. J. Pharm. Pharmacol. 25, 1003–1005 (1973)

    PubMed  CAS  Google Scholar 

  • Pijnenburg, A.J.J., Woodruff, G.N., Van Rossum, J.M.: Ergometrine induced locomotor activity following intracerebral injection into the nucleus accumbens. Brain Res. 59, 289–302 (1973)

    PubMed  CAS  Google Scholar 

  • Pijnenburg, A.J.J., Honig, W.M.M., Van Rossum, J.M.: Effects of antagonists upon locomotor stimulation induced by injection of dopamine and noradrenaline into the nucleus accumbens of nialamide-pretreated rats. Psychopharmacology (Berlin) 41, 175–180 (1975)

    CAS  Google Scholar 

  • Pijnenburg, A.J.J., Honig, W.M.M., Struyker Boudier, H.A.J., Cools, A.R., Van der Heyden, J.A.M., Van Rossum, J.M.: Further investigations on the effects of ergometrine and other ergot derivatives following injection into the nucleus accumbens of the rat. Arch. Int. Phar-macodyn. Ther. 222, 103–115 (1976)

    CAS  Google Scholar 

  • Pocidalo, J.J., Cathala, H.P., Himbert, J.: Action sur l’excitabilité sympathique du chlorhydrate de diméthylaminopropyl-N-chlorophénothiazine (4560 R. P.). C. R. Soc. Biol. (Paris) 146, 368–370 (1952)

    CAS  Google Scholar 

  • Poirier, L.J., Sourkes, I.L.: Influence of the substantia nigra on the catecholamine content of the striatum. Brain 88, 181–192 (1965)

    PubMed  CAS  Google Scholar 

  • Pollard, H., Llorens, C., Schwartz, J.C., Cross, C., Dray, F.: Localization of opiate receptors and enkephalins in the rat striatum in relationship with the nigro striatal dopaminergic system. Brain. Res. 757, 392–398 (1978)

    Google Scholar 

  • Precht, W., Yoshida, M.: Blockage of caudate-evoked inhibition of neurons in the substantia nigra by picrotoxin. Brain Res. 32, 229–233 (1971)

    PubMed  CAS  Google Scholar 

  • Preston, J.B.: Chlorpromazine: a possible mechanism of action. Fed. Proc. 15,468–469 (1956 a)

    Google Scholar 

  • Preston, J.B.: Effects of chlorpromazine on the central nervous system of the cat: A possible neural basis for action. J. Pharmacol. Exp. Ther. 118, 100–115 (1956b)

    PubMed  CAS  Google Scholar 

  • Pycock, C., Tarsy, D., Marsden, C.D.: Inhibition of circling behavior by neuroleptic drugs in mice with unilateral 6-hydroxydopamine lesions of the striatum. Psychopharmacology (Berlin) 45, 211–219(1975)

    CAS  Google Scholar 

  • Quastel, D.M.J., Hackett, J.T., Okamoto, K.: Presynaptic action of central depressant drugs: inhibition of depolarization-secretion coupling. Can. J. Physiol. Pharmacol. 50, 279 (1972)

    PubMed  CAS  Google Scholar 

  • Quik, M., Iversen, L.L.: Regional study of 3H-spiperone binding and the dopamine-sensitive adenylate cyclase in rat brain. Eur. J. Pharmacol. 56, 323–330 (1979)

    PubMed  CAS  Google Scholar 

  • Quik, M., Iversen, L.L., Larder, A., Mackay, A.U.P.: Use of ADTN to define specific 3H-spiperone binding to receptors in brain. Nature 274, 513–514 (1978)

    PubMed  CAS  Google Scholar 

  • Randrup, A., Munkvad, I.: Stereotyped activities produced by amphetamine in several animal species and man. Psychopharmacology (Berlin) 77, 300–310 (1967)

    Google Scholar 

  • Ranson, S.W.: The fasciculus cerebro-spinalis in the albino rat. Am. J. Anat. 14, 411–424 (1913)

    Google Scholar 

  • Ranson, S.W.: A note on the degeneration of the fasciculus cerebro-spinalis in the albino rat. J. Comp. Neurol. 24, 503–507 (1914)

    Google Scholar 

  • Ritchie, J.M., Greengard, P.: On the active structure of local anesthetics. J. Pharmacol. Exp. Ther. 133, 241–245 (1961)

    PubMed  CAS  Google Scholar 

  • Roberge, C., Ebstein, B., Goldstein, M.: Stimulation of tyrosine hydroxylase (T.H.) activity by dibutyryl cyclic AMP (dB-cAMP) in synaptosomal preparations (S.P.). Fed. Proc. 33, 521 (1974)

    Google Scholar 

  • Roberts, M.H.T., Straughan, D.W.: An excitatory effect of 5-hydroxytryptamine on single cerebral cortical neurones. J. Physiol. (Lond.) 188, 27–28 P (1966)

    Google Scholar 

  • Roos, B.-E.: Effects of certain tranquillisers on the level of homovanillic acid in the corpus striatum. J. Pharm. Pharmacol. 17, 820–821 (1965)

    PubMed  CAS  Google Scholar 

  • Roos, B.-E., Steg, G.: The effect of L-3,4-dihydroxyphenylalanine and DL-5-hydroxytrypto-phan on rigidity and tremor induced by reserpine, chlorpromazine and phenoxybenzamine. Life Sci. 3, 351–360 (1964)

    PubMed  CAS  Google Scholar 

  • Rothballer, A.B.: Studies on the adrenaline-sensitive component of the reticular activating system. Electroencephalogr. Clin. Neurophysiol. 8, 603–621 (1956)

    CAS  Google Scholar 

  • Ryall, R.W.: Some actions of chlorpromazine. Br. J. Pharmacol. 11, 339–345 (1956)

    CAS  Google Scholar 

  • Salmoiraghi, G.C., Stefanis, C.N.: Patterns of central neurons responses to suspected transmitters. Arch. Ital. Biol. 103, 705–724 (1965)

    CAS  Google Scholar 

  • Sano, I., Gamo, T., Kakimoto, Y., Taniguchi, K., Takasada, M., Nishinuma, K.: Distribution of catechol compounds in human brain. Biochim. Biophys. Acta 32, 586–587 (1959)

    PubMed  CAS  Google Scholar 

  • Satoh, H., Satoh, Y., Notsu, Y., Honda, F.: Adenosine 3′,5′-cyclic monophosphate as a possible mediator of rotational behaviour induced by dopaminergic receptor stimulation in rats lesioned unilaterally in the substantia nigra. Eur. J. Pharmacol. 39, 365–377 (1976)

    PubMed  CAS  Google Scholar 

  • Sayers, A.C., Burki, H.R., Ruch, W., Asper, H.: Neuroleptic-induced hypersensitivity of striatal dopamine receptors in the rat as a model of tardive dyskinesias. Effects of clozapine, haloperidol, loxapine and chlorpromazine. Psychopharmacology (Berlin) 41, 97–104 (1975)

    CAS  Google Scholar 

  • Schaumann, W.: Beeinflussung der analgetischen Wirkung des Morphins durch Reserpin. Nau-nyn Schmiedebergs Arch. Pharmacol. 235, 1–9 (1958)

    CAS  Google Scholar 

  • Schildkraut, J.J., Kety, S.S.: Biogenic amines and emotion. Science 156, 21–30 (1967)

    PubMed  CAS  Google Scholar 

  • Schlosser, W., Horst, W.D., Spiegel, H.E., Sigg, E.B.: Apomorphine and its effects on the spinal cord. Neuropharmacology 11, 417–426 (1972)

    PubMed  CAS  Google Scholar 

  • Schneider, J.A.: Further studies on the central action of reserpine (Serpasil). Am. J. Physiol. 179, 670–671 (1954a)

    Google Scholar 

  • Schneider, J.A.: Reserpine antagonism of morphine analgesia in mice. Proc. Soc. Exp. Biol. Med. 87, 614–615 (1954b)

    PubMed  CAS  Google Scholar 

  • Schneider, J.A.: Further characterization of central effects of reserpine (Serpasil). Am. J. Physiol. 181, 64–68 (1955)

    PubMed  CAS  Google Scholar 

  • Schneider, J.A., Earl, A.E.: Effects of Serpasil on behavior and autonomic regulating mechanisms. Neurology 4, 657–667 (1954)

    PubMed  CAS  Google Scholar 

  • Schulte, F.J., Henatsch, H.D.: Unterdrückung tonischer Eigenschaften von Alpha- und Gamma-Motoneuronen durch Phenothiazinkörper. Pflügers Arch. Ges. Physiol. 268, 65–66 (1958)

    Google Scholar 

  • Schultz, J., Daly, J.W.: Accumulation of cyclic adenosine 3′,5′-monophosphate in cerebral cortical slices from rat and mouse: stimulatory effect of a- and β-adrenergic agents and adenosine. J. Neurochem. 21, 1319–1326 (1973)

    PubMed  CAS  Google Scholar 

  • Schultz, W., Ungerstedt, U.: Striatal cell supersensitivity to apomorphine in dopamine-lesioned rats correlated to behaviour. Neuropharmacology 17, 349–353 (1978)

