Lactate pp 35-45 | Cite as

Production of Lactic Acid in Heavy Exercise and Acid-Base Balance

  • J. Piiper


It is important to realise that the substance produced in anaerobic glycolysis is, as far as stoichiometry is concerned, lactic acid, which dissociates into equimolar amounts of H+ and lactate:
$$ \left. \begin{gathered} \mathop {1/2C_6 H_{10} O_5 + 1/2H_2 O}\limits_{glycogen\;monomer} \hfill \\ \mathop {1/2C_6 H_{12} O_6 }\limits_{gluocose} \hfill \\ \end{gathered} \right\} \to \mathop {CH_3 CHOHCOOH \to CH_3 CHOHCOO^ - + H^ + }\limits_{lactic\;acid lactate} $$


Hydrolysis Dioxide Lactate Titration Adenosine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    KARLSSON, J.: Lactate and phosphagen concentrations in working muscle of man. Acta Physiol. Scand. [Suppl.] 358, 1–72 (1971)Google Scholar
  2. 2.
    HEISLER, N.; PIIPER, J.: The buffer value of rat diaphragm muscle tissue determined by PCO 2 equilibration of homogenates. Respir. Physiol. 12, 169–178 (1971)PubMedCrossRefGoogle Scholar
  3. 3.
    HERMANSEN, L.; OSNES, J.B.: Blood and muscle pH after maximal exercise in man. J. Appl. Physiol. 32, 304–308 (1972)PubMedGoogle Scholar
  4. 4.
    MEYERHOF, O.; LOHMANN, K.: Über die natürlichen Guanidinophosphorsäuren (Phosphagene II). Mitteilung. Die physikalisch-chemischen Eigenschaften der Guanidinophosphorsäuren. Biochem. Z. 196, 49–72 (1928)Google Scholar
  5. 5.
    LIPMANN, F.; MEYERHOF, O.: Über die Reaktionsänderung des tätigen Muskels. Biochem. Z. 227, 84–109 (1930)Google Scholar
  6. 6.
    HULTMAN, E.; BERGSTRÖM, J.; ANDERSON, N. McL.: Breakdown and resynthesis of phosphorylcreatine and adenosine triphosphate in connection with muscular work in man. J. Clin. Lab. Invest.19, 56–66 (1967)CrossRefGoogle Scholar
  7. 7.
    PIIPER, J.; SPILLER, P.: Repayment of O2 dept and resynthesis of high-energy phosphates in gastrocnemius muscle of the dog. J. Appl. Physiol. 28, 657–662 (1970)PubMedGoogle Scholar
  8. 8.
    PIIPER, J.: Buffering of lactic acid produced in exercising muscle. In: Symposium on the onset of exercise. Gibert, A., Guille, P. (eds.), pp 175–185. Toulouse: 1972Google Scholar
  9. 9.
    HEISLER, N.; PIIPER, J.: Determination of intracellular buffering properties in rat diaphragm muscle. Am J. Physiol. 222, 747–753 (1972)PubMedGoogle Scholar
  10. 10.
    HEISLER, N.: Intracellular pH of isolated rat diaphragm muscle with metabolic and respiratory changes of extracellular pH. Respir. Physiol. 23, 243–255 (1975)PubMedCrossRefGoogle Scholar
  11. 11.
    HEISLER, N.: Kinetics of the efflux of hydrogen and lactate ions from isolated rat diaphragms stimulated in anoxia. Pfluegers Arch. 339, 51 (1973)Google Scholar
  12. 12.
    PIIPER, J.; MEYER, M.; DRESS, F.: Hydrogen ion balance in the elasmobranch scyliorhinus stellaris after exhausting activity. Respir. Physiol. 16, 290–303 (1972)PubMedCrossRefGoogle Scholar


  1. SLYKE, R.D. van: J. Biol. Chem. 52, 525–570 (1922)Google Scholar


  1. 1.
    DILL, D.B., ERWARDS, H.J., CONSOLAZIO, W.V.: Blood as a physicochemical system. Man at rest. J. Biol. Chem. 118, 635–648 (1937)Google Scholar
  2. HEISLER, N., PIIPER, J.: The buffer value of rat diaphragm muscle tissue determined by \( \text{P}_{\text{CO}_\text{2} } \) equilibration of homogenates. Respir. Physiol. 12, 169–178 (1971)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • J. Piiper

There are no affiliations available

Personalised recommendations