Myocardial Scintigraphy with Infarct-Avid Tracers

  • B. L. Holman
  • J. Wynne
Conference paper


The scintigraphic appearance of infarcted myocardium as an area of increased activity has considerable appeal, since standard techniques, including serum enzyme tests, electrocardiography, and vectorcardiography, provide only indirect evidence of the presence, size, and location of infarcted myocardium. Although these techniques are usually accurate in detecting infarction, the availability of techniques to localize precisely the site of damaged myocardium and the extent of damage is limited. Radiopharmaceuticals that are extracted by normal myocardium, such as potassium and its analogues [1] and radiolabeled fatty acids [2], offer additional help by outlining poorly perfused tissue as regions of decreased tracer concentration in myocardial scans [3]. These radiopharmaceuticals, however, do not permit differentiation of acute infarction and fibrotic or previously infarcted tissue. To overcome these difficulties, investigators have sought agents that accumulate selectively in damaged myocardium.


Single Photon Emission Compute Tomography Acute Myocardial Infarction Infarct Size Normal Myocardium Myocardial Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holman, B.L., Eldh, P., Adams, D. F., Han, M.H., Poggenburg, J.K., Adelstein, S.J.: Evaluation of myocardial perfusion after intracoronary injection of radiopotassium. J. Nucl. Med. 14: 274–278 1973PubMedGoogle Scholar
  2. 2.
    Evans, J.R., Gunton, R.W., Baker, R.G., Beanlands, D.S., Spears, J.C.: Use of radioiodinated fatty acid for photoscans of the heart. Circ. Res. 16: 1–10 1965PubMedCrossRefGoogle Scholar
  3. 3.
    Strauss, H.W., Zaret, B.L., Martin, N.D., Wells, H.P., Jr., Flamm, M.D., Jr.: Noninvasive evaluation of regional myocardial perfusion with potassium 43. Technique in patients with exercise-induced transient myocardial ischemia. Radiology 108: 85–90, 1973PubMedGoogle Scholar
  4. 4.
    Holman, B.L., Dewanjee, M.K., Idoine, J., Fliegel, C.P., Davis, M.A., Treves, S., Eldh, P.: Detection and localization of experimental myocardial infarction with 99mTc-tetracycline. J. Nucl. Med. 14: 595–599, 1973PubMedGoogle Scholar
  5. 5.
    Holman, B.L., Lesch, M., Zweiman, F.G., Temte, J., Lown, B., Gorlin, R.: Detection and sizing of acute myocardial infarcts with 99mTc(Sn)tetracycline. N. Engl. J. Med. 291: 159–163, 1974PubMedCrossRefGoogle Scholar
  6. 6.
    Holman, B.L., Tanaka, T.T., Lesch, M.: Evaluation of radiopharmaceuticals for the detection of acute myocardial infarction in man. Radiology 121: 427–430, 1976PubMedGoogle Scholar
  7. 7.
    Parkey, R.W., Bonte, F.J., Meyer, S.L., Atkins, J.M., Curry, G.L., Stokely, E.M., Willerson, J.T.: A new method for radionuclide imaging of acute myocardial infarction in humans. Circulation 50: 540–546, 1974PubMedCrossRefGoogle Scholar
  8. 8.
    Bonte, F.J., Parkey, R.W., Graham, K.D., Moore, J., Stokely, E.M.: A new method for radionuclide imaging of myocardial infarcts. Radiology 110: 473–474, 1974PubMedGoogle Scholar
  9. 9.
    Zaret, B.L., DiCola, V.C., Donabedian, R.K., Puri, S., Wolfson, S., Freedman, G.S., Cohen, L.S.: Dual radionuclide study of myocardial infarction. Relationships between myocardial uptake of potassium-43, technetium-99m stannous pyrophosphate, regional myocardial blood flow and creatine Phosphokinase depletion. Circulation 53: 422–428, 1976PubMedCrossRefGoogle Scholar
  10. 10.
    Shen, A.C., Jennings, R.B.: Myocardial calcium and magnesium in acute ischemic injury. Am. J. Pathol. 67: 417–440, 1972PubMedGoogle Scholar
  11. 11.
    Buja, L.M., Tofe, A.J., Mukherjee, A., Parkey, R.W., Bonte, F.J., Willerson, J.T.: Role of elevated tissue calcium in myocardial infarct scintigraphy with technetium phosphorous radiopharmaceuticals. Circulation (Suppl.) 54: 11–219, 1976Google Scholar
  12. 12.
    Dewanjee, M.K.: Localization of skeletal-imaging 99mTc chelates in dead cells in tissue culture: Concise communication. J. Nucl. Med. 17: 993–997, 1976PubMedGoogle Scholar
  13. 13.
    Scheiben, H., Ingwall, J., Sybers, H., Ashburn, W: Uptake of Tc-99m pyrophosphate and calcium in irreversibly damaged myocardium. J. Nucl. Med. 17: 534, 1976Google Scholar
  14. 14.
    Holman, B.L., Chisholm, R.J., Braunwald, E.: The prognostic implications of acute myocardial infarct scintigraphy with 99mTc-pyrophosphate. Circulation 57: 320–326, 1978PubMedCrossRefGoogle Scholar
  15. 15.
    Parkey, R.W., Bonte, F.J., Stockely, E.M., Meyer, A.L., Willerson, J.T.: Analysis of Tc-99m stannous pyrophosphate myocardial scintigrams in 242 patients. J. Nucl. Med. 16: 556, 1975Google Scholar
  16. 16.
    Ennis, J.T., Walsh, M.J., Mahon, J.M.: Value of infaret-specific isotope (99mTc-labelled stannous pyrophosphate) in myocardial scanning. Br. Med. J. 3: 517–520, 1975PubMedCrossRefGoogle Scholar
  17. 17.
    Karunaratne, H.B., Walsh, W.F., Fill, H.R., Resnekov, L., Harper, P.V.: Technetium-99m pyrophosphate myocardial scintigraphy in patients with ehest pain — lack of diagnostic speeificity. J. Nucl. Med. 17: 523–524, 1976Google Scholar
  18. 18.
    Cowley, M.J., Mantle, J.A., Rogers, W.J., Russell, R.O. Jr., Rackley, C.E., Logic, J.R.: Technetium-99m stannous pyrophosphate myocardial scintigraphy. Reliability and limitations in assessment of acute myocardial infarction. Circulation 56: 192–198, 1977PubMedCrossRefGoogle Scholar
  19. 19.
    Walsh, W.F., Karunaratne, H.B., Resnekov, L., Fill, H.R., Harper, P.V.: Assessment of diagnostic value of technetium-99m pyrophosphate myocardial scintigraphy in 80 patients with possible acute myocardial infarction. Br. Heart J. 39: 974–981, 1977PubMedCrossRefGoogle Scholar
  20. 20.
    Holman, B.L., Lesch, M., Alpert, J.S.: Myocardial scintigraphy with technetium-99m pyrophosphate during the early phase of acute infarction. Am. J. Cardiol. 41: 39–42, 1978PubMedCrossRefGoogle Scholar
  21. 21.
    Olson, H.G., Lyons, K.P., Aronow, W.S., Brown, W.T., Greenfield, R.S.: Follow-up technetium-99m stannous pyrophosphate myocardial scintigrams after acute myocardial infarction. Circulation56: 181–187, 1977PubMedCrossRefGoogle Scholar
  22. 22.
    Buja, L.M., Poliner, L.R., Parkey, R.W., Pulido, J.I., Hutcheson, D., Platt, M.R., Mills, L.J., Bonte, F.J., Willerson, J.T.: Clincopathologic study of persistently positive technetium-99m stannous pyrophosphate myocardial scintigrams and myocytolytic degeneration after myocardial infarction. Circulation56: 1016–1023, 1977PubMedCrossRefGoogle Scholar
  23. 23.
    Ahmad, M., Dubiel, J., Verdon, T.A., Martin, R.H.: Technetium-99m stannous pyrophosphate myocardial imaging in patients with left ventricular aneurysm. Clin. Res. 23: 168a, 1975Google Scholar
  24. 24.
    Walsh, W., Lessem, J., Fill, H., Harper, P.V.: Value of 99mTcpyrophosphate myocardial scintigraphy in patients with suspected myocardial infarction. Am. J. Cardiol. 37: 180. 1976CrossRefGoogle Scholar
  25. 25.
    Holman, B.L.: Radionuclide methods in the evaluation of myocardial ischemia and infarction. Circulation (Suppl.) 53: 1–112–119, 1976CrossRefGoogle Scholar
  26. 26.
    Pugh, B.R., Buja, L.M., Parkey, R.W., Poliner, L.R., Stokely, E.M., Bonte, F.J., Willerson, J.T.: Cardioversion and “false positive” technetium-99m stannous pyrophosphate myocardial scintigrams. Circulation 54: 399–103, 1976PubMedCrossRefGoogle Scholar
  27. 27.
    Go, R.T., Chiu, C.L., Doty, D.B., Cheng, H.F., Christie, J.H.: Radionuclide imaging of experimental myocardial contusion. J. Nucl. Med. 15: 1174–1175, 1974PubMedGoogle Scholar
  28. 28.
    Serafini, A.N., Raskin, M.M., Zand, L.C., Watson, D.D.: Radionuclide breast scanning in carcioma of the breast. J. Nucl. Med. 15: 1149–1152, 1974PubMedGoogle Scholar
  29. 29.
    Chacko, A.K., Gordon, D.H., Bennett, J.M., O’Mara, R.E., Wilson, G. A.: Myocardial imaging with Tc-99m pyrophosphate in patients on adriamycin treatment for neoplasia. J. Nucl. Med. 18: 680–683, 1977PubMedGoogle Scholar
  30. 30.
    Klein, M.S., Coleman, R.E., Roberts, R., Weiss, A.N.: 99mTc(Sn)pyrophosphate scintigrams in exercise-induced angina and calcified valves. Am. J. Cardiol. 37: 149, 1976CrossRefGoogle Scholar
  31. 31.
    Jengo, J.A., Mena, L., Joe, S.H., Criley, J.M.: The significance of calcific valvulär heart disease in Tc-99m pyrophosphate myocardial infarction scanning: Radiographic, scintigraphic, and pathological correlation. J. Nucl. Med. 18: 776–780, 1977PubMedGoogle Scholar
  32. 32.
    Bossuyt, A., Verbeelen, D.: Accumulation of 99mTc pyrophosphate in the skin lesions of pseudoxanthoma elasticum. Clin. Nucl. Med. 1: 245, 1976Google Scholar
  33. 33.
    Hisada, K., Suzuki, Y., Iimori, M.: Technetium-99m pyrophosphate bone imaging in the evaluation of trauma. Clin. Nucl. Med. 1: 18–25, 1976CrossRefGoogle Scholar
  34. 34.
    Rosenthall, L., Hill, R.O., Chuang, S.: Observation on the use of 99mTc-phosphate imaging in peripheral bone trauma. Radiology 119: 637, 1976PubMedGoogle Scholar
  35. 35.
    Kim, E.: Calcified costal cartilage as a cause of false interpretation on myocardial imaging. Clin. Nucl. Med. 1: 159–161, 1976CrossRefGoogle Scholar
  36. 36.
    Klein, M.S., Coleman, R.E., Roberts, R., Weiss, A.N.: False positive 99mTc(Sn)pyrophosphate myocardial infarct images related to delayed blood pool clearance. Clin. Nucl. Med. 1: 45–47, 1976CrossRefGoogle Scholar
  37. 37.
    Prasquier, R., Taradash, M.R., Botvinick, E.H., Shames, D.M., Parmley, W.W.: The speeificity of the diffuse pattern of cardiac uptake in myocardial infarction imaging with technetium-99m stannous pyrophosphate. Circulation 55: 61–66, 1977PubMedCrossRefGoogle Scholar
  38. 38.
    Donsky, M.S., Curry, G.C., Parkey, R.W., Meyer, S.L., Bonte, F.J., Platt, M.R., Willerson, J.T.: Unstable angina pectoris. Clinical, angiographic, and myocardial scintigraphic observations. Br. Heart J. 38: 257–263, 1976PubMedCrossRefGoogle Scholar
  39. 39.
    Abdulla, A.M., Canedo, M.I., Cortez, B.C., McGinnis, K.D., Wilhelm, S.K.: Detection of unstable angina by 99mtechnetium pyrophosphate myocardial scintigraphy. Chest 69: 168–173, 1976PubMedCrossRefGoogle Scholar
  40. 40.
    Perez, L.A., Hayt, D.B., Freeman, L.M.: Localization of myocardial disorders other than infarction with 9 9 mTc-labeled phosphate agents. J. Nucl. Med. 17: 241–246, 1976PubMedGoogle Scholar
  41. 41.
    Willerson, J.T., Parkey, R.W., Buja, L.M., Harris, R.A., Jr., Stokely, E.M., Blomqvist, G., Bonte, F.J.: Sizing acute myocardial infarction utilizing technetium stannous pyrophosphate myocardial scintigrams in dogs and man. Circulation 52 (Suppl.) 52: 1–108, 1975CrossRefGoogle Scholar
  42. 42.
    Stokely, E.M., Buja, L.M., Lewis, S.E., Parkey, R.W., Bonte, F.J., Harris, R.A., Jr., Willerson, J.T.: Measurement of acute myocardial infarcts in dogs with 99mTc-stannous pyrophosphate scintigrams. J. Nucl. Med. 17: 1–5, 1976PubMedGoogle Scholar
  43. 43.
    Botvinick, E.H., Shames, D., Lappin, H., Tyberg, J.V., Townsend, R., Parmely, W.W.: Noninvasive quantitation of myocardial infarction with technetium-99m pyrophosphate. Circulation 52: 909–915, 1975PubMedCrossRefGoogle Scholar
  44. 44.
    Holman, B.L., Ehrie, M., Lesch, M.: Correlation of acute myocardial infarct scintigraphy with postmortem studies. Am. J. Cardiol. 37: 311–313, 1976PubMedCrossRefGoogle Scholar
  45. 45.
    Henning, H., Schelbert, H., O’Rourke, R.A., Righetti, A., Hardarson, T., Ashburn, W.: Dual myocardial imaging with Tc-99m pyrophosphate and thallium-201 for diagnosing and sizing acute myocardial infarction. J. Nucl. Med. 17: 524, 1976Google Scholar
  46. 46.
    Keyes, J.W., Leonard, P.F., Brody, S.L., Svetkoff, DJ., Rogers, W.L., Lucchesi, B.R.: Myocardial infarct quantification in the dog by single photon emission computed tomography.Circulation 58: 227–232, 1978PubMedCrossRefGoogle Scholar
  47. 47.
    Sharpe, D.N., Botvinick, E.H., Shames, D.M., Schiller, N.B., Massie, B.M., Chatterjee, K., Parmley, W.W.: The noninvasive diagnosis of right ventricular infarction. Circulation 57: 483–490, 1978PubMedCrossRefGoogle Scholar
  48. 48.
    Righetti, A., O’Rourke, R.A., Schelbert, H., Henning, H., Hardarson, T., Daily, P.O., Ashburn, W., Ross, J., Jr.: Usefulness of preoperative and postoperative Tc-99m(Sn)pyrophosphate scans in patients with ischemic and valvulär heart disease. Am. J. Cardiol. 39: 43–49, 1977PubMedCrossRefGoogle Scholar
  49. 49.
    Platt, M.R., Parkey, R.W., Willerson, J.T., Bonte, F.J., Shapiro, W., Sugg, W.L.: Technetium stannous pyrophosphate myocardial scintigrams in the recognition of myocardial infarction in patients undergoing coronary artery revascularization. Ann. Thorac. Surg. 21: 311–317, 1976PubMedCrossRefGoogle Scholar
  50. 50.
    Fink-Bennett, D., Dworkin, HJ., Lee, Y.H.: Myocardial imaging of the acute infarct. Radiology 113: 449–450, 1974PubMedGoogle Scholar
  51. 51.
    Rossman, DJ., Rouleau, J., Strauss, H.W., Pitt, B.: Detection and size estimation of acute myocardial infarction using 99mTcglucoheptonate.J. Nucl. Med. 16: 980–985, 1975PubMedGoogle Scholar
  52. 52.
    Khaw, B.A., Beller, G.A., Haber, E.: Experimental myocardial infarct imaging following intravenous administration of iodine-131 labeled antibody (Fab’)2 fragments specific for cardiac myosin. Circulation 57: 743–750, 1978PubMedCrossRefGoogle Scholar
  53. 53.
    Davis, M.A., Holman, B.L., Carmel, A.N.: Evaluation of radiopharmaceuticals sequestered by acutely damaged myocardium. J. Nucl. Med. 17: 911–917, 1976PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • B. L. Holman
    • 1
  • J. Wynne
    • 1
  1. 1.Departments of Radiology and MedicineHarvard Medical SchoolBostonUSA

Personalised recommendations