    PubMed  CAS  Google Scholar 

  • Schwarcz, R., Creese, I., Coyle, J.T., Snyder, S.H.: Dopamine receptors localized on cerebral cortical afferents to rat corpus striatum. Nature 277, 766–768 (1978)

    Google Scholar 

  • Schwartz, J.C., Costentin, L, Martes, M.P., Protais, P., Baudry, M.: Review: modulation of receptor mechanisms in the CNS: hyper- and hyposensitivity to catecholamines. Neuropharmacology 17, 665–685 (1978)

    PubMed  CAS  Google Scholar 

  • Schweitzer, A., Wright, S.: The action of adrenaline on the knee jerk. J. Physiol. (Lond.) 88, 476–491 (1937)

    CAS  Google Scholar 

  • Seeman, P.M., Bialy, H.S.: The surface activity of tranquilizers. Biochem. Pharmacol. 12, 1181–1191 (1963)

    PubMed  CAS  Google Scholar 

  • Seeman, P., Lee, T.: Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188, 1217–1219 (1975)

    PubMed  CAS  Google Scholar 

  • Seeman, P., Lee, T., Chau-Wong, M., Wong, K.: Antipsychotic drug doses and neuroleptic/ dopamine receptors. Nature 261, 717–719 (1976)

    CAS  Google Scholar 

  • Seeman, P., Staiman, A., Chau-Wong, M.: The nerve impulse-blocking actions of tranquilizers and the binding of neuroleptics to synaptosome membranes. J. Pharmacol. Exp. Ther. 190, 123–130 (1974)

    PubMed  CAS  Google Scholar 

  • Seeman, P., Tedesco, J., Titeler, M., Hartley, E.J.: Antischizophrenic drugs: membrane sites of action. Advan. Pharmacol. Therap. Vol. 5. Neuropsychopharmacol. C. Dumont (Ed.), Oxford: Pergamon Press, pp. 3–20 (1978)

    Google Scholar 

  • Segal, M., Pickel, V., Bloom, F.: The projections of the nucleus locus coerulus: an autoradiographic study. Life Sci. 13, 817–821 (1973)

    PubMed  CAS  Google Scholar 

  • Sethy, V.H., Van Woert, M.H.: Effect of L-DOPA on brain acetylcholine and choline in rats. Neuropharmacology 12, 27–31 (1973)

    PubMed  CAS  Google Scholar 

  • Sethy, V.H., Van Woert, M.H.: Regulation of striatal acetylcholine concentration by dopamine receptors. Nature 251, 529–530 (1974 a)

    PubMed  CAS  Google Scholar 

  • Sethy, V.H., Van Woert, M.H.: Modification of striatal acetylcholine concentration by dopamine receptor agonists and antagonists. Res. Commun. Chem. Path. Pharmacol. 8, 13–28 (1974b)

    CAS  Google Scholar 

  • Shaar, C.J., Smalstig, E.B., Clemens, J.A.: The effect of catecholamines, apomorphine, and monoamine oxidase on rat anterior pituitary prolactin release in vitro. Pharmacologist 15, 256 (1973)

    Google Scholar 

  • Share, N.N., Chai, C.Y., Wang, S.C.: Emesis induced by intra-cerebroventricular injections of apomorphine and deslanoside in normal and chemoreceptive trigger zone ablated dogs. J. Pharmacol. Exp. Ther. 147, 416–421 (1965)

    PubMed  CAS  Google Scholar 

  • Sharman, D.F.: Changes in the metabolism of 3,4-dihydroxy-phenylethylamine (dopamine) in the striatum of the mouse induced by drugs. Br. J. Pharmacol. 28, 153–163 (1966)

    CAS  Google Scholar 

  • Shore, P.A., Brodie, B.B.: Influence of various drugs on serotonin and norepinephrine in the brain. In: Psychotropic Drugs. S. Garattini, V. Ghetti, Eds., pp. 423–427, Elsevier Publishing Company, Amsterdam (1957)

    Google Scholar 

  • Shore, P.A., Silver, S.L., Brodie, B.B.: Interaction of reserpine, serotonin and lysergic acid diethylamide in brain. Science 122, 284–285 (1955)

    PubMed  CAS  Google Scholar 

  • Shore, P.A., Pletscher, A., Tomich, E.G., Carlsson, A., Kuntzman, R., Brodie, B.B.: Role of brain serotonin in reserpine action. Ann. N. Y. Acad. Sci. 66, 609–617 (1957)

    PubMed  CAS  Google Scholar 

  • Sibley, D.R., Creese, I.: Guanine nucleotides regulate anterior pituitary dopamine receptors. Eur. J. Pharmacol. 55, 341–343 (1979)

    PubMed  CAS  Google Scholar 

  • Sigg, E.B., Ochs, S., Gerard, R.W.: Effects of medullary hormones on the somatic nervous system in the cat. Am. J. Physiol. 183, 419–426 (1955)

    PubMed  CAS  Google Scholar 

  • Sigg, E.B., Caprio, G., Schneider, J.A.: Synergism of amines and antagonism of reserpine to morphine analgesia. Proc. Soc. Exp. Biol. Med. 97, 97–100 (1958)

    PubMed  CAS  Google Scholar 

  • Siggins, G.R., Hoffer, B.J., Bloom, F.E.: Cyclic adenosine monophosphate: possible mediator for norepinephrine effects on cerebellar Purkinje cells. Science 165, 1018–1020 (1969)

    PubMed  CAS  Google Scholar 

  • Siggins, G.R., Hoffer, B.J., Bloom, F.E.: Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. III. Evidence for mediation of norepinephrine effects by cyclic 3′,5′-adenosine monophosphate. Brain Res. 25, 535–553 (1971a)

    PubMed  CAS  Google Scholar 

  • Siggins, G.R., Oliver, A.P., Hoffer, B.J., Bloom, F.E.: Cyclic adenosine monophosphate and norepinephrine: Effects of transmembrane properties of cerebellar Purkinje cells. Science 171, 192–194 (1971b)

    PubMed  CAS  Google Scholar 

  • Siggins, G.R., Battenberg, E.F., Hoffer, B.J., Bloom, F.E., Steiner, A.L.: Noradrenergic stimulation of cyclic adenosine monophosphate in rat Purkinje neurons: an immuno-cytochemi-cal study. Science 179, 585–588 (1973)

    PubMed  CAS  Google Scholar 

  • Siggins, G.R., Hoffer, B.J., Ungerstedt, U.: Electrophysiological evidence for involvement of cyclic adenosine monophosphate in dopamine responses of caudate neurons. Life Sci. 15, 779–792 (1974)

    PubMed  CAS  Google Scholar 

  • Sigwald, J., Bouttier, D., Courvoisier, S.: Les accidents neurologiques des médications neuroleptiques. Rev. Neurol. (Paris) 100, 31–73 (1959)

    Google Scholar 

  • Silvestrini, B., Maffii, G.: Effects of chlorpromazine, promazine, diethazine, reserpine, hydroxyzine, and morphine upon some mono- and polysynaptic motor reflexes. J. Pharm. Pharmacol. 17, 224–233 (1959)

    Google Scholar 

  • Smalstig, E.B., Sawyer, B.D., Clemens, J.A.: Inhibition of rat prolactin release by apomorphine in vivo and in vitro. Endocrinology 95, 123–129 (1974)

    PubMed  CAS  Google Scholar 

  • Smith, C.M., Murayama, S.: Rigidity of spinal origin: quantitative evaluation of agents with muscle relaxant activity in cats. Neuropharmacology 3, 505–515 (1964)

    CAS  Google Scholar 

  • Sourkes, T.L.: Formation of dopamine in vivo: relation to the function of the basal ganglia. Rev. Can. Biol. 20, 187–196 (1961)

    CAS  Google Scholar 

  • Stadler, H., Lloyd, K.G., Gadea-Ciria, M., Bartholini, G.: Enhanced striatal acetylcholine release by chlorpromazine and its reversal by apomorphine. Brain Res. 55, 476–480 (1973)

    PubMed  CAS  Google Scholar 

  • Stefanis, C.: Hippocampal neurons: their responsiveness to micro-electrophoretically administered endogenous amines. Pharmacologist 6, 171 (1964)

    Google Scholar 

  • Steg, G.: Efferent muscle innervation and rigidity. Acta Physiol. Scand. 61, suppl. 225 (1964)

    Google Scholar 

  • Steg, G.: Efferent muscle control and rigidity. In: Muscular Afferents and Motor Control. Nobel Symposium I, pp. 437–443, R. Granit, Ed., Almqvist & Wiksell, Stockholm and John Willy & Sons, New York, London, Sydney (1966)

    Google Scholar 

  • Stern, J., Ward, A.A.: Supraspinal and drug modulation of the α-motor system. A. M. A. Arch. Neurol. 6, 404–413 (1962)

    CAS  Google Scholar 

  • Sternbach, R.A., Janowsky, D.S., Huey, L.Y., Segal, D.S.: Effects of altering brain serotonin activity on human chronic pain. In: Advances in Pain Research and Therapy, Vol. 1 J.E. Bonica, D. Albe-Fessard, Eds., pp. 601–606. New York: Raven Press 1976

    Google Scholar 

  • Stevens, J.: An anatomy of schizophrenia. Arch. Gen. Psychiaty 29, 177–189 (1973)

