Skip to main content

Effects on Myocardial Metabolism

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 54 / 1))

Abstract

The metabolic consequences of the actions of catecholamines on the heart have been excellently reviewed by Himms-Hagen in Vol. XXXIII. of this Handbook (Himms- Hagen, 1972). Therefore, the effects of adrenergic agonists on heart metabolism will be discussed rather briefly and attention will be focussed on new problems which have arisen and are under investigation. Progress during the last years consists of better knowledge of the molecular nature of the processes which originate on the cell surface membrane by interaction of adrenergic agonists with their specific receptors and which terminate in a modified physiological response. The first series of the cascading chain reactions which result in an increased intracellular level of cyclic AMP is based on the “second messenger” concept postulated by Sutherland and co-workers (Sutherland and Rall, 1960; Sutherland et al., 1965; Sutherland and Robison, 1966; Sutherland et al., 1968). The role of cyclic AMP in mediating metabolic and physiological effects of catecholamines, which represent the naturally occurring class of adrenergic agonists, is now clearer. However, it is far from being completely understood. Recently published results of Ingebretsen et al., Becker et al., and Hu and Venter have demonstrated that catecholamines covalently bound to glass beads or polymers are able to induce metabolic and physiological effects comparable to those of solubilized amines without, however, raising the intracellular level of cyclic AMP (Ingebretsen et al., 1977; Becker et al., 1977; Hu and Venter, 1978). How the signal originating from interaction of catecholamines with the β-adrenergic receptor is propagated is obscure and has still to be clarified.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, K., Robison, G.A., Liddle, G.W., Butcher, R.W., Nicholson, W.E., Baird, C.E.: Role of cyclic AMP in mediating the effects of MSH, norepinephrine, and melatonine on frog skin color. Endocrinol. 85, 674–682 (1969)

    Article  CAS  Google Scholar 

  • Ahlquist, R.P.: A study of the adrenotropic receptors. Am. J. Physiol. 153, 586–600 (1948)

    PubMed  CAS  Google Scholar 

  • Alexander, R.W., Williams, L.T., Lefkowitz, R.J.: Identification of cardiac β-adrenergic receptors by (-) [3H]alprenolol binding. Proc. Natl. Acad. Sci. 72, 1564–1568 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Amer, M.S.: Guanosine 3’,5’-monophosphate and gallbladder contraction. Gastroenterol. 67, 333–337 (1974)

    CAS  Google Scholar 

  • Appleman, M.M., Thompson, W.J., Russell, T.R.: Cyclic nucleotide phosphodiesterases. Adv. Cycl. Nucl. Res. 3, 65–98 (1973)

    CAS  Google Scholar 

  • Appleman, M.M., Terasaki, W.L.: Regulation of cyclic nucleotide phosphodiesterase. Adv. Cycl. Nucl. Res. 5, 153–162 (1975)

    CAS  Google Scholar 

  • Avdonin, P.W., Tkatschuk, W.A.: Uschastije Ca2+ sawizimovo aktivatora w regulatzii aktivnosti adenylatcyklasi zerdza ionami Ca. Doklady Akademii Nauk SSSR 238, 726–729 (1978)

    PubMed  CAS  Google Scholar 

  • Axelrod, J.: Regulation of catecholamine neurotransmitters, metabolism and β-adrenergic receptors. Abstr. 2726 of 7th Int. Congr. Pharmacol., Paris 1978

    Google Scholar 

  • Ballard, F.B., Danforth, W.H., Naegk, S., Bing, R.J.: Myocardial metabolism of fatty acids. J. Clin. Invest. 39, 717–723 (1960)

    Article  PubMed  CAS  Google Scholar 

  • Banerjee, S.P., Kung, L. S.: β-adrenergic receptors in rat heart: effects of thyreodectomy. Europ. J. Pharmacol. 43, 207–208 (1977)

    Article  CAS  Google Scholar 

  • Barnett, R.E.: Fluidity in membranes. In: Receptors and Hormone Action. Vol. 1. Edit. B.W. O’Malley and L. Birnbaumer. New York, San Francisco, London: Academic Press 1977, pp. 427–446

    Google Scholar 

  • Beavo, J.A., Bechtel, P.J., Krebs, E.G.: Activation of protein kinase by physiological concentrations of cyclic AMP. Proc. Natl. Acad. Sci. 71, 3580–3583 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Bechtel, P.J., Beavo, J.A., Hofman, F., Dills, W.L., Krebs, E.G.: Cyclic AMP-dependent protein kinase isoenzymes. Fed. Proc. 34, 617 (1975)

    Google Scholar 

  • Becker, E., Ingebretsen, W.R., Jr., Mayer, S.E.: Electrophysiological responses of cardiac muscle to isoproterenol covalently linked to glass beads. Circul. Res. 41, 653–660 (1977)

    CAS  Google Scholar 

  • Benfey, B.G.: Characterization of a-adrenoceptors in the myocardium. Brit. J. Pharmacol. 48, 132–138 (1973)

    CAS  Google Scholar 

  • Benfey, B.G.: Cardiac adrenoceptors at low temperature: What is the experimental evidence for the adrenoceptor interconversion hypothesis? Fed. Proc. 36, 2575–2579 (1977 a)

    PubMed  CAS  Google Scholar 

  • Benfey, B.G.: Cardiac adrenoceptors at low temperature and the adrenoceptor interconversion hypothesis. Brit. J. Pharmacol. 61, 167–173 (1977 b)

    CAS  Google Scholar 

  • Bensadoun, A., Ehnholm, C., Steinberg, D., Brown, W.V.: Purification and characterization of lipoprotein lipase from pig adipose tissue. J. Biol. Chem. 249, 2220–2227 (1974)

    PubMed  CAS  Google Scholar 

  • Berridge, M.J.: The interaction of cyclic nucleotides and calcium in the control of cellular activity. Adv. Cycl. Nucl. Res. Vol. 6, edited by P. Greengard and G. A. Robinson. New York: Raven Press 1975, pp. 1–80

    Google Scholar 

  • Berridge, M.J., Rapp, P.: Cyclic nucaleotides, calcium and cellular control mechanisms. In: Cyclic 3’,5’-nucleotides: Mechanism of action. Edit. H. Cramer and J. Schultz. London, New York, Sidney, Toronto: John Wiley & Sons 1977, pp. 65–76

    Google Scholar 

  • Birnbaumer, L.: Regulatory events at the level of membrane-bound adenylate cyclase. In: Cyclic 3’,5’-nucleotides: Mechanism of action. Edit. H. Cramer and J. Schultz. London, New York, Sidney, Toronto: John Wiley & Sons 1977, pp. 13–37

    Google Scholar 

  • Blumenthal, D.K., Stull, J.T., Gill, G.N.: Phosphorylation of cardiac troponin by guanosine 3’:5’-monophosphate-dependent protein kinase. J. Biol. Chem. 253, 334–336 (1978)

    CAS  Google Scholar 

  • Brostrom, M.A., Reimann, E.M., Walsh, D.A., Krebs, E.G.: A cyclic AMP-stimulated protein kinase from cardiac muscle. Adv. Enzyme Regul. 8, 191–203 (1970)

    Article  PubMed  CAS  Google Scholar 

  • Brostrom, C.O., Huang, Y.-C., Breckenridge, B.M., Wolff, D.J.: Identification of a calcium binding protein as a calcium dependent regulator of brain adenylate cyclase. Proc. Natl. Acad. Sci. USA 72, 64–68 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Burns, T.W., Langley, P.E.: The effect of alpha and beta adrenergic receptor stimulation on the adenylate cyclase activity of human adipocytes. J. Cycl. Nucl. Res. 1, 321–328 (1975)

    CAS  Google Scholar 

  • Caron, M.G., Lefkowitz, R.J.: Solubilization and characterization of the β-adrenergic receptor binding sites of frog erythrocytes. J. Biol. Chem. 251, 2374–2384 (1976)

    PubMed  CAS  Google Scholar 

  • Casti, A., Corti, A., Reali, N., Mezzetti, G., Orlandini, G., Caldarera, C.M.: Modifications of major aspects of myocardial ribonucleic acid metabolism as a response to noradrenaline. Behaviour of polyadenylate polymerase and ribonucleic acid polymerase, acetylation of histones and rate of synthesis of polymerases. Biochem. J. 168, 333–340 (1977)

    PubMed  CAS  Google Scholar 

  • Challoner, D.R., Steinberg, D.: Metabolic effect of epinephrine on the QO2 of the arrested isolated perfused rat heart. Nature (London) 205, 602–603 (1965)

    Article  CAS  Google Scholar 

  • Cheung, W.Y.: Cyclic 3’,5’-nucleotide phosphodiesterase: Demonstration of an activator. Biochem. Biophys. Res. Commun. 38, 533–538 (1970)

    Article  PubMed  CAS  Google Scholar 

  • Cheung, W.Y.: Cyclic 3’,5’-nucleotide phosphodiesterase: Evidence for and properties of a protein activator. J. Biol. Chem. 246, 2859–2869 (1971)

    PubMed  CAS  Google Scholar 

  • Christian, D.R., Kilsheimer, G.S., Pettett, G., Paradise, R., Ashmore, J.: Regulation of lipolysis in cardiac muscle: A system similar to the hormone sensitive lipase of adipose tissue. Adv. Enzyme Regul. 7, 71–82 (1969)

    Article  PubMed  CAS  Google Scholar 

  • Chubb, J., Huxtable, R.: Isoproterenol-stimulated taurine influx in the perfused rat heart. Europ. J. Pharmacol. 48, 369–376 (1978)

    Article  CAS  Google Scholar 

  • Chubb, J., Byus, C., Russell, D.H., Huxtable, R.: Cyclic AMP-dependent protein kinases in isoproterenol-induced cardiac hypertrophy. Fed. Proc. 35, 288 (1976)

    Google Scholar 

  • Ciaraldi, T., Marinetti, G.V.: Thyroxine and propylthiouracil effects in vivo on alpha and beta adrenergic receptors in rat heart. Biochem. Biophys. Res. Commun. 74, 984–991 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Claycomb, W.C.: Biochemical aspects of cardiac muscle differentiation. Control of DNS synthesis and cell differentiation by adrenergic innervation and cyclic adenosine 3’,5’-monophosphate. J. Biol. Chem. 251, 6082–6090 (1976)

    PubMed  CAS  Google Scholar 

  • Claycomb, W.C.: Cardiac muscle hypertrophy. Differentation and growth of the heart cell during development. Biochem. J. 168, 599–601 (1977)

    PubMed  CAS  Google Scholar 

  • Cohen, P.: Oral presentation. 12th Febs Meeting 1978 Dresden.

