Advertisement

Catecholamines and the Regulation of Body Temperature

  • R. D. Myers
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 54 / 1)

Abstract

It is clear now that the two principal components of an animal’s temperature regulating capacity — central and peripheral — utilize catecholaminergic mechanisms. What is biologically so fascinating is the entirely different way in which a given catecholamine acts. On the one hand, central noradrenergic neurons are involved in the complicated activation of the processes underlying heat dissipation. But peripherally, the adrenergic principle is involved in the thermogenesis required for the defense against a cold environment. In this chapter, some of the principal findings will be presented that have provided the specific evidence upon which these viewpoints are now based.

Keywords

Body Temperature Preoptic Area Cerebral Ventricle Anterior Hypothalamus Thermoregulatory Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, B., Gale, C.C., Hokfelt, B., Ohga, A.: Relation of preoptic temperature to the function of the sympathico-adrenomedullary system and the adrenal cortex. Acta Physiol. Scand. 61, 182–191 (1963)Google Scholar
  2. Avery, D.D.: Thermoregulatory effects of intrahypothalamic injections of adrenergic and cholinergic substances at different environmental temperatures. J. Physiol. 220, 257–266 (1972)PubMedGoogle Scholar
  3. Baldwin, B.A., Ingram, D.L., LeBlanc, J.: The effects of environmental temperature and hypothalamic temperature on excretion of catecholamines in the urine of the pig. Brain Res. 16, 511–515 (1969)PubMedCrossRefGoogle Scholar
  4. Barbour, H.G., Wing, E.S.: The direct application of drugs to the temperature centers. J. Pharmacol. 5, 105–147 (1913)Google Scholar
  5. Barnett, A., Goldstein, J., Taber, R.I.: Apomorphine-induced hypothermia in mice; a possible dopaminergic effect. Arch. Int. Pharmacodyn. Ther. 198, 242–247 (1972)PubMedGoogle Scholar
  6. Breese, G.R., Howard, J.L.: Effect of central catecholamine alterations on the hypothermic response to 6-hydroxydopamine in desipramine treated rats. Br. J. Pharmacol. 46, 671–674 (1971)Google Scholar
  7. Breese, G.R., Moore, R.A., Howard, J.L.: Central actions of 6-hydroxydopamine and other phenylthylamine derivatives on body temperature in the rat. J. Pharmacol. Exp. Ther. 180, 591–602 (1972)PubMedGoogle Scholar
  8. Brodie, B.B., Maickel, R.P., Stern, D.N.: Autonomic nervous system and adipose tissue. In: Handbook of physiology. Renold, A.E., Cahill, G.F. Jr. (eds.), pp. 583–600. Washington (D.C.): American Physiological Society 1965Google Scholar
  9. Brück, K.: Temperature regulation and catecholamines. Isr. J. Med. Sci. 12, 924–933 (1976)PubMedGoogle Scholar
  10. Burks, T.F.: Central alpha adrenergic receptors in thermoregulation. Neuropharmacology 11, 615–624 (1972)PubMedCrossRefGoogle Scholar
  11. Cantor, A., Satinoff, E.: Thermoregulatory responses to intraventricular norepinephrine in normal and hypothalamic-damaged rats. Brain Res. 108, 125–141 (1976)PubMedCrossRefGoogle Scholar
  12. Carlson, L.D.: Nonshivering thermogenesis and its endocrine control. Fed. Proc. 19 [Suppl. 5], 25–30 (1960)PubMedGoogle Scholar
  13. Carlson, L.D.: The role of catecholamines in cold adaptation. Pharmacol. Rev. 18, 291–301 (1966)PubMedGoogle Scholar
  14. Chaffee, R.R.J., Roberts, J.C.: Temperature acclimation in birds and mammals. Annu. Rev. Physiol. 33, 155–202 (1971)PubMedCrossRefGoogle Scholar
  15. Chevillard, L., Portet, R., Cadot, M., Cabady, M.: Effet de la réserpine sur les échanges respiratoires, la pression artérielle et le rythme cardiaque du rat adapté a basse temperature. Arch. Int. Pharmacodyn. 153, 30–49 (1965)Google Scholar
  16. Cooper, K.E., Jones, D.L., Pittman, Q.J., Veale, W.L.: The effect of noradrenaline, injected into the hypothalamus, on thermoregulation in the cat. J. Physiol. 261, 211–222 (1976)PubMedGoogle Scholar
  17. Coper, H., Lison, H., Rommelspacher, H., Schulze, G., Strauß, S.: The influence of adrenergic receptor-blocking agents, amphetamine, and 6-aminonicotinamide on thermoregulation. Naunyn-Schmiedebergs Arch. Pharmakol. 270, 378–391 (1971)Google Scholar
  18. Corrodi, H., Fuxe, K., Hökfelt, T.: A possible role played by central monoamine neurones in thermo-regulation. Acta Physiol. Scand. 71, 224–232 (1967)CrossRefGoogle Scholar
  19. Cox, B., Tha, S.J.: The role of dopamine and noradrenaline in temperature control of normal and reserpine-pretreated mice. J. Pharm. Pharmacol. 27, 242–247 (1975)PubMedCrossRefGoogle Scholar
  20. Cranston, W.I., Rosendorff, C.: Acute effects of a monoamine oxidase inhibitor, tranylcypromine, on thermoregulation in the conscious rabbit. Br. J. Pharmacol. 38, 530–536 (1970)PubMedGoogle Scholar
  21. Cranston, W.I., Hellon, R.F., Luff, R.H., Rawlins, M.D.: Hypothalamic endogenous noradrenaline and thermoregulation in the cat and rabbit. J. Physiol. 223, 59–67 (1972)PubMedGoogle Scholar
  22. Depocas, F.: The calorigenic response of cold-acclimated white rats to infused noradrenaline. Can. J. Biochem. 38, 107–114 (1960)PubMedCrossRefGoogle Scholar
  23. Doggett, N.S., Reno, H., Spencer, P.S.J.: The effect of drugs with antidepressant activity upon the hypothermia and behavioural depression induced in mice by pimozide or centrally administered noradrenaline. Neuropharmacology 14, 85–90 (1975)PubMedCrossRefGoogle Scholar
  24. Feist, D.D.: Effects of cold exposure on urinary and adrenal catecholamines in a hibernator, the golden hamster. Comp. Biochem. Physiol. 42 A, 883–840 (1972)Google Scholar
  25. Feldberg, W., Lotti, V.J.: Temperature respones to monoamines and an inhibitor of MAO injected into the cerebral ventricels of rats. Br. J. Pharmacol. Chemother. 31, 152–161 (1967)PubMedGoogle Scholar
  26. Feldberg, W., Myers, R.D.: A new concept of temperature regulation by amines in the hypothalamus. Nature 200, 1325 (1963)PubMedCrossRefGoogle Scholar
  27. Feldberg, W., Myers, R.D.: Temperature changes produced by amines injected into the cerebral ventricles during anaesthesia. J. Physiol. 175, 464–478 (1964)PubMedGoogle Scholar
  28. Feldberg, W., W. Myers, R.D.: Changes in temperature produced by microinjections of amines into the anterior hypothalamus of cats. J. Physiol. 177, 239–245 (1965)PubMedGoogle Scholar
  29. Feldberg, W., Saxena, P.N.: Effects of adrenoceptor blocking agents on body temperature. Br. J. Pharmacol. 43, 543–554 (1971)PubMedGoogle Scholar
  30. Fregly, M.J., Field, F.P., Nelson, E.L., Jr., Tyler, P.E., Dasler, R.: Effect of chronic exposure to cold on some responses to catecholamines. J. Appl. Physiol. 42, 349–354 (1977)PubMedGoogle Scholar
  31. Frey, H.-H.: Hyperthermia induced by amphetamine, chloroamphetamine and fenfluramine in the rat. Pharmacology 13, 163–176 (1975)CrossRefGoogle Scholar
  32. Gardey-Levassort, C., Sohlberg, S.-A., Lechat, P.: Comparaison des effects de deux inhibiteurs de la dopamine β-hydroxylase sur les catécholamines hypothalaminiques température centrale du lapin. J. Pharmacol. (Paris) 7, 341–354 (1976)Google Scholar
  33. Gessa, G.L., Clay, G.A., Brodie, B.B.: Evidence that hyperthermia produced by d-amphetamine is caused by a peripheral action of the drug. Life Sci. 8, 135–141 (1969)PubMedCrossRefGoogle Scholar
  34. Gessner, P.K., Clarke, C.C.: The effects of meperidine and dextromethorphan on thermoregulation in mice. In: Temperature regulation and drug action. Lomax, P., Schonbaum, E., Jacob, J. (eds.), pp. 266–273. Basel: Karger 1975Google Scholar
  35. Gonzales, R.R.: Thermoregulatory responses to norepinephrine after inhibition of its synthesis in rabbits. J. Appl. Physiol. 33, 341–345 (1972)Google Scholar
  36. Gordon, R., Spector, S., Sjoerdsma, A., Udenfriend, S.: Increased synthesis of norepinephrine and epinephrine in the intact rat during exercise and exposure to cold. J. Pharmacol. Exp. Ther. 153, 440–447 (1966)PubMedGoogle Scholar
  37. Grabowsky, M., Andén, N.-E.: Apomorphine in the rat nucleus accumbens: effects on the synthesis of 5-hydroxytryptamine and noradrenaline, the motor activity and the body temperature. J. Neural Transm. 38, 1–8 (1976)CrossRefGoogle Scholar
  38. Hayward, J.N., Baker, M.A.: Diuretic and thermoregulatory responses to preoptic cooling in the monkey. Am. J. Physiol. 214, 843–850 (1968)PubMedGoogle Scholar
  39. Himms-Hagen, J.: Sympathetic regulation of metabolism. Pharmacol. Rev. 19, 367–461 (1967)PubMedGoogle Scholar
  40. Hissa, R., Rautenberg, W.: The influence of centrally applied noradrenaline on shivering and body temperature in the pigeon. J. Physiol. 238, 421–435 (1974)Google Scholar
  41. Horita, A., Hill, H.F.: Hallucinogens, amphetamines and temperature regulation. In: The pharmacology of thermoregulation. Schönbaun, E., Lomax, P. (eds.), pp. 417–431 Basel: Karger 1973Google Scholar
  42. Jacobowitz, D.M., Palkovits, M.: Topographic atlas of catecholamine and acetylcholin- esterase-containing neurons in the rat brain. 1. Forebrain (telencephalon, diencephalon). J. Comp. Neurol 157, 13–28 (1974)PubMedCrossRefGoogle Scholar
  43. Janský, L.: Non-shivering thermogenesis and its thermoregulatory significance. Biol. Rev. 48, 85–132 (1973)PubMedCrossRefGoogle Scholar
  44. Janksý, L., Bartunkova, R., Kockova, J., Mejsnar, J., Zeisberger, E.: Interspecies differences in cold adaptation and nonshivering thermogenesis. Fed. Proc. 28, 1053–1058 (1969)Google Scholar
  45. Jellinek, P.: Dual effect of dexamphetamine on body temperature in the rat. Eur. J. Pharmacol. 15, 389–392 (1971)PubMedCrossRefGoogle Scholar
  46. Johnson, G.E., Schönbaum, E., Sellers, E.A.: Cold exposure: pharmacologic investigation of the compensatory mechanisms in the maintenance of normothermia. Fed. Proc. 25, 1216–1219 (1966)PubMedGoogle Scholar
  47. Kennedy, M.S., Burks, T.F.: Central adrenergic mediation of tyramine hypothermia in cats. Res. Commun. Chem. Pathol. Pharmacol. 3, 1–14 (1972)PubMedGoogle Scholar
  48. Kennedy, M.S., Burks, T.F.: Dopamine receptors in the central thermoregulatory mechanism of the cat. Neuropharmacology 13, 119–128 (1974)PubMedCrossRefGoogle Scholar
  49. Kostrzewa, R.M., Jacobowitz, D.M.: Pharmacological actions of 6-hydroxydopamine. Pharmacol. Rev. 26, 199–288 (1974)PubMedGoogle Scholar
  50. Kruk, Z.L.: The effect of drugs acting on dopamine receptors on the body temperature of the rat. Life Sci. 11, 845–850 (1972)CrossRefGoogle Scholar
  51. Lagerspetz, K.Y.H.: Temperature acclimation and the nervous system. Biol. Rev. 49, 477–514 (1974)PubMedCrossRefGoogle Scholar
  52. Leblanc, J.: Effects of reserpine on increased sensitivity to noradrenaline of cold-adapted animals. J. Appl. Physiol. 21, 661–664 (1966)PubMedGoogle Scholar
  53. Leblanc, J., Villemaire, A.: Thyroxine and noradrenaline on noradrenaline sensitivity, cold resistance, and brown fat. Am J. Physiol. 218, 1742–1745 (1970)PubMedGoogle Scholar
  54. Leduc, J.: Effect of exposure to cold on the production and release of catecholamines. Acta Physiol. Scand. 53 [Suppl. 183], 18–38 (1961)Google Scholar
  55. Maeda, T., Shimizu, N.: Projections ascendantes du locus coeruleus et d’autres neurones aminergiques pontiques au niveau du prosencéphale du rat. Brain Res. 36, 19–35 (1972)PubMedCrossRefGoogle Scholar
  56. Metcalf, G., Myers, R.D.: Precise location within the preoptic area where noradrenaline produces hypothermia. Eur. J. Pharmacol. 51, 47–53 (1978)PubMedCrossRefGoogle Scholar
  57. Myers, R.D.: Discussion of serotonin, norepinephrine, and fever. Adv. Pharmacol. 6, 318–321 (1968)PubMedCrossRefGoogle Scholar
  58. Myers, R.D.: Temperature regulation. In: Handbook of drug and chemical stimulation of the brain. Myers, R.D. (ed.), pp. 237–301. New York: Van Nostrand Reinhold 1974Google Scholar
  59. Myers, R.D.: Impairment of thermoregulation, food and water intakes in the rat after hypothalamic injections of 5,6-dihydroxytryptamine. Brain Res. 94, 491–506 (1975)PubMedCrossRefGoogle Scholar
  60. Myers, R.D.: Hypothalamic control of thermoregulation: neurochemical mechanisms. In: Handbook of the hypothalamus, edited by Morgane, P., Panksepp, J., New York: Marcel Dekker (in press) (1980)Google Scholar
  61. Myers, R.D., Chinn, C.: Evoked release of hypothalamic norepinephrine during thermoregulation in the cat. Am J. Physiol. 224, 230–236 (1973)PubMedGoogle Scholar
  62. Myers, R.D., Ruwe, W.D.: Thermoregulation in the rat: deficits following 6-OH-DA injections in the hypothalamus. Pharmacol. Biochem. Behav. 8, 337–385 (1978)CrossRefGoogle Scholar
  63. Myers, R.D., Waller, M.B.: Species continuity in the thermoregulatory responses of the pigtailed macaque to monoamines injected into the hypothalamus. Comp. Biochem. Physiol. 51 A, 639–645 (1975)Google Scholar
  64. Myers, R.D., Yaksh, T.L.: Feeding and temperature responses in the unrestrained rat after injections of cholinergic and aminergic substances into the cerebral ventricles. Physiol. Behav. 3, 917–928 (1969)CrossRefGoogle Scholar
  65. Myers, R.D., Yaksh, T.L.: Control of body temperature in the unanaesthetized monkey by cholinergic and aminergic systems in the hypothalamus. J. Physiol. 202, 483–500 (1969)PubMedGoogle Scholar
  66. Nakamura, K., Thoenen, H.: Hypothermia induced by intraventricular administration of 6-hydroxydopamine in rats. Eur. J. Pharmacol. 16, 46–54 (1971)PubMedCrossRefGoogle Scholar
  67. Nistico, G., Marley, E.: Neurotrasmettitori e termoregolazione. Acta Neurol. 33, 5–50 (1974)Google Scholar
  68. Olson, L., Fuxe, K.: On the projections from the locus coeruleus noradrenaline neurons: the cerebellar innervation. Brain Res. 28, 165–171 (1971)PubMedCrossRefGoogle Scholar
  69. Palkovits, M., Brownstein, M., Saavedra, J.M., Axelrod, J.: Norepinephrine and dopamine content of hypothalamic nuclei of the rat. Brain Res. 77, 137–149 (1974)PubMedCrossRefGoogle Scholar
  70. Pittmann, Q.J., Veale, W.L., Cooper, K.E.: Effect of prostaglandin, pyrogen and noradrenaline, injected into the hypothalamus, on thermoregulation in newborn lambs. Brain Res. 128, 473–483 (1977)CrossRefGoogle Scholar
  71. Preston, E.: Thermoregulation in the rabbit following intracranial injection of norepinephrine. Am. J. Physiol. 229, 676–682 (1975)PubMedGoogle Scholar
  72. Quock, R.M., Gale, C.C.: Hypothermia-mediating dopamine receptors in the preoptic anterior hypothalamus of the cat. Naunyn-Schmiedebergs Arch. Pharmacol. 285, 297–300 (1974)Google Scholar
  73. Reid, J.L., Lewis, P.J., Myers, M.G.: Role of central dopaminergic mechanisms in piribedil and Clonidine induced hypothermia in the rat. Neuropharmacology 14, 215–220 (1975)PubMedCrossRefGoogle Scholar
  74. Rudy, T.A., Wolf, H.H.: The effect of intrahypothalamieally injected sympathomimetic amines on temperature regulation in the cat. J. Pharmacol. Exp. Ther. 179, 218–235 (1971)PubMedGoogle Scholar
  75. Ruwe, W.D.: Diencephalic mediation of thermoregulation and feeding in the cat by a dopaminergic mechanism. Purdue University. Master’s thesis 1977Google Scholar
  76. Ruwe, W.D., Myers, R.D.: Dopamine in the hypothalamus of the cat: Pharmacological characterization and push-pull perfusion analysis of sites mediating hypothermia. Pharmacol. Biochem. Behav. 9, 65–80 (1978)PubMedCrossRefGoogle Scholar
  77. Saxena, P.N.: Mechanism of hypothermic action of catecholamines in the cat. Ind. J. Pharmac. 5, 3–6 (1973)Google Scholar
  78. Schmidt, J.: Die Abhängigkeit der Temperaturbeeinflussung von Ratten durch biogene Amine von der Applikationsart und der Umgehungstemperatur. Acta Biol. Med. Ger. 10, 350–356 (1963)Google Scholar
  79. Shellenberger, M.K., Elder, J.T.: Changes in rabbit core temperature accompanying alterations in brainstem monoamine concentrations. J. Pharmacol. Exp. Ther. 158, 219–226 (1967)PubMedGoogle Scholar
  80. Shellenberger, M.K., Elder, J.T.: Alterations in rabbit core temperature produced by alpha-methyl metatyrosine. Eur. J. Pharmacol. 3, 196–202 (1968)PubMedCrossRefGoogle Scholar
  81. Shemano, I., Nickerson, M.: Effect of ambient temperature on thermal responses to drugs. Can. J. Biochem. Physiol. 36, 1243–1249 (1958)PubMedCrossRefGoogle Scholar
  82. Shum, A., Johnson, G.E., Flattery, K.V.: Influence of ambient temperature on excretion of catecholamines and metabolites. Am. J. Physiol. 216, 1164–1169 (1969)PubMedGoogle Scholar
  83. Simmonds, M.A.: Inhibition by atropine of the increased turnover of noradrenaline in the hypothalamus of rats exposed to cold. Br. J. Pharmacol. 42, 224–229 (1971)PubMedGoogle Scholar
  84. Simmonds, M.A., Uretsky, N.J.: Central effects of 6-hydroxydopamine on the body temperature of the rat. Br. J. Pharmacol. 40, 630–638 (1970)PubMedGoogle Scholar
  85. Smith, R.E., Horwitz, B.A.: Brown fat and thermogenesis. Physiol. Rev. 49, 330–425 (1969)PubMedGoogle Scholar
  86. Somerville, A.R., Whittle, B.A.: The interrelation of hypothermia and depletion of noradrenaline, dopamine and 5-hydroxytryptamine from brain by reserpine, p-chlorophenylalanine and α-methylmetatyrosine. Br. J. Pharmacol. Chemother, 31, 120–131 (1967)PubMedGoogle Scholar
  87. Summers, R.J.: Monoamine oxidase inhibitors and body temperature. In: The pharmacology of thermoregulation. Schonbaum, E., Lomax, P. (eds.), pp. 217–231. Basel: Karger 1973Google Scholar
  88. Terwelp, D.R., Kennedy, M.S., Burks, T.F.: Temperature responses to intraventricular amphetamine in unanesthetized cats. Res. Commun. Chem. Pathol. Pharmacol. 6, 795–804 (1973)PubMedGoogle Scholar
  89. Toivola, P., Gale, C.C.: Effect on temperature of biogenic amine infusion into hypothalamus of baboon. Neuroendocrinology 6, 210–219 (1970)PubMedCrossRefGoogle Scholar
  90. Veale, W.L., Whishaw, I.Q.: Body temperature responses at different ambient temperatures following injections of prostaglandin and noradrenaline into the brain. Pharamcol. Biochem. Behav. 4, 143–150 (1976)CrossRefGoogle Scholar
  91. Vogt, M.: The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J. Physiol. 123, 451–481 (1954)PubMedGoogle Scholar
  92. Von Euler, C.: Physiology and pharmacology of temperature regulation. Pharmacol. Rev. 13, 361–398 (1961)Google Scholar
  93. Williams, D.D.: The effects of cold exposure and guanethedine on norepinephrine thermogenesis in the golden hamster. Comp. Biochem. Physiol. 27, 567–573 (1968)PubMedCrossRefGoogle Scholar
  94. Yaksh, T.L., Myers, R.D.: Hypothalamic “coding” in the unanesthetized monkey of noradrenergic sites mediating feeding and thermoregulation. Physiol. Behav. 8, 251–257 (1972)PubMedCrossRefGoogle Scholar
  95. Yehuda, S., Wurtman, R.J.: The effects of d-amphetamine and related drugs on colonic temperatures of rats kept at various ambient temperatures. Life Sci. 11, 851–859 (1972)CrossRefGoogle Scholar
  96. Zeisberger, E., Briick, K.: Alteration of shivering threshold in cold- and warm-adapted guinea pigs following intrahypothalamic injections of noradrenaline and of an adrenergic alpha- receptor blocking agent. Pflugers Arch. 362, 113–119 (1976)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • R. D. Myers

There are no affiliations available

Personalised recommendations