    CAS  Google Scholar 

  • Stille, G., Hippius, H.: Kritische Stellungnahme zum Begriff der Neuroleptika (anhand von pharmakologischen und klinischen Befunden mit Clozapin). Pharmakopsychiatr. Neuro-psychopharmakol. 4, 182–191 (1971)

    CAS  Google Scholar 

  • Stille, G., Lauener, H., Eichenberger, E.: The pharmacology of 8-chloro-11-(4-methyl-l-pipe-razinyl)-5H-dibenzo (b,e) (1,4) diazepine (clozapine). Farmaco [Prat.] 26, 603–625 (1971)

    CAS  Google Scholar 

  • Struyker Boudier, H.A.J., Gielen, W., Cools, A.R., Van Rossum, J.M.: Pharmacological analysis of dopamine-induced inhibition and excitation of neurones in the snail Helix aspersa. Arch. Int. Pharmacodyn. Ther. 209, 324–331 (1974)

    CAS  Google Scholar 

  • Svensson, T.H., Bunney, B.S., Aghajanian, G.K.: Inhibition of both noradrenergic and serotonergic neurons in brain by the α-adrenergic agonist Clonidine. Brain Res. 92, 291–306 (1975)

    PubMed  CAS  Google Scholar 

  • Szabo, J.: Projections from the body of the caudate nucleus in the rhesus monkey. Exp. Neurol. 27, 1–15 (1970)

    PubMed  CAS  Google Scholar 

  • Szabo, J.: The course and distribution of efferents from the tail of the caudate nucleus in the monkey. Exp. Neurol. 37, 562–572 (1972)

    PubMed  CAS  Google Scholar 

  • Takaori, S., Fukuda, N., Amano, Y.: Mode of action of chlorpromazine on unit discharges from nuclear structures in the brain stem of cats. Jpn. J. Pharmacol. 20, 424–431 (1970)

    PubMed  CAS  Google Scholar 

  • Takaori, S., Nakai, Y., Matsuoka, I., Sasa, M., Fukuda, N., Shimamoto, K.: The mechanism of antagonism between apomorphine and metoclopramide on unit discharges from nuclear structures in the brainstem of the cat. Neuropharmacology 7, 115–126 (1968)

    CAS  Google Scholar 

  • Tarsy, D., Baldessarini, R.J.: Pharmacologically induced behavioral supersensitivity to apomorphine. Nature New Biol. 245, 262–263 (1973)

    PubMed  CAS  Google Scholar 

  • Tedeschi, D.H., Tedeschi, R.E., Fellows, E.J.: The effects of tryptamine on the central nervous system, including a pharmacological procedure for the evaluation of iproniazidlike drugs. J. Pharm. Exp. Ther. 126, 223–232 (1959)

    CAS  Google Scholar 

  • Ten Cate, J., Boeles, J.T.F., Biersteker, P.A.: The action of adrenaline and noradrenaline on the knee jerk. Arch. Int. Physiol. Biochim. 67, 468–488 (1959)

    Google Scholar 

  • Thierry, A.M., Blanc, G., Sobel, A., Stinus, L., Glowinski, J.: Dopaminergic terminals in the rat cortex. Science 182, 499–501 (1973)

    PubMed  CAS  Google Scholar 

  • Titeler, M., Seeman, P.: Antiparkinsonian drug doses and neuroleptic receptors. Experientia 34, 1490–1492 (1978)

    PubMed  CAS  Google Scholar 

  • Torrey, E.F., Petersen, M.R.: Schizophrenia and the limbic system. Lancet II: 942–946 (1974)

    Google Scholar 

  • Trabucchi, M., Cheney, D., Racagni, G., Costa, E.: Involvement of brain cholinergic mechanisms in the action of chlorpromazine. Nature 249, 664–666 (1974)

    PubMed  CAS  Google Scholar 

  • Trabucchi, M., Cheney, D.L., Racagni, G., Costa, E.: In vivo inhibition of striatal acetylcholine turnover by L-DOPA, apomorphine and (+)-amphetamine. Brain Res. 85, 130–134 (1975)

    PubMed  CAS  Google Scholar 

  • Trendelenburg, U., Gravenstein, J.S.: Effect of reserpine pretreatment on stimulation of the ac-celerans nerve of the dog. Science 128, 901–903 (1958)

    PubMed  CAS  Google Scholar 

  • Udenfriend, S., Weissbach, H., Bogdanksi, D.F.: Increase in tissue serotonin following administration of its precursor 5-hydroxytryptophan. J. Biol. Chem. 224, 803–810 (1957 a)