    Google Scholar 

  • Cole, H.A., Perry, S.V.: The phosphorylation of troponin I from cardiac muscle. Biochem. J. 149, 525–533 (1975)

    PubMed  CAS  Google Scholar 

  • Coleman, A.J., Somerville, A.R.: The selective action of β-adrenoceptor blocking drugs and the nature of β1 and β2 adrenoceptors. Brit. J. Pharmacol. 59, 83–93 (1977)

    CAS  Google Scholar 

  • Corbin, J.D., Keely, S.L.: Characterization and regulation of heart adenosine 3’,5’-monophosphate-dependent protein kinase isozymes. J. Biol. Chem. 252, 910–918)(1977a)

    PubMed  CAS  Google Scholar 

  • Corbin, J.D., Sugden, P.H., Lincoln, T.M., Keely, S.L.: Compartmentalization of adenosine 3’:5’-monophosphate and adenosine 3’:5’-monophosphate-dependent protein kinase in heart tissue. J. Biol. Chem. 252, 385–3861 (1977 b)

    Google Scholar 

  • Corbin, J.D., Keely, S.L., Park, R.C.: The distribution and dissociation of cyclic adenosine 3’,5’-monophosphate-dependent protein kinases in adipose, cardiac and other tissues. J. Biol. Chem. 250, 218–225 (1975)

    PubMed  CAS  Google Scholar 

  • Corti, A., Casti, A., Mezzetti, G., Reali, N., Orlandini, G., Caldarera, C.M.: Modifications of major aspects of myocardial ribonucleic acid metabolism as a response to noradrenaline. Action of the hormone on cytoplasmic processing of ribonucleic acid after reserpin treatment. Biochem. J. 168, 341–345 (1977)

    PubMed  CAS  Google Scholar 

  • Crass, M.F.III: Regulation of triglyceride metabolism in the isotopically prelabeled perfused heart. Fed. Proc. 36, 1995–2000 (1977)

    PubMed  CAS  Google Scholar 

  • Crass, M.F. III, Shipp, J.C., Pieper, G.M.: Effects of catecholamines on myocardial endogenous substrates and contractility. Am. J. Physiol. 228, 618–627 (1975)

    PubMed  CAS  Google Scholar 

  • Dedman, J.R., Potter, J.D., Jackson, R.L., Johnson, J.D., Means, A.R.: Physicochemical properties of rat testis Ca2+-dependent regulator protein of cyclic nucleotide phosphodiesterase. J. Biol. Chem. 252, 8415–8422 (1977)

    PubMed  CAS  Google Scholar 

  • Denton, R.M., Randle, P.J.: Hormone control of lipid concentration in rat heart and gastrocnemius. Nature (London) 208, 488 (1965)

    Article  CAS  Google Scholar 

  • Deguchi, T., Axelrod, J.: Supersensitivity and subsensitivity of the β-adrenergic receptor in pineal gland regulated by catecholamine transmitter. Proc. Nat. Acad. Sci. USA 70, 2411–2414 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Dobson, J.G.: Protein kinase regulation of cardiac Phosphorylase activity and contractility. Am. J. Physiol. 234, H638–H645 (1978)

    PubMed  CAS  Google Scholar 

  • Dowd, F., Schwartz, A.: The presence of cyclic AMP-stimulated protein kinase substrates and evidence for endogenous protein kinase activity in various Na+/K+-ATPase preparations from brain, heart and kidney. J. Molec. Cell. Cardiol. 7, 483–497 (1975)

    Article  CAS  Google Scholar 

  • Drummond, G.I., Duncan, I.: Adenyl cyclase in cardiac tissue. J. Biol. Chem. 245, 976–983 (1970)

    PubMed  CAS  Google Scholar 

  • Drummond, G.I., Severson, D.L., Duncan, L.: Adenyl cyclase. Kinetic properties and nature of fluoride and hormone stimulation. J. Biol. Chem. 246, 4166–4173 (1971)

    PubMed  CAS  Google Scholar 

  • Drummond, G.I., Dunham, J.: Adenylate cyclase in cardiac microsomal fraction. J. Molec. Cell. Cardiol. 10, 317–331 (1978)

    Article  CAS  Google Scholar 

  • Ehnholm, C., Kinnunen, P.K.J., Huttunen, N.K., Nikkita, E.A., Ohta, M.: Purification and characterization of lipoprotein lipase from pig myocardium. Biochem. J. 149, 649–655 (1975)

    PubMed  CAS  Google Scholar 

  • Endoh, M., Schümann, H.-J.: β- and α-adrenoceptors in the ventricular muscle of the rabbit. Naunyn-Schmiedeberg’s Arch. Pharmacol. 282, R. 18 (1974)

    Google Scholar 

  • Endoh, M., Wagner, J., Schümann, H.-J.: Influence of temperature on the positive inotropic effects mediated by α- and β-adrenoceptors in the isolated rabbit papillary muscle. Naunyn- Schmiedeberg’s Arch. Pharmacol. 287, 61–72 (1975)

    CAS  Google Scholar 

  • Engelhard, V.H., Plut, D.A., Storm, D.R.: Subcellular localization of adenylate cyclase in rat cardiac muscle. Biochim. Biophys. Acta 451, 48–61 (1976)

    Article  PubMed  CAS  Google Scholar 

  • England, P.: Correlation between contraction and phosphorylation of the inhibitory subunit of troponin in perfused rat heart. FEBS letters 50, 57–60 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Entman, M.L., Levey, G.S., Epstein, S.E.: Demonstration of adenyl cyclase activity in canine cardiac sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 35, 728–740 (1969 a)

    Article  PubMed  CAS  Google Scholar 

  • Entman, M.L., Levey, G.S., Epstein, S.E.: Mechanism of action of epinephrine and glucagon on the heart: Evidence of a cyclic 3’,5’-AMP mediated increase in cardiac sarcotubular calcium stores. Circ. Res. 25, 429–438 (1969 b)

    Google Scholar 

  • Entman, M.L., Goldstein, M.A., Schwartz, A.: The cardiac sarcoplasmic reticulum - glycogenolytic complex, an internal beta adrenergic receptor. Life Sci. 19, 1623–1630 (1976 a)

    Article  PubMed  CAS  Google Scholar 

  • Entman, M.L., Kaniike, K., Goldstein, M.A., Nelson, T.E., Bornet, E.P., Futch, T.W., Schwartz, A.: Association of glycogenolysis with cardiac sarcoplasmic reticulum. J. Biol. Chem. 251, 3140–3146 (1976 b)

    CAS  Google Scholar 

  • Entman, M.L., Bornet, E.P., Garber, A.J., Schwartz, A., Levey, G.S., Lehotay, D.C., Bricker, L.A.: The cardiac sarcoplasmic reticulum-glycogenolytic complex. A possible effector site for cyclic AMP. Biochim. Biophys. Acta 499, 228–237 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Erlichman, J., Rubin, C.S., Rosen, O.M.: Physical properties of a purified cyclic adenosine 3’5’-monophosphate dependent protein kinase from bovine heart muscle. J. Biol. Chem. 248, 7607–7609 (1973)

    PubMed  CAS  Google Scholar 

  • Evans, R.J., Opie, L.H., Shipp, J.C.: Metabolism of palmitic acid in the perfused rat heart. Am. J. Physiol. 205, 766–770 (1963)

    PubMed  CAS  Google Scholar 

  • Ezrailson, E.G., van Winkle, W.B., Bornet, E.P., Entman, M.L.: A functional link between contraction and energy metabolism in cardiac and skeletal muscle. Abstr. No. 40, 7 th Internat. Congr. Pharmacol. Paris 1978

    Google Scholar 

  • Fleckenstein, A.: Phathophysiologische Kausalfaktoren bei Myokardnekrose und Infarkt. Wiener Zeitschrift f. Innere Med. 52, 133–143 (1971)

    CAS  Google Scholar 

  • Furchgott, R.F.: Pharmacological characteristics of adrenergic receptors. Red. Proc. 29, 1352–1361 (1970)

    CAS  Google Scholar 

  • Gerlach, E., Zimmer, H.-G.: Alterations of myocardial adenine nucleotide metabolism. Recent Adv. in Studies on Cardiac Structure and Metabolism Vol. 7. Edit. P. Harris, R.J. Bing, and A. Fleckenstein. Baltimore: University Park Press 1976, pp. 121–130

    Google Scholar 

  • Glass, D.B., White, J.G., Goldberg, N.D.: Rapid elevation in cyclic GMP with epinephrine- induced platelet aggregation. J. Clin. Invest. 51, 2124–2132 (1972)

    Article  Google Scholar 

  • Glaubiger, G., Lefkowitz, R.J.: Elevated beta-adrenergic receptor number after chronic propranolol treatment. Biochem. Biophys. Res. Commun. 78, 720–725 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Glaubiger, G., Tsai, B.S., Lefkowitz, R.J., Weiss, B., Johnson, E.M., Jr.: Chronic guanethidine treatment increases cardiac β-adrenergic receptors. Nature 273, 240–242 (1978)

    Article  PubMed  CAS  Google Scholar 

  • Glossmann, H., Struck, C.J., Konrad, C., Krawitz, M., Poppert, D., Erdmann, E., Veil, L.-B.: Adenylate cyclase regulation and β-adrenergic receptors in guinea pig myocardial tissue. In: International Boehringer Mannheim Symposium Myocardial Failure. Edit. G. Riecker, A. Weber, J. Goodwin. Berlin, Heidelberg, New York: Springer Verlag 1977, pp. 132–152

    Google Scholar 

  • Govier, W.C.: Myocardial alpha adrenergic receptors and their role in the production of a positive inotropic effect by sympathomimetic agents. J. Pharmacol. Exp. Ther. 159, 82–90 (1968)

    PubMed  CAS  Google Scholar 

  • Graeves, M.F.: Membrane receptor-adenylate cyclase relationships. Nature (London) 265, 681–683 (1977)

    Article  Google Scholar 

  • Greengard, P.: Phosphorylated proteins as physiological effectors. Sci. 199, 146–152 (1978)

    Article  CAS  Google Scholar 

  • Gutman, Y.: Molecular mechanisms in the modulation of catecholamine release from the adrenal medulla. Abstr. 2220 of 7 th Int. Congr. Pharmacol. Paris 1978

    Google Scholar 

  • Haber, E., Wrenn, S.: Problems in identification of the beta-adrenergic receptor. Physiol. Rev. 56, 317–338 (1976)

    PubMed  CAS  Google Scholar 

  • Haga, T., Haga, K., Gilman, A.G.: Hydrodynamic properties of the β-adrenergic receptor and adenylate cyclase from wild type and variant S 49 lymphoma cells. J. Biol. Chem. 252, 5776–5783 (1977 a)

    Google Scholar 

  • Haga, T., Ross, E.M., Anderson, H.J., Gilman, A.G.: Adenylate cyclase permanently uncoupled from hormone receptors in a novel variant of S49 mouse lymphoma cells. Proc. Natl. Acad. Sci. USA 74, 2016–2020 (1977b)

    Article  PubMed  CAS  Google Scholar 

  • Hait, G., Kypson, J., Massih, R.: Amino acid incorporation into myocardium: effect of insulin, glucagon, and dibutyryl 3’,5’-AMP. Am. J. Physiol. 222, 404–408 (1972)

    PubMed  CAS  Google Scholar 

  • Hanski, E., Sevilla, N., Levitzki, A.: The allosteric inhibition by calcium of soluble and partially purified adenylate cyclase from turkey erythrocytes. Eur. J. Biochem. 76, 513–520 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Harden, T.K., Wolfe, B.B., Molinoff, P.B.: Binding of iodinated beta adrenergic antagonist to proteins derived from rat heart. Mol. Pharmacol. 12, 1–15 (1976)

    PubMed  CAS  Google Scholar 

  • Harri, M.N.E.: Metabolic and cardiovascular responses to repeated injections of alprenolol and noradrenaline in rat. Abstr. 595, 7 th Intern. Congr. Pharmacol. Paris 1978

    Google Scholar 

  • Helmreich, E.J.M., Zenner, H.P., Pfeuffer, T., Cori, C.F.: Signal transfer from hormone receptor to adenylate cyclase. Current Topics of Cell Regul. 10, 41–87 (1976)

    CAS  Google Scholar 

  • Henderson, J.F., Khoo, M.K.Y.: On the mechanism of feedback inhibition of purine biosynthesis de novo in Ehrlich ascites tumor cells in vitro. J. Biol. Chem. 240, 3104–3109 (1965 a)

    PubMed  CAS  Google Scholar 

  • Henderson, J.F., Khoo, M.K.Y.: Availability of 5-phosphoribosyl-l-pyrophosphate for ribonucleotide synthesis in Ehrlich ascites tumor cells in vitro. J. Biol. Chem. 240, 2358–2362 (1965 b)

    PubMed  CAS  Google Scholar 

  • Himms-Hagen, J.: Effects of catecholamines on metabolism. In: Handbook of Experimental Pharmacology Vol. 33, edited by H. Blaschko and E. Muscholl. Berlin, Heidelberg, New York: Springer Verlag 1972, pp. 363–462

    Google Scholar 

  • Hirata, F., Axelrod, J.: Enzymatic synthesis and rapid translocation of phosphatidylcholine by two methyltransferases in erythrocyte membranes. Proc. Natl. Acad. Sci. USA 75, 2348–2352 (1978)

    Article  PubMed  CAS  Google Scholar 

  • Ho, R.-J., Sutherland, E.W.: Formation and release of a hormone antagonist by rat adipocytes. J. Biol. Chem. 246, 6822–6827 (1971)

    PubMed  CAS  Google Scholar 

  • Ho, R.-J., Sutherland, E.W.: Action of feedback regulator on adenylate cyclase. Proc. Nat. Acad. Sci. USA 72, 1772–1777 (1975 a)

    Google Scholar 

  • Ho, R.-J., Sutherland, E.W.: cAMP-mediated feedback regulation in target cells. Adv. Cycl. Nucl. Res. 5, 533–548 (1975b)

    CAS  Google Scholar 

  • Ho, H.C., Wirch, E., Stevens, F.C., Wang, J.H.: Purification of a Ca2+-activable cyclic nucleotide phosphodiesterase from bovine heart by specific interaction with its Ca2+-dependent modulator protein. J. Biol. Chem. 252, 43–50 (1977)

    PubMed  CAS  Google Scholar 

  • Hofman, F., Bechtel, P., Krebs, E.G.: Concentrations of cyclic AMP-dependent protein kinase subunits in various tissues. J. Biol. Chem. 252, 1441–1447 (1977)

    Google Scholar 

  • Hopkins, S.V.: Reduction in isoprenaline-induced cyclic AMP formation in guinea-pig heart after exposure to isoprenaline or salbutamol. Biochem. Pharmacol. 24, 1237–1239 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Hu, E.H., Venter, J.C.: Adenosine 3,,5,-monophosphate concentrations during the positive inotropic response of cat cardiac muscle to polymeric immobilized isoproterenol. Molec. Pharmacol. 14, 237–245 (1978)

    CAS  Google Scholar 

  • Huang, K.P., Huang, F.L., Glinsmann, W.H., Robison, J.C.: Regulation of glycogen synthetase activity by two kinases. Biochem. Biophys. Res. Commun. 65, 1163–1169 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Hui, E.C., Drummond, G.I., Drummond, M.: Isolation and characterization of plasma membrane enriched fractions from guinea pig heart. Adv. Cycl. Nucl. Res. Vol. 5, edited by G.I. Drummond, P. Greengard and G.A. Robison. New York: Raven Press 1975, p. 839

    Google Scholar 

  • Huttunen, J.K., Steinberg, D.: Activation and phosphorylation of purified adipose tissue hormone-sensitive lipase by cyclic AMP-dependent protein kinase. Biochim. Biophys. Acta 239, 411–427 (1971)

    PubMed  CAS  Google Scholar 

  • Huxtable, R., Chubb, J.: Adrenergic stimulation of taurine transport by the heart. Sci. 198, 409–411 (1977)

    Article  CAS  Google Scholar 

  • Imaoka, T., Imazu, M., Ishida, N., Takeda, M.: Comparison of two forms of pig heart phosphoprotein phosphatase. Biochim. Biophys. Acta 523, 109–120 (1978)

    PubMed  CAS  Google Scholar 

  • Ingebretsen, W.R., Jr., Becker, E., Friedman, W.F., Mayer, S.E.: Contractile and biochemical responses of cardiac and skeletal muscle to isoproterenol covalently linked to glass beads. Circul. Res. 40, 474–484 (1977)

    CAS  Google Scholar 

  • Insel, P.A., Maguire, M.E., Gilman, A.G., Bourne, H.R., Coffino, P., Melmon, K.L.: Beta adrenergic receptors and adenylate cyclase: products of separate genes? Molec. Pharmacol. 12, 1062–1069 (1976)

    CAS  Google Scholar 

  • Isaksson, O., Kallfelt, B.: Effect of adrenaline on amino acid transport in perfused rat heart. Acta Physiol. Scand. 86, 483–497 (1972)

    Article  CAS  Google Scholar 

  • Jacobs, K.H., Saur, W., Schultz, G.: Reduction of adenylate cyclase activity in lysates of human platelets by the alpha-adrenergic component of epinephrine. J. Cycl. Nucl. Res. 2, 381–392 (1976)

    Google Scholar 

  • Jarott, B., Picken, G.M.: Cardiac adenylate cyclase. I. Preparation and characterization of a subcellular fraction containing catecholamine-sensitive adenylate cyclase. J. Molec. Cell. Cardiol. 7, 685–697 (1975)

    Google Scholar 

  • Jones, L.R., Besch, H.R., Jr., Fleming, J.W., McConnaughey, M.M., Watanabe, A.M.: Comparative biochemical analysis of purified membrane vesicles from cardiac sarcolemma and sarcoplasmic reticulum. Fed. Proc. 37, 517 (1978)

    Google Scholar 

  • Jungmann, R.A., Russell, D.H.: Minireview. Cyclic AMP, cyclic AMP-dependent protein kinase and the regulation of gene expression. Life Sci. 20, 1787–1798 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Kakiuchi, S., Yamazaki, R., Nakajima, H.: Properties of a heat-stable phosphodiesterase activating factor isolated from brain extract. Studies on cyclic 3’,5’-nucleotide phosphodiesterase II. Proc. Jpn. Acad. 46, 587–592 (1970)

    CAS  Google Scholar 

  • Kakiuchi, S., Yamazaki, R., Teshima, Y., Uenishi, K., Miyamato, E.: Multiple cyclic nucleotide phosphodiesterase activities of rat tissues and occurrance of a calcium-plus magnesium-ion-dependent phosphodiesterase and its protein activator. Biochem. J. 146, 109–120 (1975)

    PubMed  CAS  Google Scholar 

  • Kako, K.: Biochemical changes of the rat myocardium induced by isoproterenol. Can. J. Physiol. Pharmacol. 43, 541–549 (1965)

    Article  PubMed  CAS  Google Scholar 

  • Kallfelt, B.J., Hjalmarson, A.C., Isaksson, O.G.: In vitro effects on protein synthesis in perfused rat heart. J. Molec. Cell. Cardiol. 8, 787–802 (1976)

    Article  CAS  Google Scholar 

  • Kallfelt, B.J., Waldenstrom, A.P., Hjalmarson, A.C.: Effects of adrenaline in vivo ion protein synthesis and sensitivity to ischemia of the perfused rat heart. J. Molec. Cell. Cardiol. 9, 383–398 (1977)

    Article  CAS  Google Scholar 

  • Katz, A.M., Repke, D.I.: Calcium-membrane interaction in the myocardium: Effects of ouabain, epinephrine and 3’,5’-cyclic adenosine monophosphate. Am. J. Cardiol. 31, 193–201 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Katz, A.M., Tada, M., Repke, D.I., Kirchberger, M.A., Iotio, J.M.: Adenylate cyclase: its probable localization in the heart’s sarcoplasmic reticulum as well as sarcolemma. J. Molec. Cell. Cardiol. 6, 75–78 (1974)

    Google Scholar 

  • Kaumann, A.J., Birnbaumer, L.: Studies on receptor-mediated activation of adenylyl cyclases. IV. Characteristics of the adrenergic receptor coupled to myocardial adenylyl cyclase: Stereospecificity for ligands and determination of apparent affinity constants for β-blockers. J. Biol. Chem. 25, 7874–7885 (1974)

    Google Scholar 

  • Kaumann, A. J., Birnbaumer, L.: Desensitization of kitten atria to chronotropic, inotropic and adenylyl cyclase stimulating effects of (–)isoprenaline. Naunyn-Schmiedeberg’s Arch. Pharmacol. 293, 199–202 (1976)

    CAS  Google Scholar 

  • Kaumann, A.J., Bojar, H.: Relationship between the cellular number of occupied β-adrenoceptors and inotropic effects of catecholamines in hearts of reserpine-pretreated kittens. Abstract 2780, 7 th Internat. Congr. Pharmacol. Paris 1978

    Google Scholar 

  • Kebabian, J.W., Zatz, M., Romero, J.A., Axelrod, J.: Rapid changes in rat pineal β-adrenergic receptor: alteration in l-[3H]alprenolol binding and adenylate cyclase. Proc. Natl. Acad. Sci. USA 72, 3735–3739 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Keely, S.L., Corbin, J.D., Park, C.R.: Regulation of adenosine 3’,5’-monophosphate-dependent protein kinase. Regulation of the heart enzyme by epinephrine, glucagon, insulin, and 1 -methyl-3-isobutylxanthine. J. Biol. Chem. 250, 4832–4840 (1975)

    PubMed  CAS  Google Scholar 

  • Keely, S.L., Corbin, J.D., Lincoln, T.: Alpha adrenergic involvement in heart metabolism: effects on adenosine cyclic 3’,5’-monophosphate, adenosine cyclic 3’,5’-monophosphate-dependent protein kinase, guanosine cyclic 3’,5’-monophosphate, and glucose transport. Molec. Pharmacol. 13, 965–975 (1977)

    CAS  Google Scholar 

  • Kleitke, B., Sydow, H., Wollenberger, A.: Evidence for mitochondrial membrane-bound cAMP-dependent protein kinase (cAMP). Abstract 1327 12 th FEBS Meeting Dresden 1978

    Google Scholar 

  • Kleitke, B., Wollenberger, A.: Accelerated RNA and protein synthesis in mitochondria isolated from ischemic myocardium. J. Molec. Cell. Cardiol. 10, 827–845 (1978)

    Article  CAS  Google Scholar 

  • Krause, E.-G., Wollenberger, A.: Cyclic nucleotides and heart. In: Cyclic 3’,5’-Nucleotides: Mechanism of Action. Edit. H. Cramer and J. Schultz. London, New York, Toronto: John Wiley & Sons 1977, pp. 229–250

    Google Scholar 

  • Krause, E.-G., Will, H., Pelouch, V., Wollenberger, A.: Cyclic AMP-dependent protein kinase activity in a cell membrane enriched fraction of pig myocardium. Adv. Cycl. Nucl. Res. 5, 473–490 (1975)

    CAS  Google Scholar 

  • Kreisberg, R.A.: Effect of epinephrine on myocardial triglyceride and free fatty acid utilization. Amer. J. Physiol. 210, 385–389 (1966)

    PubMed  CAS  Google Scholar 

  • Krawietz, W., Poppert, D., Ermann, E., Glossmann, H., Struck, C.J., Konrad, C.: β-Adrenergic receptors in guinea pig myocardial tissue. Naunyn-Schmiedeberg’s Arch. Pharmacol. 295, 215–224 (1976)

    CAS  Google Scholar 

  • Kunos, G., Yong, M.S., Nickerson, M: Transformation of adrenergic receptors in the myocardium. Nature, New Biol. 241, 119–120 (1973)

    CAS  Google Scholar 

  • Kunos, G., Vermes-Kunos, I., Nickerson, M.: Effects of thyroid state on adrenoceptor properties. Nature 250, 779–781 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Kunos, G., Szentivanyi, M.: Evidence favouring the existence of a single adrenergic receptor Nature (Lond.) 217, 1077–1078 (1968)

    Google Scholar 

  • Kunos, G., Mucci, L., Jaeger, V.: Interconversion of myocardial adrenoceptors: its relationship to adenylate cyclase activation. Sci. 19, 1597–1602 (1976)

    CAS  Google Scholar 

  • Kunos, G., Nickerson, M.: Temperature-induced interconversion of α- and β-adrenoceptors in the frog heart. J. Physiol. 256, 23–40 (1976)

    PubMed  CAS  Google Scholar 

  • Kunos, G.: Thyroid hormone-dependent interconversion of myocardial α- and β-receptors in the heart. Brit. J. Pharmacol. 59, 177–189 (1977)

    CAS  Google Scholar 

  • Kunos, G.: Adrenoceptors. Ann. Rev. Pharmacol. Toxicol. 18, 291–311 (1978)

    Article  CAS  Google Scholar 

  • Kuo, J.F.: Changes in relative levels of guanosine-3’,5’-monophosphate-dependent and adenosine-3’,5’-monophosphate dependent protein kinases in lung, heart, and brain of developing guinea pigs. Proc. Natl. Acad. Sci. 72, 2256–2259 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Kuo, J.F., Greengard, P.: Cyclic nucleotide-dependent protein kinases Widespread occurance of adenosine 3’,5’-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc. Natl. Acad. Sci. USA 64, 1349–1355 (1969)

    Article  PubMed  CAS  Google Scholar 

  • Kuo, J.F., Kruger, B.K., Sanes, J.A., Greengard, P.: Cyclic nucleotide-dependent protein kinase from various bovine tissues. Biochim. Biophys. Acta 212, 79–91 (1970)

    PubMed  CAS  Google Scholar 

  • Laks, M.M., Morady, F.: Norepinephrine - The myocardial hypertrophy hormone? Amer. Heart J. 91, 674 (1976)

    Article  CAS  Google Scholar 

  • Laks, M.M.: Norepinephrine - The producer of myocardial cellular hypertrophy and/or necrosis and/or fibrosis. Amer. Heart J. 94, 394–395 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Lands, A.M., Arnold, A., McAuliff, J.P., Luduena, F.P., Brown, T.G., Jr.: Differentiation of receptor system activated by sympathomimetic amines. Nature (Lond.) 214, 597–598 (1967)

    Article  CAS  Google Scholar 

  • Lech, J.J., Jesmol, G.J., Calvert, D.N.: Effect of drugs and hormones on lipolysis in heart. Fed. Proc. 36, 2000–2008 (1977)

    PubMed  CAS  Google Scholar 

  • Lefkowitz, R.J.: Stimulation of catecholamine-sensitive adenylate cyclase by 5’-guanylyl-imidodiphosphate. J. Biol. Chem. 249, 6119–6124 (1974)

    PubMed  CAS  Google Scholar 

  • Lefkowitz, R.J.: Catecholamine stimulated myocardial adenylate cyclase: Effects of nucleotides. J. Molec. Cell. Cardiol. 7, 237–248 (1975 a)

    Article  CAS  Google Scholar 

  • Lefkowitz, R.J.: Guanosine triphosphate binding sites in solubilized myocardium. J. Biol. Chem. 250, 1006–1011 (1975 b)

    CAS  Google Scholar 

  • Lefkowitz, R.J.: Catecholamine stimulated myocardial adenylate cyclase: Effects of phospholipase digestion and the role of membrane lipids. J. Molec. Cell. Cardiol. 7, 27–37 (1975 c)

    Article  CAS  Google Scholar 

  • Lefkowitz, R.J.: Heterogeneity of adenylate cyclase-coupled β-adrenergic receptors. Biochem. Pharmacol. 24, 583–590 (1975 d)

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz, R.J., Mullikin, D., Caron, M.G.: Regulation of β-adrenergic receptors by guanyl- 5’-yl imidodiphosphate and other purine nucleotides. J. Biol. Chem. 251, 4686–4692 (1976)

    PubMed  CAS  Google Scholar 

  • Lefkowitz, R.J., Hamp, M.: Comparison of specificity of agonist and antagonist radioligand binding to β-adrenergic receptors. Nature (London) 268, 453–454 (1977)

    Article  CAS  Google Scholar 

  • Lefkowitz, R.J., Williams, L.T.: Catecholamine binding to the β-adrenergic receptor. Proc. Natl. Acad. Sci. USA 74, 515–519 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Lehotay, D.C., Levey, G.S., Vesely, D.L., Bornet, E.O., Ray, M.V., Entman, M.L., Schwartz, A.: The effect of adenylate cyclase inhibitor (ACI) on guanylate cyclase, phosphodiesterase and other enzymes in heart. J. Cyclic Nucl. Res. 3, 55–65 (1977a)

    CAS  Google Scholar 

  • Lehotay, D.C., Lo, H.K., Levey, G.S.: Activation of adenylate cyclase:requirement for phospholipids. In: Cyclic 3’, 5’-Nucleotides: Mechanism of Action. Edited by H. Cramer and J. Schultz, London, New York, Sydney, Toronto: John Wiley & Sons, 1977b, pp. 1–13

    Google Scholar 

  • Levey, G.S.: Restoration of glucagon responsiveness of solubilized myocardial adenyl cyclase by phosphotidylserine. Biochem. Biophys. Res. Commun. 43, 108–113 (1971a)

    Article  PubMed  CAS  Google Scholar 

  • Levey, G.S.: Restoration of norepinephrine responsiveness of solubilized myocardial adenylate cyclase by phosphatidylinositol. J. Biol. Chem. 246, 7405–7410 (1971b)

    PubMed  CAS  Google Scholar 

  • Levey, G.S.: Solubilization of myocardial adenyl cyclase: Loss of hormone responsiveness and activation by phospholipids. Ann. N.Y. Acad. Sci. 185, 449–457 (1971c)

    Article  PubMed  CAS  Google Scholar 

  • Levey, G.S., Klein, I.: Solubilized myocardial adenyl cyclase: Restoration of histamine responsiveness by phosphatidylserine. J. Clin. Invest. 51, 1578–1582 (1972)

    Article  PubMed  CAS  Google Scholar 

  • Levey, G.S.: The role of phospholipids in hormone activation of adenylate cyclase. Recent Prog. Horm. Res. 29, 361 (1973)

    CAS  Google Scholar 

  • Levey, G.S., Lehotay, D.C., Canterbury, J.M., Bricker, L.A., Meltz, G.J.: Isolation of a unique peptide inhibitor of hormone-responsive adenylate cyclase. J. Biol. Chem. 250, 5730–5733 (1975)

    PubMed  CAS  Google Scholar 

  • Levitzki, A.: The role of GTP in the activation of adenylate cyclase. Biochem. Biophys. Res. Commun. 74, 1154–1159 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Li, H.-C., Hsiao, K.-J., Chan, W.W.S.: Purification and properties of phosphoprotein phosphatases with different substrate and divalent cation specificities from canine heart. Eur. J. Biochem. 24, 215–225 (1978)

    Article  Google Scholar 

  • Limbird, L.E., Lefkowitz, R.J.: Resolution of β-adrenergic receptor binding and adenylate cyclase activity by gel exclusion chromatography. J. Biol. Chem. 252, 799–802 (1977)

    PubMed  CAS  Google Scholar 

  • Lin, Y.M., Liu, Y.P., Cheung, W.Y.: Cyclic 3’,5’-nucleotide phosphodiesterase. Purification, characterization and active form of the protein activator from bovine brain. J. Biol. Chem. 249, 4943–4954 (1974)

    PubMed  CAS  Google Scholar 

  • Lincoln, T., Corbin, J.D.: Purified cyclic GMP-dependent protein kinase catalyzes the phosphorylation of cardiac troponin inhibitory subunit (TN-I). J. Biol. Chem. 253, 337–339 (1978 a)

    PubMed  CAS  Google Scholar 

  • Lincoln, T.M., Corbind, J.D.: On the role of the cAMP and cGMP-dependent protein kinases in cell function. J. Cycl. Nucl. Res. 4, 3–14 (1978 b)

    CAS  Google Scholar 

  • Loakpradit, T., Lockwood, R.: Differentiation of metabolic adrenoreceptors. Brit. J. Pharmacol. 59, 135–140 (1977)

    CAS  Google Scholar 

  • Lynch, T.J., Tallant, E.A., Cheung, W.Y.: Ca2+-dependent formation of brain adenylate cyclase-protein activator complex. Biochem. Biophys. Res. Commun. 68, 616–624 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Maguire, M.E., Sturgill, T.W., Gilman, A.G.: Frustration and adenylate cyclase. Metab. 24, 287–299 (1975)

    Article  CAS  Google Scholar 

  • Maguire, M.E., van Arsdale, P.M., Gilman, A.G.: An agonist-specific effect of guanine nu-cleotides on binding to the beta adrenergic receptor. Molec. Pharmacol. 12, 335–339 (1976)

    CAS  Google Scholar 

  • Maguire, M.E., Ross, E.M., Gilman, A.G.: β-Adrenergic receptor: Ligand binding properties and the interaction with adenylyl cyclase. Adv. Cycl. Nucl. Res. Vol. 8, Ed. P. Greengard and G.A. Robison. New York: Raven Press 1977, pp. 1–75

    Google Scholar 

  • Malik, A.B., Geha, A.S.: Role of adrenergic mechanism in the development of cardiac hypertrophy. Proc. Soc. Exptl. Biol. Med. 150, 796–802 (1975)

    CAS  Google Scholar 

  • Malov, S.: Effect of sympathomimetic drugs on protein synthesis in rat heart. J. Pharmacol. Exptl. Ther. 187, 482–494 (1973)

    Google Scholar 

  • Malov, S.: Effect of sympathomimetic amines and monoamino oxidase inhibitors on protein synthesis in rat heart. Biochem. Pharmacol. 25, 1645–1651 (1976)

    Article  Google Scholar 

  • Masters, T.N., Glaviano, V.V.: Effect of norepinephrine and propranolol on myocardial subcellular distribution of triglycerides and free fatty acids. J. Pharmacol. Exp. Ther. 182, 246–255 (1972)

    PubMed  CAS  Google Scholar 

  • Matheny, J.L., Ahlquist, R.P.: Adrenoceptor alteration by temperature in iris dilator muscle of rabbit. Arch. Int. Pharmacodyn. Ther. 209, 197–203 (1974)

    PubMed  CAS  Google Scholar 

  • Matheny, J.L., Ahlquist, R.P.: Metabolic inhibition and adrenoceptor interconversion. Arch. Int. Pharmacodyn. Ther. 218, 4–10 (1975)

    PubMed  CAS  Google Scholar 

  • Mathur, P.P., Mokler, C.M.: Subcellular distribution and incorporation of palmitate — 14C into myocardial lipids: Role of endogenous and exogenous catecholamines. J. Molec. Cell. Cardiol. 7, 17–26 (1975)

    Article  CAS  Google Scholar 

  • Mayer, S.E.: Adrenergic receptor for metabolic responses in the heart. Fed. Proc. 29, 1367–1372 (1970)

    PubMed  CAS  Google Scholar 

  • Mayer, S.E.: Effects of adrenergic agonists and antagonists on adenylate cyclase activity of dog heart and liver. J. Pharmacol. Exp. Ther. 181, 116–125 (1972)

    PubMed  CAS  Google Scholar 

  • Mayer, S.E.: Effect of catecholamines on cardiac metabolism. Circul. Res., Suppl. III 34–35, 129–137 (1974)

    Google Scholar 

  • Merouze, P., Gaudemer, Y., Gautheron, D.: Effect of catecholamines on rat myocardial metabolism. I. Influence of catecholamines on energy-rich nucleotides and phosphorylated fraction contents. Biochem. 57, 797–802 (1975 a)

    Article  CAS  Google Scholar 

  • Merouze, P., Gaudemer, Y., Gautheron, D.: Effect of catecholamines on rat myocardial metabolism. II. Influence of catecholamines on 32P-incorporation into rat myocardial adenylic nucleotides and their turnover. Biochem. 57, 803–810 (1975b)

    Article  CAS  Google Scholar 

  • Mickey, J., Tate, R., Lefkowitz, R.J.: Subsensitivity of adenylate cyclase and decreased β-adrenergic receptor binding after chronic exposure to (—)-isoproterenol in vitro. J. Biol. Chem. 250, 5727–5729 (1975)

    PubMed  CAS  Google Scholar 

  • Misselwitz, H.-J., Will, H., Schulze, W., Will-Shahab, L., Wollenberger, A.: Mass isolation of cell surface membrane fragments from pigeon heart. Biochim Biophys. Acta 553, 197–212 (1979)

    CAS  Google Scholar 

  • Miura, Y., Inui, J., Imamura, H.: Alpha-adrenoceptor-mediated restoration of calcium-dependent potential in the partially depolarized rabbit papillary muscle. Naunyn Schmiedeberg’s Arch. Pharmacol. 301, 201–205 (1978)

    CAS  Google Scholar 

  • Moir, A.J.G., Wilkinson, J.M., Perry, S.V.: The phosphorylation sites of troponin 1 from skeletal muscle of the rabbit. Febs letters 42, 253–256 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, C., Lefkowitz, R.J.: Desensitization of β-adrenergic receptors by β-adrenergic agonists in a cell-free system: resensitization by guanosine 5’-(β, γ-imino)triphosphate and other purine nucleotides. Proc. Natl. Acad. Sci. 73, 1494–1498 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, C., Caron, M.G., Lefkowitz, R.J.: Catecholamine-induced subsensitivity of adenylate cyclase associated with loss of β-adrenergic receptor binding sites. Proc. Nat. Acad. Sci. USA 72, 1945–1949 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, C., Caron, M.G., Lefkowitz, R.J.: Regulation of adenylate cyclase coupled β-ad-renergic receptors by β-adrenergic catecholamines. Endocrinol. 99, 347–357 (1976)

    Article  CAS  Google Scholar 

  • Murad, F., Chi, Y.-M., Rail, T.W., Sutherland, E.W.: Adenyl cyclase. J. Biol. Chem. 237, 1233–1238 (1962)

    PubMed  CAS  Google Scholar 

  • Murad, F.: Beta blockade of epinephrine-induced cyclic AMP formation in heart, liver, fat and trachea. Biochim. Biophys. Acta 304, 181 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Nair, K.G.: Catecholamine-induced hypertrophy. Amer. Heart J. 94, 393–394 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Namm, D.H., Mayer, S.E.: Effects of epinephrine on cardiac cyclic 3’,5’-AMP, phosphorylase kinase and phosphorylase. Molec. Pharmacol. 4, 61–69 (1968)

    CAS  Google Scholar 

  • Narayanan, N., Sulakhe, P.V.: Characteristics of guanylyl nucleotide binding sites in guinea pig heart sarcolemma. Int. J. Biochem. 8, 591–599 (1977)

    Article  CAS  Google Scholar 

  • Neely, J.R., Denton, R.M., England, P.S., Randle, P.J.: Effect of increased heart on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart. Biochem. J. 128, 147–159 (1972)

    PubMed  CAS  Google Scholar 

  • Nesher, R., Robinson, W.F., Gibb, L., Bishop, S.P., Kruger, F.A.: RNA polymerase in isolated heart nuclei and their responses to cyclic nucleotides. J. Molec. Cell. Cardiol. 2, 579–593 (1977)

    Article  Google Scholar 

  • Nickerson, M., Kunos, G.: Discussion of evidence regarding induced changes in adrenoceptors. Fed. Proc. 36, 2580–2583 (1977)

    PubMed  CAS  Google Scholar 

  • Nimmo, H.G., Cohen, P.: Hormonal control of protein phosphorylation. Adv. Cycl. Nucl. Res. 8, 145–247 (1977)

    CAS  Google Scholar 

  • Olson, R.E., Hoeschen, R.J.: Utilization of endogenous lipid by the isolated perfused rat heart. Biochem. J. 103, 796–801 (1967)

    PubMed  CAS  Google Scholar 

  • Östmann-Smith, I.: Prevention of exercise-induced cardiac hypertrophy in rats by chemical sympathectomy (guanethidine treatment). Neurosci. 1, 497–507 (1976)

    Article  Google Scholar 

  • Palmer, G.C., Spurgeon, H.A., Priola, D.V.: Involvement of adenylate cyclase in mechanisms of denervation supersensitivity following surgical denervation of the dog heart. J. Cyclic Nucl. Res. 1, 89–95 (1975)

    CAS  Google Scholar 

  • Perkins, J.P.: Adenyl cyclase. Adv. Cycl. Nucl. Res. Vol. 3, 1–64 (1973)

    CAS  Google Scholar 

  • Perkins, J.P., Moore, M.M.: Characterization of the adrenergic receptors mediating a rise in cyclic 3’,5’-adenosine monophosphate in rat cerebral cortex. J. Pharmacol. Exp. Ther. 185, 371–378 (1973)

    PubMed  CAS  Google Scholar 

  • Peters, K.A., Demaille, J.G., Fischer, E.H.: Adenosine 3’,5’-monophosphate dependent protein kinase from bovine heart. Characterization of the catalytic subunit. Biochem. 16, 5691–5697 (1977)

    Article  CAS  Google Scholar 

  • Petrack, B., Czernik, A.J.: Inhibition of isoproterenol activation of adenylate cyclase by metroprolol, oxprenolol, and the para isomer of oxprenolol. Molec. Pharmacol. 12, 203–207 (1976)

    CAS  Google Scholar 

  • Pfeuffer, T.: GTP-binding proteins in membranes and the control of adenylate cyclase activity. J. Biol. Chem. 252, 7224–7234 (1977)

    PubMed  CAS  Google Scholar 

  • Pfeuffer, T., Helmreich, E.J.H.: Activation of pigeon erythrocyte membrane adenylate cyclase by guanylnucleotide analogues and separation of a nucleotide binding protein. J. Biol. Chem. 250, 867–876 (1975)

    PubMed  CAS  Google Scholar 

  • Pfeuffer, T., Bakardjeva, A., Helmreich, E.J.M.: Signal transfer from β-receptors to adenylate cyclase. Abstr. 2222, 7 th Internat. Congr. Pharmacol. Paris 1978

    Google Scholar 

  • Pik, K., Wollemann, M.: Catecholamine hypersensitivity of adenylate cyclase after chemical denervation in rat heart. Biochem. Pharmacol. 26, 1448–1449 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Plauchithiu, M.G., Rocsin, M., Simon, Z.: Stereochemic model for the function of adrenergic alpha receptors coupled to transport systems. Abstr. 2426, 7 th Internat. Congr. Pharmacol. Paris 1978

    Google Scholar 

  • Raine, A.E.G., Chubb, I.W.: Long term β-adrenergic blockade reduces tyrosine hydroxylase and dopamine β-hydroxylase activities in sympathetic ganglia. Nature 267, 265–267 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Rangel-Aldao, R., Rosen, O.M.: Effect of cAMP and ATP on the reassociation of phosphorylated and nonphosphorylated subunits of the cAMP-dependent protein kinase from bovine cardiac muscle. J. Biol. Chem. 252, 7140–7145 (1977)

    PubMed  CAS  Google Scholar 

  • Rasmussen, H.: Cell communication, calcium ion and cyclic adenosine monophosphate. Sci. 173, 404–412 (1970)

    Article  Google Scholar 

  • Rasmussen, H., Tenenhouse, A.: Cyclic adenosine monophosphate, Ca and membranes. Proc. Natl. Acad. Sei. USA 59, 1364–1370 (1968)

    Article  CAS  Google Scholar 

  • Rasmussen, H., Jensen, P., Labe, W., Friedman, N., Goodman, B.D.: Cyclic nucleotides and cellular Ca2+ metabolism. Adv. Cycl. Nucl. Res. 5, 375–394 (1975)

    CAS  Google Scholar 

  • Ray, K.P., England, P.J.: Phosphorylation of the inhibitory subunit of troponin and its effect on the calcium dependence of cardiac myofibril adenosine triphosphatase. Febs letters 70, 11–16 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Reddy, Y.S.: Phosphorylation of cardiac regulatory proteins by cyclic AMP-dependent protein kinase. Am. J. Physiol. 231, 1330–1336 (1976)

    PubMed  CAS  Google Scholar 

  • Reddy, Y.S., Ballard, D., Giri, N.Y., Schwartz, A.: Phosphorylation of cardiac native tropomyosin and troponin. Inhibitory effect of actomyosin and possible presence of endogenous myofibrillar-located, cyclic AMP-dependent protein kinase. J. Molec. Cell. Cardiol. 5, 461–471 (1973)

    Article  CAS  Google Scholar 

  • Rethy, A., Tomasi, Y., Trevisani, A., Barnatei, E.: The role of phosphatidylserine in the hormonal control of adenylate cyclase of rat liver plasma membranes. Biochim. Biophys. Acta 200, 58–59 (1972)

    Google Scholar 

  • Reuter, H., Scholz, H.: The regulation of the Ca conductance of cardiac muscle by adrenaline. J. Physiol. (Lond.) 264, 49–62 (1976)

    Google Scholar 

  • Robison, G.A., Butcher, R.W., Sutherland, E.W.: Adenyl cyclase as an adrenergic receptor. Ann. New York Acad. Sci. 139, 703–723 (1967)

    Article  CAS  Google Scholar 

  • Robison, G. A., Arnold, A., Hartman, R.C.: Divergent effects of epinephrine and prostaglandin E1 on the level of cyclic AMP in human blood platelets. Pharmacol. Res. Commun. 1, 325–332 (1969)

    Article  CAS  Google Scholar 

  • Robison, G.A., Butcher, R.W., Sutherland, E.W.: The catecholamines. In: Cyclic AMP. Edit. G.A. Robison, R.W. Butcher and E.W. Sutherland. New York: Academic Press 1971, pp. 146–231

    Google Scholar 

  • Rodbell, M., Lin, M.C., Salomon, Y., Londos, C., Harwood, J.P., Martin, M.R., Rendell, M., Berman, M.: Role of adenine and guanine nucleotides in the activity and response of adenylate cyclase systems to hormones: evidence for multisile transition states. Adv. Cycl. Nucl. Res. 5, 3–29 (1975)

    CAS  Google Scholar 

  • Ross, E.M., Gilman, A.G.: Reconstitution of catecholamine-sensitive adenylate cyclase activity: Interaction of solubilized components with receptor-replete membranes. Proc. Natl. Acad. Sci. USA 74, 3715–3719 (1977 a)

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, Y., Morita, S., Irie, Y., Kohri, H.: Evaluation of a new beta-adrenergic blocking agent, casteolol, based on metabolic responses in rats - II. Blockade by casteolol of the epinephrine and isoproterenol-induced increases of tissue and blood cyclic AMP in vivo. Biochem. Pharmacol. 25, 1843–1849 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Sato, K.: Stimulation of pentose cycle in the eccrine sweat gland by adrenergic drugs. Amer. J. Physiol. 224, 1149–1154 (1973)

    PubMed  CAS  Google Scholar 

  • Scheur, J., Olsen, R.E.: Metabolism of exogenous triglycerides by the isolated perfused rat heart. Am. J. Physiol. 212, 301–307 (1967)

    Google Scholar 

  • Schlender, K.K., Wei, S.H., Villar-Palasi, C.: UDP-glucose: glycogen α-4-glucosyl-transferase I kinase activity of purified muscle protein kinase. Biochim. Biophys. Acta 191, 272–278 (1969)

    PubMed  CAS  Google Scholar 

  • Schramm, M., Orly, J., Eimerl, S., Korner, M.: Coupling of hormone receptors to adenylate cyclase of different cells by cell fusion. Nature (London) 268, 310–313 (1977)

    Article  CAS  Google Scholar 

  • Schultz, G., Hardman, J.G., Schultz, K., David, J.W., Sutherland, E.W.: A new enzymatic assay for guanosine 3’:5’-cyclic monophosphate and its application to the ductus deferens of the rat. Proc. Nat. Acad. Sci. USA 70, 1721–1725 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Schulze, W., Krause, E.-G., Wollenberger, A.: Cytochemical demonstration and localization of adenylate cyclase in skeletal and cardiac muscle. Adv. Cycl. Nucl. Res. Vol. 1, edited by P. Greengard, G.A. Robison, R. Paoletti. New York: Raven Press 1972, pp. 249–260

    Google Scholar 

  • Schulze, W., Hinterberger, U., Wollenberger, A., Krause, E.-G., Janiszewski, E.: Problems of the cytochemical demonstration of adenylate cyclase. Acta histochem. Cytochem. 10, 371–378 (1977)

    Article  Google Scholar 

  • Schümann, H.J., Endoh, M.: α-adrenoceptors in the ventricular myocardium: Clonidine, Naphazolin and Methoxamine as partial α-agonists exerting a competitive dualism in action to phenylephrine. Europ. J. Pharmacol. 36, 413–421 (1976)

    Google Scholar 

  • Schümann, H.J., Wagner, J., Reinhardt, D.: Sensitivity changes of adrenergic β-receptors induced by alterations of the metabolic state in isolated organs. Naunyn Schmiedeberg’s Arch. Pharmacol. 275, 105–113 (1972)

    Google Scholar 

  • Schümann, H.J., Endoh, M., Wagner, J.: Positive inotropic effects of phenylephrine in the isolated rabbit papillary muscle mediated both by α- and β-adrenoceptors. Naunyn Schmiede- berg’s Arch. Pharmacol. 284, 133–148 (1974)

    Google Scholar 

  • Schwartz, A., Entman, M.L., Kaniike, K., Lane, L.K., van Winkle, W.B., Bornet, E.P.: The rate of calcium uptake into sarcoplasmic reticulum of cardiac muscle and skeletal muscle: Effect of cyclic AMP-dependent protein kinase and phorphorylase b kinase. Biochim. Biophys. Acta 426, 57–72 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, A., Entman, M.L., Ezrailson, E.G., Lehotay, D.C., Levey, G.: Possible cyclic nucleotide regulation of calcium mediating myocardial contraction. Sci. 195, 982–990 (1977)

    Article  CAS  Google Scholar 

  • Schwarzmeier, J.D., Gilman, A.G.: Reconstitution of catecholamine-sensitive adenylate cyclase activity: interaction of components following cell-cell and membrane-cell fusion. J. Cyclic Nucl. Res. 3, 227–238 (1977)

    CAS  Google Scholar 

  • Shipp, J.C., Opie, L.H., Challower, D.: Fatty acid and glucose metabolism in the perfused heart. Nature (London) 189, 1018–1019 (1961)

    Article  CAS  Google Scholar 

  • Smoake, J.A., Song, S.-Y., Cheung, W.Y.: Cyclic 3’,5’-nucleotide phosphodiesterase. Distribution and developmental changes of the enzyme and its protein activator in mammalian tissue and cells. Biochim. Biophys. Acta 341, 402–411 (1974)

    PubMed  CAS  Google Scholar 

  • Sporn, J.R., Harden, T.K., Wolfe, B.B., Molinoff, P.B.: β-adrenergic receptor involvement in 6-hydroxydopamine-induced supersensitivity in rat cerebral cortex. Sci. 194, 624–626 (1976)

    Article  CAS  Google Scholar 

  • Stein, O., Stein, Y.: Lipid synthesis, intracellular transport and storage. III. Electron microscopic radioautographic study of the rat heart perfused with tritiated oleic acid. J. Cell. Biol. 36, 163–177 (1968)

    Article  Google Scholar 

  • Steinberg, D., Huttunen, J.K.: The role of cyclic AMP in activation of hormone-sensitive lipase of adipose tissue. In: Adv. Cycl. Nucl. Res. 1, 47–62 (1972)

    Google Scholar 

  • St. Louis, P.J., Sulakhe, P.F.: Adenylate cyclase, guanylate cyclase and cyclic nucleotide phosphodiesterase of guinea-pig cardiac sarcolemma. Biochem. J. 158, 535–541 (1976)

    Google Scholar 

  • Strittmatter, W.J., Davis, N., Lefkowitz, R.J.: α-Adrenergic receptors in rat parotid cells. I. Correlation of [3H]dihydroergocryptine binding and catecholamine-stimulated potassium efflux. J. Biol. Chem. 252, 5472–5478 (1977)

    CAS  Google Scholar 

  • Sulakhe, P.V., Dhalla, N.S.: Adenylate cyclase of heart sarco tubular membranes. Biochim. Biophys. Acta 293, 379–394 (1973)

    PubMed  CAS  Google Scholar 

  • Sulakhe, P.V., Drummond, G.I.: Protein kinase-catalyzed phosphorylation of muscle sarcolemma. Arch. Biochem. Biophys. 161, 448–455 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Sulakhe, P.V., Leung, N.L.K., St. Louis, P.J.: Stimulation of calcium accumulation in cardiac sarcolemma by protein kinase. Can. J. Biochem. 54, 438–445 (1976)

    PubMed  CAS  Google Scholar 

  • Sutherland, E.W., Rail, T.W.: The relation of adenosine 3’,5’-phosphate and Phosphorylase to the actions of catecholamines and hormones. Pharmacol. Rev. 12, 265–299 (1960)

    CAS  Google Scholar 

  • Sutherland, E.W., Oye, I., Butcher, R.W.: The action of epinephrine and the role of the adenyl cyclase system in hormone action. Recent Progr. Hormone Res. 21, 623–646 (1965)

    CAS  Google Scholar 

  • Sutherland, E.W., Robison, G.A.: The role of cyclic 3’,5’-AMP in responses to catecholamines and other hormones. Pharmacol. Rev. 18, 145–161 (1966)

    PubMed  CAS  Google Scholar 

  • Sutherland, E.W., Robison, G.A., Butcher, R.W.: Some aspects of the biological role of adenosine 3’,5’-monophosphate (cyclic AMP). Circul. 37, 279–306 (1968)

    CAS  Google Scholar 

  • Szmigielski, A., Guidotti, A., Costa, E.: Endogenous protein kinase inhibitors. J. Biol. Chem. 252, 3848–3853 (1977)

    PubMed  CAS  Google Scholar 

  • Tada, M., Kirchberger, M.A., Katz, A.M.: Phosphorylation of a 22000-dalton component of the cardiac sarcoplasmic reticulum by adnosine 3’,5’-monophosphate-dependent protein kinase. J. Biol. Chem. 250, 2640–2647 (1975)

    PubMed  CAS  Google Scholar 

  • Tada, M., Kirchberger, M.A., Iorio, J.M., Katz, A.M.: Control of cardiac sarcolemmal adenylate cyclase and sodium, potassium-activated adenosine triphosphatase activities. Circul. Res. 36, 8–17 (1976)

    Google Scholar 

  • Teo, T.S., Wang, H.J.: Mechanism of activation of a cyclic adenosine 3’,5’-monophosphate phosphodiesterase from bovine heart by calcium ions. J. Biol. Chem. 248, 5950–5955 (1973 a)

    PubMed  CAS  Google Scholar 

  • Teo, T.S., Wang, T.H., Wang, J.H.: Purification and properties of the protein activator of bovine heart cyclic adenosine 3’,5’-monophosphate phosphodiesterase. J. Biol. Chem. 248, 588–595 (1973 b)

    PubMed  CAS  Google Scholar 

  • Thoenen, H., Tranzer, J.P.: Chemical sympathectomy by selective destruction of adrenergic nerve endings by 6-hydroxydopamine. Arch. Exp. Path. Pharmak. 261, 271–288 (1968)

    CAS  Google Scholar 

  • Tsien, R.W.: Cyclic AMP and contractile activity in heart. Adv. Cycl. Nucl. Res. 8, 364–420 (1978)

    Google Scholar 

  • Turtle, J.R., Kipnis, D.M.: An adrenergic receptor mechanism for the control of cyclic 3’,5’- adenosine monophosphate synthesis in tissues. Biochem. Biophys. Res. Commun. 28, 797 (1967)

    Article  PubMed  CAS  Google Scholar 

  • Vauquelin, G., Geynet, P., Hanoune, J., Strosberg, D.: Isolation of adenylate cyclase-free, β- adrenergic receptor from turkey erythrocyte membranes by affinity chromatography. Proc. Natl. Acad. Sci. USA 74, 3710–3714 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Velema, J., Noordam, P.C., Zaagsma, J.: Isolation and cAMP-dependent phosphorylation of plasma membrane and sarcoplasmic reticulum from rat heart muscle. Abstr. 2472, 7 th Internat. Congr. Pharmacol., Paris 1978

    Google Scholar 

  • Venter, J.C., Ghai, G.: Characterization of caninc cardiac, right and left ventricular β-adrenergic receptors with [1251] iodohydroxybenzylpindolol. The Pharmacologist 19, 244 (1977)

    Google Scholar 

  • Venter, J.C., Kaplan, N.O.: A partial purification of the β-adrenergic receptor adenylate cyclase complex by affinity chromatography to glass bead-immobilized isoproterenol. Methods of Enzymology, Vol. XXXVIII, Part C, edited by J.G. Hardman and B.W. O’Malley. New York, San Francisco, London: Academic Press 1974 a, pp. 180–186

    Google Scholar 

  • Venter, J.C., Kaplan, N.O.: Technical comments: Stability of catecholamines immobilized on glass beads. Sci. 185, 459–460 (1974b)

    Article  CAS  Google Scholar 

  • Venter, J.C., Dixon, J.E., Maroko, P.R., Kaplan, N.O.: Biologically active catecholamines covalently bound to glass beads. Proc. Nat. Acad. Sci. USA 69, 1141–1145 (1972)

    Article  PubMed  CAS  Google Scholar 

  • Wagner, J., Endoh, M., Reinhardt, D.: Stimulation by phenylephrine of adrenergic alpha- and beta-receptors in the isolated perfused rabbit heart. Naunyn-Schmiedeberg’s Arch. Pharmacol. 282, 307–310 (1974a)

    CAS  Google Scholar 

  • Wagner, J., Reinhardt, D.: Characterization of the adrenoceptors mediating the positive ino- and chronotropic effect of phenylephrine on isolated atria from guinea pigs and rabbits by means of adrenolytic drugs. Naunyn-Schmiedeberg’s Arch. Pharmacol. 282, 295–306 (1974b)

    CAS  Google Scholar 

  • Wagner, J., Brodde, O.-E.: On the presence and distribution of α-adrenoceptors in the heart of various mammalian species. Naunyn-Schmiedeberg’s Arch. Pharmacol. 302, 239–254 (1978)

    CAS  Google Scholar 

  • Waisman, D., Stevens, F.C., Wang, J.H.: The distribution of the Ca2+-dependent protein activator of cyclic nucleotide phosphodiesterase in vertebrates. Biochem. Biophys. Res. Commun. 65, 975–982 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Walsh, D.A., Ashby, C.D.: Protein kinases: Aspects of their regulation and diversity. Rec. Prog. Hormone Res. 29, 329–359 (1973)

    CAS  Google Scholar 

  • Walsh, D.A., Ashby, C.D., Gonzales, C., Calkins, D., Fisher, E.H., Krebs, E.G.: Purification and characterization of a protein inhibitor of cyclic AMP-dependent protein kinase. J. Biol. Chem. 246, 1977–1985 (1971)

    PubMed  CAS  Google Scholar 

  • Wang, J.H., Teo, T.S., Ho, C.H., Stevens, F.C.: Bovine heart protein activator of cyclic nucleotide phosphodiesterase. Adv. Cycl. Nucl. Res. 5, 179–194 (1975)

    CAS  Google Scholar 

  • Watanabe, A.M., Besch, H.R., Jr.: Myocardial adenylate cyclase: Studies on the relationship of activity to purity of sarcolemmal preparation. J. Molec. Cell. Cardiol. 7, 563–575 (1975)

    Article  CAS  Google Scholar 

  • Watanabe, A.M., Hathaway, D.R., Besch, H.R., Jr., Farmer, B.B., Harris, R.A.: α-Adrenergic reduction of cyclic adenosine monophosphate concentrations in rat myocardium. Circul. Res. 40, 596–602 (1977)

    CAS  Google Scholar 

  • Weiss, B., Hait, W.N.: Selective cyclic nucleotide phosphodiesterase inhibitors as potential therapeutic agents. Ann. Rev. Pharmacol. Toxicol. 17, 441–471 (1977)

    Article  CAS  Google Scholar 

  • Will, H., Levchenko, T.S., Levitsky, D.O., Smirnov, V.N., Wollenberger, A.: Partial characterization of protein kinase-catalyzed phosphorylation of low-molecular weight proteins in purified preparations of pigeon heart sarcolemma and sarcoplasmic reticulum. Biochim. Biophys. Acta 543, 175–193 (1978)

    Article  PubMed  CAS  Google Scholar 

  • Williams, L.T., Lefkowitz, R.J., Watanabe, A.M., Hathaway, D.R., Besch, H.R., Jr.: Thyroid hormone regulation of β-adrenergic receptor number. J. Biol. Chem. 252, 2787–2789 (1977 a)

    Google Scholar 

  • Williams, L.T., Lefkowitz, R.J.: Slowly reversible binding of catecholamine to a nucleotide-sensitive state of the β-adrenergic receptor. J. Biol. Chem. 252, 7207–7213 (1977 b)

    PubMed  CAS  Google Scholar 

  • Williamson, J.R.: Metabolic effects of epinephrine in the isolated perfused rat heart. I. Dissociation of the glycogenolytic from the metabolic stimulatory effect. J. Biol. Chem. 239, 2721–2729 (1964)

    CAS  Google Scholar 

  • Will-Shahab, L., Bartel, S., Wollenberger, A., Küttner, I.: Beta-adrenergic receptor binding sites, activity of adenylate cyclase and phosphodiesterase in heart membranes of rats differing in thyroid state. Abstr. 2932, 7 th Internat. Congr. Pharmacol., Paris 1978

    Google Scholar 

  • Wolfe, B.B., Harden, T.K., Molinoff, P.B.: In vitro study of β-adrenergic receptors. Ann. Rev. Pharmacol. Toxicol. 17, 575–604 (1977)

    Article  CAS  Google Scholar 

  • Wolff, D.J., Brostrom, C.O.: Calcium binding phosphoprotein from pig brain: identification as a Ca2+ dependent regulator of rat brain nucleotide phosphodiesterase. Arch. Biochem. Biophys. 163, 349–358 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Wollemann, M., Borbola, J., Jr., Papp, J.G., Szekeres, L.: Cardiac adenylate cyclase activity in relation to beta-adrenergic responses. J. Molec. Cell. Cardiol. 7, 523–533 (1975)

    Article  CAS  Google Scholar 

  • Wollenberger, A.: The role of cyclic AMP in the adrenergic control of myocardium. In: Contraction and relaxation of the heart. Edit.: W.G. Nayler. London: Academic Press 1975, pp. 113–190

    Google Scholar 

  • Wollenberger, A., Schulze, W.: Cytochemical studies on sarcolemma: Na+,K+-adenosine triphosphatase and adenylate cyclase. Recent Adv. in studies on cardiac structure and metabolism. Vol. 9. The sarcolemma. Edited by P.-E. Roy and N.S. Dhalla. Baltimore: University Park Press 1976, pp. 191–115

    Google Scholar 

  • Wollenberger, A., Will, H.: Protein kinase-catalyzed membrane phosphorylation and its possible relationship to the role of calcium in the adrenergic regulation of cardiac contraction. Life Sci. 22, 1159–1178 (1978)

    Article  PubMed  CAS  Google Scholar 

  • Wood, W.G., Lindenmayer, G.E., Schwartz, A.: Myocardial synthesis of ribonucleic acid. I. Stimulation by isoproterenol. J. Molec. Cell. Cardiol. 3, 127–138 (1971)

    CAS  Google Scholar 

  • Wray, H.-L., Gray, R.R.: Cyclic AMP stimulation of membrane phosphorylation and Ca2+- activated, Mg2+-dependent ATPase in cardiac sarcoplasmic reticulum. Biochim. Biophys. Acta 461, 441–459 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Wyborny, L.E., Reddy, Y.S.: Phosphorylated cardiac myofibrils and their effect on ATPase activity. Biochem. Biophys. Res. Commun. 81, 1175–1179 (1978)

    Article  PubMed  CAS  Google Scholar 

  • Wyngaarden, J.B., Ashton, D.M.: Regulation of activity of phosphoribosylpyrophosphate amidotransferase by purine ribonucleotides: Potential feedback control of purine biosynthesis. J. Biol. Chem. 234, 309–322 (1959)

    Google Scholar 

  • Yeaman, S.J., Cohen, P.: The specificity of adenosine 3’:5’-cyclic monophosphate-depending protein kinase. Biochem. Soc. Transactions 565 th Meeting, Stirling Vol. 4, 1027–1030 (1977)

    Google Scholar 

  • Zimmer, H.-G., Gerlach, E.: Effect of beta-adrenergic stimulation on myocardial adenine nucleotide metabolism. Circul. Res. 35, 536–543 (1974)

    CAS  Google Scholar 

  • Zimmer, H.-G., Gerlach, E.: Influence of isoproterenol, propranolol, and D 600 on the de novo synthesis of adenine nucleotides in rat hearts. Recent Adv. in Studies on Cardiac Structure and Metabolism. Vol. 7. Edit. P. Harris, R.J. Bing, A. Fleckenstein. Baltimore: University Park Press 1976, pp. 131–136

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Will-Sahab, L., Krause, E.G. (1980). Effects on Myocardial Metabolism. In: Szekeres, L. (eds) Adrenergic Activators and Inhibitors. Handbook of Experimental Pharmacology, vol 54 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67505-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67505-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67507-2

  • Online ISBN: 978-3-642-67505-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics