Lactate pp 197-206 | Cite as

Effects of Acidosis and Weak Acids on the Normal, Hypoxic, and Ischaemic Myocardium

  • P. A. Poole-Wilson
Conference paper

Abstract

The effects of acidosis and lactate ions on the heart are physiologically important in two common conditions. The first is severe exercise, in which arterial pH may fall to 6.9 and plasma lactate increase to 20 mmol/litre (see this Symposium). The second is myocardial ischaemia presenting as either angina pectoris or acute myocardial infarction. Tennant, in 1935 (1), attributed the rapid decline of myocardial contractility during ischaemia to an intracellular accumulation of hydrogen (H+) and lactate ions, but was unable to determine their relative significance. More recent work has shown that intracellular acidosis does occur in ischaemia (see Fig. 2; 2) and is of sufficient severity to account for much of the decline in mechanical performance (3, 4). The importance of other factors, such as intracellular accumulation of lactate and phosphate ions (5), oxygen lack, cyclic AMP (6) and the functional capacity of intracellular organelles, remains unclear.

Keywords

Permeability Phosphorus Dioxide Magnesium Ischemia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    TENNANT, R.: Factors concerned in the arrest of contraction in an ischaemic myocardial area. Am. J. Physiol. 113, 677–682 (1935)Google Scholar
  2. 2.
    POOLE-WILSON, P.A.: Measurement of myocardial intracellular pH in pathological states. J. Mol. Cell. Cardiol. To be published.Google Scholar
  3. 3.
    STEENBERGER, C., DELEEUW, G., BARLOW, C., CHANCE, B., WILLIAMSON, J.R.: Heterogeneity of the hypoxic state in perfused rat heart. Circ. Res. 41, 606–615 (1977)Google Scholar
  4. 4.
    POOLE-WILSON, P.A.: Is early decline of cardiac function in ischaemia due to carbon-dioxide retention? Lancet, 2, 1285–1287 (1975)PubMedCrossRefGoogle Scholar
  5. 5.
    KÜBLER, W., KATZ, A.M.: Mechanism of early “pump” failure of the ischemic heart: possible role of adenosine triphosphate depletion and inorganic phosphate accumulation. Am. J. Cardiol. 40, 467–471 (1977)PubMedCrossRefGoogle Scholar
  6. 6.
    SPERELAKIS, N., SCHNEIDER, J.A.: A metabolic control mechanism for calcium ion influx that may protect the ventricular myocardial cell. Am. J. Cardiol. 37, 1079–1085 (1976)PubMedCrossRefGoogle Scholar
  7. 7.
    GONZALEZ, N.C., CLANCY, R.L.: Inotropic and intracellular acid-baöe changes during metabolic acidosis. Am. J. Physiol. 228, 1060–1064 (1975)PubMedGoogle Scholar
  8. 8.
    POOLE-WILSON, P.A., CAMERON, I.R.: Intracellular pH and K+ of cardiac and skeletal muscle in acidosis and alkalosis. Am. J. Physiol. 229, 1305–1310 (1975)PubMedGoogle Scholar
  9. 9.
    GONZALEZ, N.C., KELLING, E.C., STROME, D.R., CLANCY, R.L.: Cardiac and skeletal muscle acid-base composition during metabolic acidosis in dogs. Respir. Physiol. 26, 1–10 (1976)PubMedCrossRefGoogle Scholar
  10. 10.
    MacGREGOR. D.C, WILSON, G.L., HOLNESS, D.E., LIXFELD, W., YASUI, H., TANAKA, S., SILVER, M.D., GUNSTENSEN, J.: Intramyocardial carbon dioxide tension: a guide to the safe period of anoxic arrest of the heart. J. Thorac. Cardiovasc. Surg. 68, 101–107 (1974)PubMedGoogle Scholar
  11. 11.
    KHURI, S.F., FLAHERTY, J.T., O’RIORDAN, J.B., PITT, B., BRAWLEY, R.K., DONAHOO, J.S., GOTT, V.L.: Changes in intramyocardial ST segment voltage and gas tensions with regional myocardial ischemia in the dog. Circ. Res. 3T7, 455–463 (1975)Google Scholar
  12. 12.
    NEELY, J.R., WHITMER, J.T., ROVETTO, M.J.: Effect of coronary blood flow on glycolytic flux and intracellular pH in isolated rat hearts. Circ. Res. 37, 733–741 (1975)PubMedGoogle Scholar
  13. 13.
    KLUG, F.: Über den Einfluß gasartiger Körper auf die Funktion des Froschherzens. Arch. Anat. Physiol. Physiologische Abteilung. 435–478 (1879)Google Scholar
  14. 14.
    SMITH, H.W.: The action of acids on turtle heart muscle with reference to the penetrations of anions. Am. J. Physiol. 76 411–447 (1926)Google Scholar
  15. 15.
    CINGOLANI, H.E., MATTIAZZI, A.R., BLESA, E.S., GONZALEZ, N.C.: Contractility in isolated mammalian heart muscle after acid-base changes. Circ. Res. 26, 269–278 (1970)PubMedGoogle Scholar
  16. 16.
    PANNIER, J.L., LEUSEN, I.: Contraction characteristics of papillary muscle during changes in acid-base composition of the bathing fluid. Arch. Int. Physiol. Biochim. 72, 624–634 (1968)CrossRefGoogle Scholar
  17. 17.
    POOLEWILSON, P.A., LANGER, G.A.: Effect of pH on ionic exchange and function in rat and rabbit myocardium. Am. J. Physiol. 229, 570–581 (1975)Google Scholar
  18. 18.
    WILLIAMSON, J.R., SAFER, B., RICH, T., SCHAFFER, S., KOBAYASHI, K.: Effects of acidosis on myocardial contractility and metabolism. Acta Med. Scand. [Suppl.J 587, 95–111 (1975)Google Scholar
  19. 19.
    TSIEN, R.W.: Possible effects of hydrogen ions in ischemic myocardium. Circulation 53 [Suppl. 1], 14–16 (1976)Google Scholar
  20. 20.
    PANNIER, J.L., WEYNE, J., LEUSEN, I.: Effects of PC02, bicarbonate and lactate on the isometric contractions of isolated soleus muscle of the rat. Pfluegers Arch. 320, 120–132 (1970)CrossRefGoogle Scholar
  21. 21.
    FABIATO, A., FABIATO, F.: Causes for the more pronounced negative inotropic effect of intracellular acidosis in cardiac than in skeletal muscle. Circulation 56 [Suppl. Ill] 166 (1977)Google Scholar
  22. 22.
    SCHAER, H.: Decrease in ionized calcium by bicarbonate in physiological solutions. Pfluegers Arch. 347, 249–254 (1974)CrossRefGoogle Scholar
  23. 23.
    KENYON, J.L., GIBBONS, W.R.: Effects of low chloride solutions on action potentials of sheep cardiac Purkinje fibers. J. Gen. Physiol. 70, 635–660 (1977)PubMedCrossRefGoogle Scholar
  24. 24.
    BAND, D.M., FRY, C.H.: An ion selective electrode for the determination of calcium activity. J. Physiol. To be published.Google Scholar
  25. 25.
    WISSNER, S.B.: The effect of excess lactate upon the excitability of the sheep Purkinje fiber. J. Electrocardiol. 1 17–26 (1974)CrossRefGoogle Scholar
  26. 26.
    IRVINE, R.O.H., SAUNDERS, S.J., MILNE, M.D., CRAWFORD, M.A.: Gradients of potassium and hydrogen ion in potassium deficient voluntary muscle. Clin. Sei. 20, 1–18 (1960)Google Scholar
  27. 27.
    PANNIER, J.L., WEYNE, J.: The influence of lactate on the contractile properties of papillary heart muscle. Arch. Int. Physiol. Biochim. 7J3, l0l-110 (1970)Google Scholar
  28. 28.
    GEVERS, W.: Generation of protons by metabolic processes in heart cells. J. Mol. Cell. Cardiol. 9, 867–874 (1977)PubMedCrossRefGoogle Scholar
  29. 29.
    POOLE-WILSON, P.A.: DMO method for intracellular pH. Circ. Res. 39 141–142 (1976)PubMedGoogle Scholar
  30. 30.
    LAI, F., SCHEUER, J.: Early changes in myocardial hypoxia: relations between mechanical function, pH and intracellular compartmental metabolites. J. Mol. Cell. Cardiol. 1, 289–303 (1975)CrossRefGoogle Scholar
  31. 31.
    LAVALLEE, M.: Intracellular pH of rat atrial muscle fibers measured by glass micropipette electrodes. Circ. Res. 15, 185–193 (1964)PubMedGoogle Scholar
  32. 32.
    GEBERT, G., BENZING, H., STROHM, M.: Changes in the interstitial pH of dog myocardium in response to local ischaemia, hypoxia, hyper- and hypocapnia, measured continuously by means of glass microelectrodes. Pfluegers Arch. 329, 72–81 (1971)CrossRefGoogle Scholar
  33. 33.
    POOLE-WILSON, P.A., LAKATTA, E.G., NAYLER, W.G.: The effects of acidosis on myocardial function and the uptake of calcium during and after hypoxia. Clin. Sei. Mol. Med. 52, 2–3 (1977)Google Scholar
  34. 34.
    BING, O.H.L., BROOKS, W.W., MESSER, J.V.: Heart muscle viability following hypoxia: protective effect of acidosis. Science 180, 1296–1297 (1973)CrossRefGoogle Scholar
  35. 35.
    GREENE, H.L., WEISFELDT, M.L.: Determinants of hypoxia, posthypoxic contracture. Am. J. Physiol. 232. H526-H533 (1977)PubMedGoogle Scholar
  36. 36.
    WEISFELDT, M.L., BISHOP, R.L., GREENE, H.L.: Effects of pH and PCO3 on performance of ischemic myocardium. In: Recent advances in studies on cardiac structure and metabolism. Roy, P.-E., Rona, G. (eds.), pp. 355–364. Baltimore: University Park Press 1975Google Scholar
  37. 37.
    MITCHELL, J.H., WILDENTHAL, K., JOHNSON, R.L.: The effects of acidbase disturbances on cardiovascular and pulmonary function. Kidney Int. 375–389 (1972)Google Scholar
  38. 38.
    RIEGLE, K.M., CLANCY, R.L.: Effect of norepinephrine on myocardial intracellular hydrogen ion concentration. Am. J. Physiol. 229, 344–349 (1975)PubMedGoogle Scholar
  39. 39.
    HICKS, G.L., HILL, A., DEWEESE, J.A.: Monitoring of midmyocardial and subendocardial pH in normal and ischemic ventricles. J. Thorac. Cardiovasc. Surg. 22, 52–56 (1976)Google Scholar
  40. 40.
    JACOBUS, W.E., TAYLOR, G.J., HOLLIS, D.P., NUNNALLY, R.L.: Phosphorus nuclear magnetic resonance of perfused working rat hearts. Nature 265, 756–758 (1977)PubMedCrossRefGoogle Scholar
  41. 41.
    KRUG, A.: Alterations in myocardial hydrogen ion concentration after temporary occlusion: a sign of irreversible damage. Am. J. Cardiol. 36, 214–217 (1975)PubMedCrossRefGoogle Scholar
  42. 42.
    OPIE, L.H.: Effects of regional ischemia on metabolism of glucose and fatty acids: relative rates of aerobic and anaerobic energy production during myocardial infarction and comparison with effects of anoxia. Circ. Res. 38, [Suppl. 1], 52–68 (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • P. A. Poole-Wilson

There are no affiliations available

Personalised recommendations