    PubMed  CAS  Google Scholar 

  • Udenfriend, S., Weissbach, H., Bogdanski, D.F.: Biochemical findings relating to the action of serotonin. Ann. N. Y. Acad. Sci. 66, 602–608 (1957 b)

    PubMed  CAS  Google Scholar 

  • Ueda, T., Maeno, H., Greengard, P.: Regulation of endogenous phosphorylation of specific proteins in synaptic membrane fractions from rat brain by adenosine 3′:5′-monophosphate. L Biol. Chem. 248, 8295–8305 (1973)

    CAS  Google Scholar 

  • Ungerstedt, U.: 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 5, 107–110 (1968)

    PubMed  CAS  Google Scholar 

  • Ungerstedt, U.: Sterotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand. [Suppl.] 367, 1–48 (1971a)

    CAS  Google Scholar 

  • Ungerstedt, U.: Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigrostriatal dopamine system. Acta Physiol. Scand. [Suppl.] 367, 69–93 (1971b)

    CAS  Google Scholar 

  • Ungerstedt, U.: Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the ni-gro-striatal dopamine system. Acta Physiol. Scand. [Suppl.] 367, 95–122 (1971c)

    CAS  Google Scholar 

  • Ungerstedt, U., Pycock, C.: Functional correlates of dopamine neurotransmission. Bull. Schweiz. Akad. Med. Wiss. 30, 44–55 (1974)

    PubMed  CAS  Google Scholar 

  • Ungerstedt, U., Butcher, L.L., Butcher, S.G., Andén, N.-E., Fuxe, K.: Direct chemical stimulation of dopaminergic mechanisms in the neostriatum of the rat. Brain Res. 14, 461–471 (1969)

    PubMed  CAS  Google Scholar 

  • Ungerstedt, U., Avemo, A., Avemo, E., Ljungberg, T., Ranje, C.: Animal models of parkinsonism. Adv. Neurol. 3, 257–271 (1973)

    CAS  Google Scholar 

  • Ungerstedt, U., Ljungberg, T., Hoffer, B., Siggins, G.: Dopaminergic supersensitivity in the striatum. Adv. Neurol. 9, 57–65 (1975)

    PubMed  CAS  Google Scholar 

  • U’prichard, D.C., Snyder, S.H.: 3H-Catecholamine binding to α-receptors in rat brain: enhancement by reserpine. Eur. J. Pharmacol. 51, 145–155 (1978)

    PubMed  Google Scholar 

  • Valdman, A.V.: On the localization of the action of chlorpromazine and analgesics in reticular formation of the brain stem. J. Neuropharmacol. 1, 197–200 (1962)

    Google Scholar 

  • Van der Wende, C., Spoerlein, M.T.: Role of dopaminergic receptors in morphine analgesia and tolerance. Res. Commun. Chem. Path. Pharmacol. 5, 35–43 (1973)

    Google Scholar 

  • Vogt, M.: The concentration of sympathine in different parts of the central nervous system under normal conditions and after the administration of drugs. J. Physiol. (Lond.) 123, 451–481 (1954)

    CAS  Google Scholar 

  • Vogt, M.: Effect of drugs on metabolism of catecholamines in the brain. Br. Med. Bull. 21, 57–61 (1965)

    PubMed  CAS  Google Scholar 

  • Vogt, M.: Functional aspects of the role of catecholamines in the nervous system. Br. Med. Bull. 29, 168–172 (1973)

    PubMed  CAS  Google Scholar 

  • von Voigtlander, P.F., Moore, K.E.: The release of H3-dopamine from cat brain following electrical stimulation of the substantia nigra and caudate nucleus. Neuropharmacology 10, 733–741 (1971)

    Google Scholar 

  • von Voigtlander, P.F., Moore, K.E.: Involvement of nigrostriatal neurons in the in vivo release of dopamine by amphetamine, amantadine and tyramine. J. Pharmacol. Exp. Ther. 184, 542–552 (1973 a)

    Google Scholar 

  • von Voigtlander, P.F., Moore, K.E.: Turning behavior of mice with unilateral 6-hydroxydopamine lesions in the striatum: effects of apomorphine, L-Dopa, amantadine, amphetamine and other psychomotor stimulants. Neuropharmacology 12, 451–462 (1973 b)

    Google Scholar 

  • Waldmeier, P.L., Maitre, L.: On the relevance of preferential increases of mesolimbic versus striatal dopamine turnover for the prediction of antipsychotic activity of psychotropic drugs. L Neurochem. 27, 589–597 (1976)

    CAS  Google Scholar 

  • Walker, J.B.; Walker, LP.: Neurohumoral regulation of adenylate cyclase activity in rat striatum. Brain Res. 54, 386–390 (1973)

    PubMed  CAS  Google Scholar 

  • Walters, J.R., Roth, R.H.: Dopaminergic neurons: drug-induced antagonism of the increase in tyrosine hydroxylase activity produced by cessation of impulse flow. J. Pharmacol. Exp. Ther. 191, 82–91 (1974)

    PubMed  CAS  Google Scholar 

  • Walters, J.R., Bunney, B.S., Roth, R.H.: Piribedil and apomorphine: pre- and postsynaptic effects on dopamine synthesis and neuronal activity. Adv. Neurol. 9, 273–284 (1975)

    PubMed  CAS  Google Scholar 

  • Walton, K.G., Liepman, P., Baldessarini, R.J.: Inhibition of dopamine stimulated adenylate cyclase activity by phenoxybenzamine. Eur. J. Pharmacol. 52, 231–234 (1978)

    PubMed  CAS  Google Scholar 

  • Wand, P.: The response of α-motoneurons of different size to stretch and vibration of extensor muscles after injection of 5-hydroxytryptophan in spinal rats. Arch. Ital. Biol. 114, 228–243 (1976)

    PubMed  CAS  Google Scholar 

  • Wang, S.C.: III. Emetic and antiemetic drugs. Physiol. Pharmacol. 2, 255–328 (1965)

    Google Scholar 

  • Wang, S.C., Borison, H.L.: A new concept of organization of the central emetic mechanism: recent studies on the sites of action of apomorphine, copper sulfate and cardiac glycosides. Gastroenterology 22, 1–12 (1952)

    PubMed  CAS  Google Scholar 

  • Wang, S.C., Glaviano, V.V.: Locus of emetic action of morphine and hydergine in dogs. J. Pharmacol. Exp. Ther. 111, 329–334 (1954)

    PubMed  CAS  Google Scholar 

  • Weber, E.: Ein Rauwolfiaalkaloid in der Psychiatrie: Scine Wirkungsähnlichkeit mit Chlorpro-mazin. Schweiz. Med. Wochenschrift. 84, 968–970 (1954)

    CAS  Google Scholar 

  • Weber, L.J., Horita, A.: A study of 5-hydroxytryptamine formation from L-tryptophan in the brain and other tissues. Biochem. Pharmacol. 14, 1141–1149 (1965)

    PubMed  CAS  Google Scholar 

  • Webster, R.A.: The antiadrenaline activity of some phenothiazine derivatives. Br. J. Pharmacol. 25, 566–576 (1965)

    CAS  Google Scholar 

  • Weight, F., Salmoiraghi, G.C.: Response of single spinal cord neurons to ACh, NE and 5-HT administered by microelectrophoresis. Pharmacologist 7, 216 (1965)

    Google Scholar 

  • Weight, F.F., Salmoiraghi, G.C.: Responses of spinal cord interneurons to acetylcholine, norepinephrine and serotonin administered by microelectrophoresis. J. Pharmacol. Exp. Ther. 153, 420–427 (1966 a)

    PubMed  CAS  Google Scholar 

  • Weight, F.F., Salmoiraghi, G.C.: Adrenergic responses of Renshaw cells. J. Pharmacol. Exp. Ther. 154, 391–397 (1966b)

    PubMed  CAS  Google Scholar 

  • Weight, F.F., Salmoiraghi, G.C.: Motoneurone depression by norepinephrine. Nature 213, 1229–1230 (1967)

    CAS  Google Scholar 

  • Westerink, B.H.C., Korf, J.: Regional rat brain levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid: concurrent fluorometric measurement and influence of drugs. Eur. J. Pharmacol. 38, 281–291 (1976)

    PubMed  CAS  Google Scholar 

  • Westerink, B.H.C., Lejeune, B., Korf, J., Van Praag, H.M.: On the significance of regional dopamine metabolism in the rat brain for the classification of centrally active drugs. Eur. J. Pharmacol. 42, 179–190 (1977)

    PubMed  CAS  Google Scholar 

  • Wilson, C.W.M., Brodie, B.B.: The absence of blood-brain barrier from certain areas of the central nervous system. J. Pharmacol. Exp. Ther. 133, 332–334 (1961)

    PubMed  CAS  Google Scholar 

  • Wilson, C.W.M., Murray, A.W., Titus, E.: The effects of reserpine on uptake of epinephrine in brain and certain areas outside the blood-brain barrier. J. Pharmacol. Exp. Ther. 135, 11–16(1962)

    PubMed  CAS  Google Scholar 

  • Wilson, V.J.: Effect of intra-arterial injections of adrenaline on spinal extensor and flexor reflexes. Am. J. Physiol. 186, 491–496 (1956)

    PubMed  CAS  Google Scholar 

  • Windle, W.F., Cammermeyer, J.: Functional and structural observations on chronically reser-pinized monkeys. Science (N.Y.) 127, 1503 (1958)

    CAS  Google Scholar 

  • Windle, W.F., Cammermeyer, J., Joralemon, J.T., Smart, J.O., Feringa, E., McQuillen, M.: Tremor in african green monkeys. Fed. Proc. 15, 202 (1956)

    Google Scholar 

  • Witkin, L.B., Spitaletta, P., Plummer, A.J.: Effects of some central depressants on two simple reflexes in the mouse. J. Pharmacol. Exp. Ther. 126, 330–333 (1959)

    PubMed  CAS  Google Scholar 

  • Witkin, L.B., Spitaletta, P., Plummer, A.J.: The effects of some central depressants on spinal reflexes of the intact anesthetized cat. Arch. Int. Pharmacodyn. Ther. 124, 105–115 (1960)

    PubMed  CAS  Google Scholar 

  • Woodruff, G.N., McCarthy, P.S., Walker, R.J.: Studies on the pharmacology of neurones in the nucleus accumbens of the rat. Brain Res. 115, 233–242 (1976)

    PubMed  CAS  Google Scholar 

  • Wuerthele, S.M., Moore, K.E.: Studies on the mechanisms of L-DOPA-induced depletion of 5-hydroxytryptamine in the mouse brain. Life Sci. 20, 1675–1680 (1977)

    PubMed  CAS  Google Scholar 

  • Yaksh, T.L., Rudy, T.A.: Analgesia mediated by a direct spinal action of narcotics. Science 192, 1357–1358 (1976)

    PubMed  CAS  Google Scholar 

  • Yaksh, T.L., Rudy, T.A.: Studies on the direct spinal action of narcotics in the production of analgesia in the rat. J. Pharmacol. Exp. Ther. 202, 411–428 (1977)

    PubMed  CAS  Google Scholar 

  • Yaksh, T.L., Yamamura, H.I.: Depression by morphine of the resting and evoked release of [3H]-acetylcholine from the cat caudate nucleus in vivo. Neuropharmacology 16, 227–233 (1977)

    PubMed  CAS  Google Scholar 

  • Yamaguchi, N., Ling, G.M., Marczynski, T.J.: The effects of chemical stimulation of the preoptic region, nucleus centralis medialis or brain stem reticular formation with regard to sleep and wakefulness. Recent Adv. Biol. Psychiatr. 6, 9–20 (1964)

    Google Scholar 

  • York, D.H.: Possible dopaminergic pathway from substantia nigra to putamen. Brain Res. 20, 233–249 (1970)

    PubMed  CAS  Google Scholar 

  • York, D.H.: Dopamine receptor blockade — a central action of chlorpromazine on striatal neurones. Brain Res. 37, 91–99 (1972 a)

    PubMed  CAS  Google Scholar 

  • York, D.H.: Potentiation of lumbo-sacral monosynaptic reflexes by the substantia nigra. Exp. Neurol. 36, 437–448 (1972 b)

    PubMed  CAS  Google Scholar 

  • York, D.H.: Motor responses induced by stimulation of the substantia nigra. Exp. Neurol. 41, 323–330 (1973 a)

    PubMed  CAS  Google Scholar 

  • York, D.H.: Antagonism of descending effects of the substantia nigra on lumbo-sacral monosynaptic reflexes. Neuropharmacology 12, 629–636 (1973 b)

    PubMed  CAS  Google Scholar 

  • Yoshida, M., Precht, W.: Monosynaptic inhibition of neurons of the substantia nigra by caudato-nigral fibers. Brain Res. 32, 225–227 (1971)

    PubMed  CAS  Google Scholar 

  • Zieglgänsberger, W., Bayerl, H.: The mechanism of inhibition of neuronal activity by opiates in the spinal cord. Brain Res. 115, 111–128 (1976)

    PubMed  Google Scholar 

  • Zieglgänsberger, W., Satoh, M.: The mechanism of inhibition by morphine on spinal neurones of the cat. Exp. Brain. Res. 23, 444 (1975)

    Google Scholar 

  • Zivkovic, B., Guidotti, A., Revuelta, A., Costa, E.: Effect of thioridazine, clozapine and other antipsychotics on the kinetic state of tyrosine hydroxylase and on the turnover rate of dopamine in striatum and nucleus accumbens. J. Pharmacol. Exp. Ther. 194, 37–46 (1975)

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jurna, I. (1980). Neurophysiological Properties of Neuroleptic Agents in Animals. In: Hoffmeister, F., Stille, G. (eds) Psychotropic Agents. Handbook of Experimental Pharmacology, vol 55 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67538-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67538-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67540-9

  • Online ISBN: 978-3-642-67538-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics