Advertisement

Lactate pp 35-45 | Cite as

Production of Lactic Acid in Heavy Exercise and Acid-Base Balance

  • J. Piiper

Abstract

It is important to realise that the substance produced in anaerobic glycolysis is, as far as stoichiometry is concerned, lactic acid, which dissociates into equimolar amounts of H+ and lactate:
$$ \left. \begin{gathered} \mathop {1/2C_6 H_{10} O_5 + 1/2H_2 O}\limits_{glycogen\;monomer} \hfill \\ \mathop {1/2C_6 H_{12} O_6 }\limits_{gluocose} \hfill \\ \end{gathered} \right\} \to \mathop {CH_3 CHOHCOOH \to CH_3 CHOHCOO^ - + H^ + }\limits_{lactic\;acid lactate} $$

Keywords

Base Deficit Heavy Exercise Buffer Line Buffer Curve Human Muscle Biopsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    KARLSSON, J.: Lactate and phosphagen concentrations in working muscle of man. Acta Physiol. Scand. [Suppl.] 358, 1–72 (1971)Google Scholar
  2. 2.
    HEISLER, N.; PIIPER, J.: The buffer value of rat diaphragm muscle tissue determined by PCO 2 equilibration of homogenates. Respir. Physiol. 12, 169–178 (1971)PubMedCrossRefGoogle Scholar
  3. 3.
    HERMANSEN, L.; OSNES, J.B.: Blood and muscle pH after maximal exercise in man. J. Appl. Physiol. 32, 304–308 (1972)PubMedGoogle Scholar
  4. 4.
    MEYERHOF, O.; LOHMANN, K.: Über die natürlichen Guanidinophosphorsäuren (Phosphagene II). Mitteilung. Die physikalisch-chemischen Eigenschaften der Guanidinophosphorsäuren. Biochem. Z. 196, 49–72 (1928)Google Scholar
  5. 5.
    LIPMANN, F.; MEYERHOF, O.: Über die Reaktionsänderung des tätigen Muskels. Biochem. Z. 227, 84–109 (1930)Google Scholar
  6. 6.
    HULTMAN, E.; BERGSTRÖM, J.; ANDERSON, N. McL.: Breakdown and resynthesis of phosphorylcreatine and adenosine triphosphate in connection with muscular work in man. J. Clin. Lab. Invest.19, 56–66 (1967)CrossRefGoogle Scholar
  7. 7.
    PIIPER, J.; SPILLER, P.: Repayment of O2 dept and resynthesis of high-energy phosphates in gastrocnemius muscle of the dog. J. Appl. Physiol. 28, 657–662 (1970)PubMedGoogle Scholar
  8. 8.
    PIIPER, J.: Buffering of lactic acid produced in exercising muscle. In: Symposium on the onset of exercise. Gibert, A., Guille, P. (eds.), pp 175–185. Toulouse: 1972Google Scholar
  9. 9.
    HEISLER, N.; PIIPER, J.: Determination of intracellular buffering properties in rat diaphragm muscle. Am J. Physiol. 222, 747–753 (1972)PubMedGoogle Scholar
  10. 10.
    HEISLER, N.: Intracellular pH of isolated rat diaphragm muscle with metabolic and respiratory changes of extracellular pH. Respir. Physiol. 23, 243–255 (1975)PubMedCrossRefGoogle Scholar
  11. 11.
    HEISLER, N.: Kinetics of the efflux of hydrogen and lactate ions from isolated rat diaphragms stimulated in anoxia. Pfluegers Arch. 339, 51 (1973)Google Scholar
  12. 12.
    PIIPER, J.; MEYER, M.; DRESS, F.: Hydrogen ion balance in the elasmobranch scyliorhinus stellaris after exhausting activity. Respir. Physiol. 16, 290–303 (1972)PubMedCrossRefGoogle Scholar

Reference

  1. SLYKE, R.D. van: J. Biol. Chem. 52, 525–570 (1922)Google Scholar

Reference

  1. 1.
    DILL, D.B., ERWARDS, H.J., CONSOLAZIO, W.V.: Blood as a physicochemical system. Man at rest. J. Biol. Chem. 118, 635–648 (1937)Google Scholar
  2. HEISLER, N., PIIPER, J.: The buffer value of rat diaphragm muscle tissue determined by \( \text{P}_{\text{CO}_\text{2} } \) equilibration of homogenates. Respir. Physiol. 12, 169–178 (1971)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • J. Piiper

There are no affiliations available

Personalised recommendations