Skip to main content

Regulation of Monoamine Synthesis and Utilization by Receptors

  • Chapter
Adrenergic Activators and Inhibitors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 54 / 1))

Abstract

Regulation of the turnover of monoamines in the central nervous system via monoamine receptors was first suggested by the finding that neuroleptic drugs increase the brain concentrations of dopamine (DA) metabolites such as 3-methoxytyramine (Carlsson and Lindqvist, 1963) and homovanillic acid (AndéN et al., 1964a). Successively, many different techniques have been used to show that the utilization and the synthesis of DA are accelerated following treatment with neuroleptic drugs. It has been generally accepted that the neuroleptic-induced stimulation of the DA turnover results from a compensatory activation of the DA neurons due to blockade of DA receptors. The receptors mediating these changes were originally supposed to be the classical postsynaptic receptors located on the effector cells. Later results have indicated, however, that other DA receptors might be involved in this regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Åblad, B., Ek, L., Johansson, B., Waldeck, B.: Inhibitory effect of propranolol on the vasoconstrictor response to sympathetic nerve stimulation. J. Pharm. Pharmacol. 22, 627–628 (1970)

    PubMed  Google Scholar 

  • Adler-Graschinsky, E., Langer, S.Z.: Possible role of a β-adrenoceptor in the regulation of noradrenaline release by nerve stimulation through a positive feed-back mechanism. Br. J. Pharmacol. 53, 43–50 (1975)

    PubMed  CAS  Google Scholar 

  • Aghajanian, G.K.: Influence of drugs on the firing of serotonin-containing neurons in brain. Fed. Proc. 31, 91–96 (1972)

    PubMed  CAS  Google Scholar 

  • Aghajanian, G.K.: LSD and 2-bromo-LSD: comparison of effects on serotonergic neurones and on neurones in two serotonergic projection areas, the ventral lateral geniculate and amygdala. Neuropharmacol. 15, 521–528 (1976)

    CAS  Google Scholar 

  • Aghajanian, G.K., Bunney, B.S.: Pharmacological characterization of dopamine “autoreceptors” by microiontophoretic single-cell recording studies. Adv. Biochem. Psychopharmacol. 16, 433–438 (1977 a)

    Google Scholar 

  • Aghajanian, G.K., Bunney, B.S.: Dopamine “autoreceptors”: pharmacological characterization by microiontophoretic single cell recording studies. Naunyn-Schmiedebergs Arch. Pharmacol. 297, 1–7 (1977 b)

    PubMed  CAS  Google Scholar 

  • Aghajanian, G.K., Foote, W.E., Sheard, M.H.: Lysergic acid diethylamide: sensitive neuronal units in the midbrain raphe. Science 161, 706–708 (1968)

    PubMed  CAS  Google Scholar 

  • Aghajanian, G.K., Foote, W.E., Sheard, M.H.: Action of psychotogenic drugs on single midbrain raphe neurons. J. Pharmacol. Exp. Ther. 171, 178–187 (1970)

    PubMed  CAS  Google Scholar 

  • Aghajanian, G.K., Haigler, H.J., Bloom, F.E.: Lysergic acid diethylamide and serotonin: direct actions on serotonin-containing neurons in rat brain. Life Sci. 11 (I), 615–622 (1972)

    Google Scholar 

  • Agid, Y., Javoy, F., Glowinski, J.: Chemical or electrolytic lesion of the substantia nigra: early effects on neostriatal dopamine metabolism. Brain Res. 74, 41–49 (1974)

    PubMed  CAS  Google Scholar 

  • Ahlenius, S., Engel, J.: Effects of small doses of haloperidol on timing behaviour. J. Pharm. Pharmacol. 23, 301–302 (1971)

    PubMed  CAS  Google Scholar 

  • Alousi, A., Weiner, N.: The regulation of norepinephrine synthesis in sympathetic nerves: effect of nerve stimulation, cocaine, and catecholamine-releasing agents. Proc. Nat. Acad. Sci. USA 56, 1491–1496 (1966)

    PubMed  CAS  Google Scholar 

  • Andén, N.-E.: Discussion of serotonin and dopamine in the extrapyramidal system. Adv. Pharmacol. 6A, 347–349 (1968)

    PubMed  Google Scholar 

  • Andén, N.-E.: Physiology and pharmacology of the nigro-neostriatal dopamine neurons. In: Progress in neuro-genetics. Barbeau, A., Brunette, J.-R. (eds.), pp. 265–271. Amsterdam: Excerpta Medica 1969

    Google Scholar 

  • Andén, N.-E.: Effects of amphetamine and some other drugs on central catecholamine mechanisms. In: Amphetamines and related compounds. Costa, E., Garattini, S. (eds.), pp. 447–462. New York: Raven 1970

    Google Scholar 

  • Andén, N.-E., Bédard, P.: Influences of cholinergic mechanisms on the function and turnover of brain dopamine. J. Pharm. Pharmacol. 23, 460–462 (1971)

    PubMed  Google Scholar 

  • Andén, N.-E., Fuxe, K.: A new dopamines-β-hydroxylase inhibitor: effects on the noradrenaline concentration and on the action of L-DOPA in the spinal cord. Br. J. Pharmacol. 43, 747–756 (1971)

    PubMed  Google Scholar 

  • Andén, N.-E., Grabowska, M.: Pharmacological evidence for a stimulation of dopamine neurons by noradrenaline neurons in the brain. Eur. J. Pharmacol. 39, 275–282 (1976)

    PubMed  Google Scholar 

  • Andén, N.-E., Grabowska, M.: FLA 136: selective agonist at central alpha-adrenoreceptors mediating changes in the turnover of noradrenaline. Naunyn-Schmiedebergs Arch. Pharmacol. 298, 239–243 (1977)

    Google Scholar 

  • Andén, N.-E., Stock, G.: Effect of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system. J. Pharm. Pharmacol. 25, 346–348 (1973)

    PubMed  Google Scholar 

  • Andén, N.-E., Strömbom, U.: Adrenergic receptor blocking agents: effects on central noradrenaline and dopamine receptors and on motor activity. Psychopharmacologia 38, 91–103 (1974)

    PubMed  Google Scholar 

  • Andén, N.-E., Strömbom, U.: Stimulation of central adrenergic alpha-receptors by L-dopa, α- methyldopa and clonidine. In: Central action of drugs in blood pressure regulation. Davies, D.S., Reid, J.L. (eds.), pp. 225–236. Tunbridge Wells: Pitman 1975

    Google Scholar 

  • Andén, N.-E., Roos, B.-E., Werdinius, B.: Effects of chlorpromazine, haloperidol and reserpine on the levels of phenolic acids in rabbit corpus striatum. Life Sci. 3, 149–158 (1964 a)

    Google Scholar 

  • Andén, N.-E., Häggendal, J., Magnusson, T., Rosengren, E.: The time course of the disappear-ance of noradrenaline and 5-hydroxytryptamine in the spinal cord after transection. Acta Physiol. Scand. 62, 115–118 (1964 b)

    PubMed  Google Scholar 

  • Andén, N.-E., Jukes, M.G.M., Lundberg, A.: Spinal reflexes and monoamine liberation. Nature 202, 1222–1223 (1964c)

    PubMed  Google Scholar 

  • Andén, N.-E., Carlsson, A., Hillarp, N.-Å., Magnusson, T.: 5-Hydroxytryptamine release by nerve stimulation of the spinal cord. Life Sci. 3, 473–478 (1964d)

    PubMed  Google Scholar 

  • Andén, N.-E., Magnusson, T., Roos, B.-E., Werdinius, B.: 5-Hydroxyindoleacetic acid of rabbit spinal cord normally and after transection. Acta Physiol. Scand. 64, 193–196 (1965)

    Google Scholar 

  • Andén, N.-E., Dahlstrom, A., Fuxe, K., Larsson, K., Olson, L., Ungerstedt, U.: Ascending monoamine neurons to the telencephalon and diencephalon. Acta Physiol. Scand. 67, 313–326 (1966 a)

    Google Scholar 

  • Andén, N.-E., Jukes, M.G.M., Lundberg, A., Vyklický, L.: The effect of DOPA on the spinal cord. 1. Influence on transmission from primary afferents. Acta Physiol. Scand. 67,373–386 (1966 b)

    Google Scholar 

  • Andén, N.-E., Jukes, M.G.M., Lundberg, A.: The effect of DOPA on the spinal cord. 2. A pharmacological analysis. Acta Physiol. Scand. 67, 387–397 (1966 c)

    Google Scholar 

  • Andén, N.-E., Dahlström, A., Fuxe, K., Larsson, K.: Functional role of the nigro-neostriatal dopamine neurons. Acta Pharmacol. (Kbh.) 24, 263–274 (1966d)

    Google Scholar 

  • Andén, N.-E., Corrodi, H., Dahlström, A., Fuxe, K., Hókfelt, T.: Effects of tyrosine hydroxylase inhibition on the amine levels of central monoamine neurons. Life Sci. 5, 561–568 (1966e)

    Google Scholar 

  • Andén, N.-E., Fuxe, K., Hökfelt, T.: The importance of the nervous impulse flow for the de-pletion of the monoamines from central neurones by some drugs. J. Pharm. Pharmacol. 18, 630–632 (19660

    Google Scholar 

  • Andén, N.-E., Corrodi, H., Fuxe, K., Hökfelt, T.: Increased impulse flow in bulbospinal noradrenaline neurons produced by catecholamine receptor blocking agents. Eur. J. Pharmacol. 2, 59–64 (1967 a)

    PubMed  Google Scholar 

  • Andén, N.-E., Rubenson, A., Fuxe, K., Hökfelt, T.: Evidence for dopamine receptor stimulation by apomorphine. J. Pharm. Pharmacol. 19, 627–629 (1967 b)

    Google Scholar 

  • Andén, N.-E., Corrodi, H., Fuxe, K., Hókfelt, T.: Evidence for a central 5-hydroxytryptamine receptor stimulation by lysergic acid diethylamide. Br. J. Pharmacol. 34, 1–7 (1968 a)

    PubMed  Google Scholar 

  • Andén, N.-E., Börjesson, B., Magnusson, T.: Normetanephrine accumulation in the spinal cord due to nerve impulse activity. Eur. J. Pharmacol. 4, 349–351 (1968 b)

    PubMed  Google Scholar 

  • Andén, N.-E., Corrodi, H., Fuxe, K., Hökfelt, B., Hokfelt, T., Rydin, C., Svensson, T.: Evidence for a central noradrenaline receptor stimulation by clonidine. Life Sci. 9 (I), 513–523 (1970 a)

    Google Scholar 

  • Andén, N.-E., Butcher, S.G., Corrodi, H., Fuxe, K., Ungerstedt, U.: Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur. J. Pharmacol. 11, 303–314 (1970b)

    PubMed  Google Scholar 

  • Andén, N.-E., Corrodi, H., Fuxe, K.: Hallucinogenic drugs of the indolealkylamine type and central monoamine neurons. J. Pharmacol. Exp. Ther. 179, 236–249 (1971a)

    PubMed  Google Scholar 

  • Andén, N.-E., Corrodi, H., Fuxe, K., Ungerstedt, U.: Importance of nervous impulse flow for the neuroleptic induced increase in amine turnover in central dopamine neurons. Eur. J. Pharmacol. 75, 193–199 (1971b)

    Google Scholar 

  • Andén, N.-E., Engel, J., Rubenson, A.: Mode of action of L-DOPA on central noradrenaline mechanisms. Naunyn-Schmiedebergs Arch. Pharmacol. 273, 1–10 (1972a)

    Google Scholar 

  • Andén, N.-E., Bédard, P., Fuxe, K., Ungerstedt, U.: Early and selective increase in brain dopamine levels after axotomy. Experientia 28, 300–301 (1972 b)

    PubMed  Google Scholar 

  • Andén, N.-E., Corrodi, H., Fuxe, K.: Effect of neuroleptic drugs on central catecholamine turnover assessed using tyrosine- and dopamines-β-hydroxylase inhibitors. J. Pharm. Pharmacol. 24, 177–182 (1972c)

    PubMed  Google Scholar 

  • Andén, N.-E., Strombom, U., Svensson, T.H.: Dopamine and noradrenaline receptor stimulation: reversal of reserpine-induced suppression of motor activity. Psychopharmacologia 29, 289–298 (1973)

    PubMed  Google Scholar 

  • Andén, N.-E., Corrodi, H., Fuxe, K., Meek, J.L.: Hallucinogenic phenylethylamines: interactions with serotonin turnover and receptors. Eur. J. Pharmacol. 25, 176–184 (1974a)

    PubMed  Google Scholar 

  • Andén, N.-E., Magnusson, T., Stock, G.: Effect of anaesthetic agents on the synthesis and dis-appearance of brain dopamine normally and after haloperidol, KC1 or axotomy. Naunyn- Schmiedebergs Arch. Pharmacol. 283, 409–418 (1974b)

    Google Scholar 

  • Andén, N.-E., Grabowska, M., Strombom, U.: Different alpha-adrenoreceptors in the central nervous system mediating biochemical and functional effects of clonidine and receptor blocking agents. Naunyn-Schmiedebergs Arch. Pharmacol. 292, 43–52 (1976)

    Google Scholar 

  • Anderson, E.G., Shibuya, T.: The effects of 5-hydroxytryptophan and l-tryptophan on spinal synaptic activity. J. Pharmacol. Exp. Ther. 153, 352–360 (1966)

    CAS  Google Scholar 

  • Asper, H., Baggiolini, M., Burki, H.R., Lauener, H., Ruch, W., Stille, G.: Tolerance phenomena with neuroleptics. Catalepsy, apomorphine stereotypies and striatal dopamine metabolism in the rat after single and repeated administration of loxapine and haloperidol. Eur. J. Pharmacol. 22, 287–294 (1973)

    PubMed  CAS  Google Scholar 

  • Axelrod, J.: Noradrenaline: fate and control of its biosynthesis. Science 173, 598–606 (1971)

    PubMed  CAS  Google Scholar 

  • Bartholini, G.: Differential effect of neuroleptic drugs on dopamine turnover in extrapyramidal and limbic system. J. Pharm. Pharmacol. 28, 429–433 (1976)

    PubMed  CAS  Google Scholar 

  • Bartholini, G., Stadler, H., Gadea Ciria, M., Lloyd, K.G.: The use of the push-pull cannula to estimate the dynamics of acetylcholine and catecholamines within various brain areas. Neuropharmacol. 15, 515–519 (1976)

    CAS  Google Scholar 

  • Bédard, P., Larochelle, L.: Effect of section of the strionigral fibers on dopamine turnover in the forebrain of the rat. Exp. Neurol. 41, 314–322 (1973)

    PubMed  Google Scholar 

  • Bédard, P., Carlsson, A., Lindqvist, M.: Effect of a transverse cerebral hemisection on 5-hydroxytryptamine metabolism in the rat brain. Naunyn-Schmiedebergs Arch. Pharmacol 272, 1–15 (1972)

    Google Scholar 

  • Bell, L.J., Iversen, L.L., Uretsky, N.J.: Time course of the effects of 6-hydroxydopamine on catecholamine-containing neurones in rat hypothalamus and striatum. Br. J. Pharmacol. 40, 790–799 (1970)

    PubMed  CAS  Google Scholar 

  • Bergström, S., Farnebo, L.-O., Fuxe, K.: Effect of prostaglandin E2 on central and peripheral catecholamine neurons. Eur. J. Pharmacol. 21, 362–368 (1973)

    PubMed  Google Scholar 

  • Bernheimer, H., Hornykiewicz, O.: Wirkung von Phenothiazinderivaten auf den Dopamin- (=3-Hydroxytyramin-) Stoffwechsel im Nucleus caudatus. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 251, 135 (1965)

    Google Scholar 

  • Bertler, Å., Rosengren, E.: Occurrence and distribution of dopamine in brain and other tissues. Experientia 15, 10–11 (1959)

    PubMed  CAS  Google Scholar 

  • Bowers, Jr., M.B., Rozitis, A.: Regional differences in homovanillic acid concentrations after acute and chronic administration of antipsychotic drugs. J. Pharm. Pharmacol. 26, 743–745 (1974)

    PubMed  CAS  Google Scholar 

  • Braestrup, C., Nielsen, M.: Regulation in the central norepinephrine neurotransmission induced in vivo by alpha adrenoceptor active drugs. J. Pharmacol. Exp. Ther. 198, 596–608 (1976)

    PubMed  CAS  Google Scholar 

  • Brodie, B.B., Costa, E., Dlabac, A., Neff, N.H., Smookler, H.H.: Application of steady state kinetics to the estimation of synthesis rate and turnover time of tissue catecholamines. J. Pharmacol. Exp. Ther. 154, 493–498 (1966)

    PubMed  CAS  Google Scholar 

  • Brown, G.L., Gillespie, J.S.: The output of sympathetic transmitter from the spleen of the cat. J. Physiol. (Lond.) 138, 81–102 (1957)

    CAS  Google Scholar 

  • Bryant, B.J., McCulloch, M.W., Rand, M.J., Story, D.F.: Release of 3H-(–)-noradrenaline from guinea-pig hypothalamic slices: effects of adrenoceptor agonists and antagonists. Br. J. Pharmacol. 53, 454 P (1975)

    Google Scholar 

  • Bunney, B.S., Aghajanian, G.K.: d-Amphetamine-induced inhibition of central dopaminergic neurons: mediation by a striato-nigral feedback pathway. Science 192, 391–393 (1976)

    PubMed  CAS  Google Scholar 

  • Bunney, B.S., Aghajanian, G.K., Roth, R.H.: Comparison of effects of L-DOPA, amphetamine and apomorphine on firing rate of rat dopaminergic neurones. Nature New Biol. 245, 123–125 (1973 a)

    Google Scholar 

  • Bunney, B.S., Walters, J.R., Roth, R.H., Aghajanian, G.K.: Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. Exp. Ther. 185, 560–571 (1973 b)

    PubMed  CAS  Google Scholar 

  • Bunney, B.S., Walters, J.R., Kuhar, M.J., Roth, R.H., Aghajanian, G.K.: DampL amphetamine stereoisomers: comparative potencies in affecting the firing of central dopaminergic and noradrenergic neurons. Psychopharmacol. Commun. 1, 177–190 (1975)

    PubMed  CAS  Google Scholar 

  • Carlsson, A.: Receptor-mediated control of dopamine metabolism. In: Pre- and postsynaptic receptors. Usdin, E., Bunney, Jr., W.E. (eds.), pp. 49 - 63. New York: Marcel Dekker 1975

    Google Scholar 

  • Carlsson, A.: Mechanism of action of neuroleptic drugs. In: Psychopharmacology: a generation of progress. Lipton, M.A., DiMascio, A., Killam, K.F. (eds.), pp. 1057–1070. New York: Raven 1978

    Google Scholar 

  • Carlsson, A., Lindqvist, M.: Effect of chlorpromazine or haloperidol on formation of 3- methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol. (Kbh.) 20, 140–144 (1963)

    CAS  Google Scholar 

  • Carlsson, A., Lindqvist, M.: The effect of L-tryptophan and some psychotropic drugs on the formation of 5-hydroxytryptophan in the mouse brain in vivo. J. Neural Transm. 33, 23–43 (1972)

    PubMed  CAS  Google Scholar 

  • Carlsson, A., Falck, B., Hillarp, N.-Å.: Cellular localization of brain monoamines. Acta Physiol. Scand. 56 [Suppl. 196], 1–28 (1962)

    CAS  Google Scholar 

  • Carlsson, A., Magnusson, T., Rosengren, E.: 5-Hydroxytryptamine of the spinal cord normally and after transection. Experientia 19, 359–360 (1963 a)

    PubMed  CAS  Google Scholar 

  • Carlsson, A., Corrodi, H., Waldeck, B.: α-Substituierte Dopacetamide als Hemmer der Catechol-O-methyl-transferase und der enzymatischen Hydroxylierung aromatischer Aminosäuren. In den Catecholamin-Metabolismus eingreifende Substanzen 2. Helv. Chim. Acta 66, 2271–2285 (1963 b)

    Google Scholar 

  • Carlsson, A., Davis, J.N., Kehr, W., Lindqvist, M., Atack, C.V.: Simultaneous measurement of tyrosine and tryptophan hydroxylase activities in brain in vivo using an inhibitor of the aromatic amino acid decarboxylase. Naunyn-Schmiedebergs Arch. Pharmacol. 275, 153–168 (1972)

    CAS  Google Scholar 

  • Carlsson, A., Lindqvist, M., Magnusson, T., Atack, C.: Effect of acute transection on the syn-thesis and turnover of 5-HT in the rat spinal cord. Naunyn-Schmiedebergs Arch. Pharmacol. 277, 1–12 (1973)

    CAS  Google Scholar 

  • Carlsson, A., Kehr, W., Lindqvist, M.: The role of intraneuronal amine levels in the feedback control of dopamine, noradrenaline and 5-hydroxytryptamine synthesis in rat brain. J. Neural Transm. 39, 1–19 (1976)

    PubMed  CAS  Google Scholar 

  • Carlsson, A., Kehr, W., Lindqvist, M.: Agonist-antagonist interaction on dopamine receptors in brain, as reflected in the rates of tyrosine and tryptophan hydroxylation. J. Neural Transm. 40, 99–113 (1977)

    PubMed  CAS  Google Scholar 

  • Cedarbaum, J.M., Aghajanian, G.K.: Noradrenergic neurons of the locus coeruleus: inhibition by epinephrine and activation by the α-antagonist piperoxane. Brain Res. 112, 413–419 (1976)

    PubMed  CAS  Google Scholar 

  • Chase, T.N., Katz, R.I., Kopin, I.J.: Release of [3H]serotonin from brain slices. J. Neurochem. 16, 607–615 (1969)

    PubMed  CAS  Google Scholar 

  • Christiansen, J., Squires, R.F.: Antagonistic effects of apomorphine and haloperidol on rat striatal synaptosomal tyrosine hydroxylase. J. Pharm. Pharmacol. 26, 367–369 (1974)

    PubMed  CAS  Google Scholar 

  • Corrodi, H., Hanson, L.C.F.: Central effects of an inhibitor of tyrosine hydroxylation. Psychopharmacologia 10, 116–125 (1966)

    PubMed  CAS  Google Scholar 

  • Corrodi, H., Fuxe, K., Hokfelt, T.: The effect of some psychoactive drugs on central monoamine neurons. Eur. J. Pharmacol. 1, 363–368 (1967)

    PubMed  CAS  Google Scholar 

  • Dahlström, A., Fuxe, K.: Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 62 [Suppl. 232], 1–55 (1964)

    Google Scholar 

  • Dahlström, A. Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol. Scand. 64 [Suppl. 247], 1–36 (1965)

    Google Scholar 

  • Dahlström, A., Fuxe, K., Kernell, D., Sedvall, G.: Reduction of the monoamine stores in the terminals of bulbospinal neurones following stimulation in the medulla oblongata. Life Sci. 4, 1207–1212 (1965)

    PubMed  Google Scholar 

  • Dairman, W., Gordon, R., Spector, S., Sjoerdsma, A., Udenfriend, S.: Increased synthesis of catecholamines in the intact rat following administration of a-adrenergic blocking agents. Mol. Pharmacol. 4, 457–464 (1968)

    PubMed  CAS  Google Scholar 

  • Da Prada, M., Pletscher, A.: On the mechanism of chlorpromazine-induced changes of cerebral homovanillic acid levels. J. Pharm. Pharmacol. 18, 628–630 (1966)

    PubMed  Google Scholar 

  • De Groat, W.C., Voile, R.L.: The actions of the catecholamines on transmission in the superior cervical ganglion of the cat. J. Pharmacol. Exp. Ther. 154, 1–13 (1966)

    PubMed  Google Scholar 

  • Di Chiara, G., Porceddu, M.L., Fratta, W., Gessa, G.L.: Postsynaptic receptors are not essential for dopaminergic feedback regulation. Nature 267, 270–272 (1977)

    PubMed  Google Scholar 

  • Dubocovich, M., Langer, S.Z.: Negative feed-back regulation of noradrenaline release by nerve stimulation in the perfused cat’s spleen: differences in potency of phenoxybenzamine in blocking the pre- and post-synaptic adrenergic receptors. J. Physiol. (Lond.) 237, 505–519 (1974)

    CAS  Google Scholar 

  • Ebstein, B., Roberge, C., Tabachnick, J., Goldstein, M.: The effect of dopamine and of apomorphine on dB-cAMP-induced stimulation of synaptosomal tyrosine hydroxylase. J. Pharm. Pharmacol. 26, 975–977 (1974)

    PubMed  CAS  Google Scholar 

  • Eccles, R.M., Libet, B.: Origin and blockade of the synaptic responses of curarized sympathetic ganglia. J. Physiol. (Lond.) 157, 484–503 (1961)

    CAS  Google Scholar 

  • Emmelin, N.: Action of transmitters on the responsiveness of effector cells. Experientia 21, 57–65 (1965)

    PubMed  CAS  Google Scholar 

  • Enero, M.A., Langer, S.Z., Rothlin, R.P., Stefano, F.J.E.: Role of the α-adrenoceptor in regulating noradrenaline overflow by nerve stimulation. Br. J. Pharmacol. 44, 672–688 (1972)

    PubMed  CAS  Google Scholar 

  • Ernst, A.M.: Relation between the action of dopamine and apomorphine and their O-methylated derivatives upon the CNS. Psychopharmacologia 7, 391–399 (1965)

    PubMed  CAS  Google Scholar 

  • Ernst, A.M.: Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacologia 10, 316–323 (1967)

    PubMed  CAS  Google Scholar 

  • Ernst, A.M.: The role of biogenic amines in the extra-pyramidal system. Acta Physiol. Pharmacol. Neerl. 15, 141–154 (1969)

    CAS  Google Scholar 

  • Ernst, A.M., Smelik, P.G.: Site of action of dopamine and apomorphine on compulsive gnawing behaviour in rats. Experientia 22, 837–838 (1966)

    PubMed  CAS  Google Scholar 

  • Farnebo, L.-O., Hamberger, B.: Drug-induced changes in the release of [3H]-noradrenaline from field stimulated rat iris. Br. J. Pharmacol. 43, 97–106 (1971a)

    PubMed  CAS  Google Scholar 

  • Farnebo, L.-O., Hamberger, B.: Drug-induced changes in the release of 3H-monoamines from field stimulated rat brain slices. Acta Physiol. Scand., [Suppl. 371], 35–44 (1971b)

    Google Scholar 

  • Faull, R.L. M., Laverty, R.: Changes in dopamine levels in the corpus striatum following lesions in the substantia nigra. Exp. Neurol. 23, 332–340 (1969)

    PubMed  CAS  Google Scholar 

  • Fog, R.L., Randrup, A., Pakkenberg, H.: Aminergic mechanisms in corpus striatum and amphetamine-induced stereotyped behaviour. Psychopharmacologia 11, 179–183 (1967)

    PubMed  CAS  Google Scholar 

  • Fog, R., Randrup, A., Pakkenberg, H.: Lesions in corpus striatum and cortex of rat brains and the effect on pharmacologically induced stereotyped, aggressive and cataleptic behaviour. Psychopharmacologia 18, 346–356 (1970)

    PubMed  CAS  Google Scholar 

  • Freedman, D.X., Gottlieb, R., Lovell, R.A.: Psychotomimetic drugs and brain 5-hydroxytryptamine metabolism. Biochem. Pharmacol. 19, 1181–1188 (1970)

    CAS  Google Scholar 

  • Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol. Scand. 64 [Suppl. 247], 37–85 (1965)

    Google Scholar 

  • Fuxe, K., Holmstedt, B., Jonsson, G.: Effects of 5-methoxy-N,N-dimethyltryptamine on central monoamine neurons. Eur. J. Pharmacol. 19, 25–34 (1972)

    PubMed  CAS  Google Scholar 

  • Gallager, D.W., Aghajanian, G.K.: Inhibition of firing of raphe neurones by tryptophan and 5-hydroxytryptophan: blockade by inhibiting serotonin synthesis with Ro-4-4602. Neuropharmacology 15, 149–156 (1976)

    PubMed  CAS  Google Scholar 

  • Garcia-Munoz, M., Nicolaou, N.M., Tulloch, I.F., Wright, A.K., Arbuthnott, G.W.: Feedback loop or output pathway in striato-nigral fibres? Nature 265, 363–365 (1977)

    PubMed  CAS  Google Scholar 

  • Geffen, L.B., Jessell, T.M., Cuello, A.C., Iversen, L.L.: Release of dopamine from dendrites in rat substantia nigra. Nature 260, 258–260 (1976)

    PubMed  CAS  Google Scholar 

  • Gessa, G.L., Vargiu, L., Crabai, F., Boero, G.C., Caboni, F., Camba, R.: Selective increase of brain dopamine induced by gamma-hydroxybutyrate. Life Sci. 5, 1921–1930 (1966)

    CAS  Google Scholar 

  • Gey, K.F., Pletscher, A.: Acceleration of turnover of 14C-catecholamines in rat brain by chlorpromazine. Experientia 24, 335–336 (1968)

    PubMed  CAS  Google Scholar 

  • Gordon, R., Reid, J.V.O., Sjoerdsma, A., Udenfriend, S.: Increased synthesis of norepinephrine in the rat heart on electrical stimulation of the stellate ganglia. Mol. Pharmacol. 2, 610–613 (1966)

    PubMed  CAS  Google Scholar 

  • Grabowska, M.: Influence of apomorphine on brain serotonin turnover rate. Pharmacol. Biochem. Behav. 3, 589–591 (1975)

    PubMed  CAS  Google Scholar 

  • Grabowska, M., Andén, N.-E.: Noradrenaline synthesis and utilization: control by nerve impulse flow under normal conditions and after treatment with alpha-adrenoreceptor blocking agents. Naunyn-Schmiedebergs Arch. Pharmacol. 232, 53–58 (1976)

    Google Scholar 

  • Graham, A.W., Aghajanian, G.K.: Effects of amphetamine on single cell activity in a catecholamine nucleus, the locus coeruleus. Nature 234, 100–102 (1971)

    PubMed  CAS  Google Scholar 

  • Grahame-Smith, D.G.: Studies in vivo on the relationship between brain tryptophan, brain 5- HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and L- tryptophan. J. Neurochem. 18, 1053–1066 (1971)

    PubMed  CAS  Google Scholar 

  • Groves, P.M., Wilson, C.J., Young, S.J., Rebec, G.V.: Self-inhibition by dopaminergic neurons. Science 190, 522–529 (1975)

    PubMed  CAS  Google Scholar 

  • Guldberg, H.C., Yates, C.M.: Effects of chlorpromazine on the metabolism of catecholamines in dog brain. Br. J. Pharmacol. 36, 535–548 (1969)

    PubMed  CAS  Google Scholar 

  • Häggendal, J.: Some further aspects on the release of the adrenergic transmitter. In: New aspects of storage and release mechanisms of catecholamines. Bayer-Symposium II. Schümann, H.J., Kroneberg, G. (eds.), pp. 100–109. Berlin, Heidelberg, New York: Springer 1970

    Google Scholar 

  • Häggendal, J., Johansson, B., Jonason, J., Ljung, B.: Effects of phenoxybenzamine on transmitter release and effector response in the isolated portal vein. J. Pharm. Pharmacol. 24, 161–164 (1972)

    PubMed  Google Scholar 

  • Haigier, H.J., Aghajanian, G.K.: Mescaline and LSD: direct and indirect effects on serotonin- containing neurons in brain. Eur. J. Pharmacol. 21, 53–60 (1973)

    Google Scholar 

  • Haigier, H.J., Aghajanian, G.K.: Lysergic acid diethylamide and serotonin: a comparison of effects on serotonergic neurons and neurons receiving a serotonergic input. J. Pharmacol. Exp. Ther. 188, 688–699 (1974a)

    Google Scholar 

  • Haigier, H.J., Aghajanian, G.K.: Peripheral serotonin antagonists: failure to antagonize serotonin in brain areas receiving a prominent serotonergic input. J. Neural Transm. 35, 257–273 (1974 b)

    Google Scholar 

  • Hanson, L.C.F.: Evidence that the central action of (+)-amphetamine is mediated via catechol-amines. Psychopharmacologia 10, 289–297 (1967)

    PubMed  CAS  Google Scholar 

  • Hedqvist, P.: Studies on the effect of prostaglandins E1 and E2 on the sympathetic neuromuscular transmission in some animal tissues. Acta Physiol. Scand. [Suppl. 345], 1–40 (1970)

    Google Scholar 

  • Hedqvist, P.: Dissociation of prostaglandin and α-receptor mediated control of adrenergic transmitter release. Acta Physiol. Scand. 87, 42A–43 A (1973)

    Google Scholar 

  • Hoefke, W., Kobinger, W.: Pharmakologische Wirkungen des 2-(2,6-Dichlorphenylamino)-2- imidazolin-hydrochlorids, einer neuen antihypertensiven Substanz. Arzneimittel-Forsch. 16, 1038–1050 (1966)

    CAS  Google Scholar 

  • Hoffer, B.J., Siggins, G.R., Bloom, F.E.: Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis. Brain Res. 25, 523–534 (1971)

    PubMed  CAS  Google Scholar 

  • Iversen, L.L., Rogawski, M.A., Miller, R.J.: Comparison of the effects of neuroleptic drugs on pre- and postsynaptic dopaminergic mechanisms in the rat striatum. Mol. Pharmacol. 12, 251–262 (1976)

    PubMed  CAS  Google Scholar 

  • Jackson, D.M., Andén, N.-E., Dahlström, A.: A functional effect of dopamine in the nucleus accumbens and in some other dopamine-rich parts of the rat brain. Psychopharmacologia 45, 139–149 (1975)

    PubMed  CAS  Google Scholar 

  • Janssen, P.A.J., Niemegeers, C.J.E., Schellekens, K.H.L.: Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Part I. “Neuroleptic activity spectra” for rats. Arzneim.-Forsch. 15, 104–117 (1965)

    CAS  Google Scholar 

  • Javoy, F., Agid, Y., Bouvet, D., Glowinski, J.: In vivo estimation of tyrosine hydroxylation in the dopaminergic terminals of the rat neostriatum. J. Pharm. Pharmacol. 26, 179–185 (1974)

    CAS  Google Scholar 

  • Kehr, W.: Temporal changes in catecholamine synthesis of rat forebrain structures after axotomy. J. Neural Transm. 35, 307–317 (1974)

    PubMed  CAS  Google Scholar 

  • Kehr, W.: 3-Methoxytyramine as an indicator of impulse-induced dopamine release in rat brain in vivo. Naunyn-Schmiedebergs Arch. Pharmacol. 293, 209–215 (1976)

    CAS  Google Scholar 

  • Kehr, W., Carlsson, A., Lindqvist, M., Magnusson, T., Atack, C.: Evidence for a receptor-mediated feedback control of striatal tyrosine hydroxylase activity. J. Pharm. Pharmacol. 24, 744–147 (1972)

    PubMed  CAS  Google Scholar 

  • Kehr, W., Carlsson, A., Lindqvist, M.: Catecholamine synthesis in rat brain after axotomy: interaction between apomorphine and haloperidol. Naunyn-Schmiedebergs Arch. Pharmacol. 297, 111–117 (1977)

    CAS  Google Scholar 

  • Keller, H.H., Bartholini, G., Pletscher, A.: Increase of 3-methoxy-4-hydroxyphenylethylene glycol in rat brain by neuroleptic drugs. Eur. J. Pharmacol. 23, 183–186 (1973)

    PubMed  CAS  Google Scholar 

  • Kemp, J.M., Powell, T.P.S.: The synaptic organization of the caudate nucleus. Philos. Trans. R. Soc. Lond. [Biol.] 262, 403–412 (1971)

    CAS  Google Scholar 

  • Kirpekar, S.M., Puig, M.: Effect of flow-stop on noradrenaline release from normal spleens and spleens treated with cocaine, phentolamine or phenoxybenzamine. Br. J. Pharmacol. 43, 359–369 (1971)

    PubMed  CAS  Google Scholar 

  • Korf, J., Roth, R.H., Aghajanian, G.K.: Alterations in turnover and endogenous levels of norepinephrine in cerebral cortex following electrical stimulation and acute axotomy of cerebral noradrenergic pathways. Eur. J. Pharmacol. 23, 276–282 (1973 a)

    PubMed  CAS  Google Scholar 

  • Korf, J., Aghajanian, G.K., Roth, R.H.: Stimulation and destruction of the locus coeruleus: opposite effects on 3-methoxy-4-hydroxyphenylglycol sulfate levels in the rat cerebral cortex. Eur. J. Pharmacol. 21, 305–310 (1973 b)

    PubMed  CAS  Google Scholar 

  • Korf, J., Grasdijk, L., Westerink, B.H.C.: Effects of electrical stimulation of the nigrostriatal pathway of the rat on dopamine metabolism. J. Neurochem. 26, 579–584 (1976 a)

    PubMed  CAS  Google Scholar 

  • Korf, J., Zieleman, M., Westerink, B.H.C.: Dopamine release in substantia nigra? Nature 260, 257–258 (1976b)

    PubMed  CAS  Google Scholar 

  • Kostowski, W., Giacalone, E., Garattini, S., Valzelli, L.: Electrical stimulation of midbrain raphe: biochemical, behavioral and bioelectrical effects. Eur. J. Pharmacol. 7, 170–175 (1969)

    PubMed  CAS  Google Scholar 

  • Lal, S., Sourkes, T.L., Missala, K., Belendiuk, G.: Effects of aporphine and emetine alkaloids on central dopaminergic mechanisms in rats. Eur. J. Pharmacol. 20, 71–79 (1972)

    PubMed  CAS  Google Scholar 

  • Langer, S.Z.: Presynaptic regulation of catecholamine release. Biochem. Pharmacol. 23, 1793–1800 (1974)

    PubMed  CAS  Google Scholar 

  • Laverty, R., Sharman, D.F.: Modification by drugs of the metabolism of 3,4-dihydroxyphenylethylamine, noradrenaline and 5-hydroxytryptamine in the brain. Br. J. Pharmacol. 24, 759–772 (1965)

    CAS  Google Scholar 

  • Libet, B.: Generation of slow inhibitory and excitatory postsynaptic potentials. Fed. Proc. 29, 1945–1956 (1970)

    PubMed  CAS  Google Scholar 

  • Lin, R.C., Ngai, S.H., Costa, E.: Lysergic acid diethylamide: role in conversion of plasma tryptophan to brain serotonin (5-hydroxytryptamine). Science 166, 237–239 (1969)

    PubMed  CAS  Google Scholar 

  • Lundberg, A.: Adrenaline and transmission in the sympathetic ganglion of the cat. Acta Physiol. Scand. 26, 252–263 (1952)

    CAS  Google Scholar 

  • Magnusson, T.: Effect of chronic transection on dopamine, noradrenaline and 5-hydroxytryp- tamine in the rat spinal cord. Naunyn-Schmiedebergs Arch. Pharmacol. 278, 13–22 (1973)

    CAS  Google Scholar 

  • Magnusson, T., Rosengren, E.: Catecholamines of the spinal cord normally and after transection. Experientia 19, 229 (1963)

    CAS  Google Scholar 

  • Maj, J., Sowinska, H., Baran, L., Kapturkiewicz, Z.: The effect of clonidine on locomotor activity in mice. Life Sci. 11 (I), 483–491 (1972)

    Google Scholar 

  • Marrazzi, A.S.: Electrical studies on the pharmacology of autonomic synapses. II. The action of a sympathomimetic drug (epinephrine) on sympathetic ganglia. J. Pharmacol. Exp. Ther. 65, 395–404 (1939)

    CAS  Google Scholar 

  • Meek, J.L., Neff, N.H.: The rate of formation of 3-methoxy-4-hydroxyphenyl-ethyleneglycol sulfate in brain as an estimate of the rate of formation of norepinephrine. J. Pharmacol. Exp. Ther. 184, 570–575 (1973)

    PubMed  CAS  Google Scholar 

  • Munkvad, I., Randrup, A.: The persistance of amphetamine stereotypies of rats in spite of strong sedation. Acta Psychiatr. Scand. 42 [Suppl. 191], 178–187 (1966)

    Google Scholar 

  • Murrin, L.C., Roth, R.H.: Dopaminergic neurons: effects of electrical stimulation on dopamine biosynthesis. Mol. Pharmacol. 12, 463–475 (1976)

    PubMed  CAS  Google Scholar 

  • Nybäck, H.: Effect of brain lesions and chlorpromazine on accumulation and disappearance of catecholamines formed in vivo from 14C-tyrosine. Acta Physiol. Scand. 84, 54–64 (1972)

    Google Scholar 

  • Nybäck, H., Sedvall, G.: Effect of chlorpromazine on accumulation and disappearance of catecholamines formed from tyrosine-C14 in brain. J. Pharmacol. Exp. Ther. 162, 294–301 (1968)

    PubMed  Google Scholar 

  • Nybäck, H., Sedvall, G.: Further studies on the accumulation and disappearance of catecholamines formed from tyrosine-14C in mouse brain. Effect of some phenothiazine analogues. Eur. J. Pharmacol. 10, 193–205 (1970)

    PubMed  Google Scholar 

  • Nybäck, H., Schubert, J., Sedvall, G.: Effect of apomorphine and pimozide on synthesis and turnover of labelled catecholamines in mouse brain. J. Pharm. Pharmacol. 22, 622–624 (1970)

    PubMed  Google Scholar 

  • O’Keeffe, R., Sharman, D.F., Vogt, M.: Effect of drugs used in psychoses on cerebral dopamine metabolism. Br. J. Pharmacol. 38, 287–304 (1970)

    PubMed  Google Scholar 

  • Persson, T.: Drug induced changes in 3H-catecholamine accumulation after 3H-tyrosine. Acta Pharmacol. (Kbh.) 28, 378–390 (1970)

    CAS  Google Scholar 

  • Persson, T., Waldeck, B.: Further studies on the possible interaction between dopamine and noradrenaline containing neurons in the brain. Eur. J. Pharmacol. 11, 315–320 (1970)

    PubMed  CAS  Google Scholar 

  • Philippu, A., Roensberg, W., Przuntek, H.: Effects of adrenergic drugs on pressor responses to hypothalamic stimulation. Naunyn-Schmiedebergs Arch. Pharmacol. 278, 373–386 (1973)

    CAS  Google Scholar 

  • Pieri, L., Pieri, M., Haefely, W.: LSD as an agonist of dopamine receptors in the striatum. Nature 252, 586–588 (1974)

    PubMed  CAS  Google Scholar 

  • Pijnenburg, A.J.J., Rossum, J.M. van: Stimulation of locomotor activity following injection of dopamine into the nucleus accumbens. J. Pharm. Pharmacol. 25, 1003–1005 (1973)

    PubMed  CAS  Google Scholar 

  • Portig, P.J., Vogt, M.: Release into the cerebral ventricles of substances with possible transmitter function in the caudate nucleus. J. Physiol. (Lond.) 204, 687–715 (1969)

    CAS  Google Scholar 

  • Randic, M., Padjen, A.: Effect of N,N-dimethyltryptamine and d-lysergic acid diethylamide on the release of 5-hydroxyindoles in rat forebrain. Nature 230, 532–533 (1971)

    PubMed  CAS  Google Scholar 

  • Randrup, A., Munkvad, I.: DOPA and other naturally occurring substances as causes of stereotypy and rage in rats. Acta Psychiatr. Scand. 42 [Suppl. 191], 193–199 (1966 a)

    Google Scholar 

  • Randrup, A., Munkvad, I.: Role of catecholamines in the amphetamine excitatory response. Nature 211, 540 (1966 b)

    PubMed  CAS  Google Scholar 

  • Randrup, A., Munkvad, I.: Behavioural stereotypies induced by pharmacological agents. Pharmakopsychiatr. Neuropsychopharmakol. 1, 18–26 (1968)

    Google Scholar 

  • Rochette, L., Bralet, A.-M., Bralet, J.: Influence de la clonidine sur la synthèse et la libération de la noradrenaline dans différentes structures cérébrales du rat. J. Pharmacol. (Paris) 5, 209–220 (1974)

    CAS  Google Scholar 

  • Roos, B.-E.: Decrease in homo vanillic acid as evidence for dopamine receptor stimulation by apomorphine in the neostriatum of the rat. J. Pharm. Pharmacol. 21, 263–264 (1969)

    PubMed  CAS  Google Scholar 

  • Rosecrans, J.A., Lovell, R.A., Freedman, D.X.: Effects of lysergic acid diethylamide on the metabolism of brain 5-hydroxytryptamine. Biochem. Pharmacol. 16, 2011–2021 (1967)

    PubMed  CAS  Google Scholar 

  • Roth, R.H., Stjarne, L., Euler, U.S. von: Factors influencing the rate of norepinephrine biosynthesis in nerve tissue. J. Pharmacol. Exp. Ther. 158, 373–377 (1967)

    PubMed  CAS  Google Scholar 

  • Roth, R.H., Walters, J.R., Aghajanian, G.K.: Effect of impulse flow on the release and synthesis of dopamine in the rat striatum. In: Frontiers in catecholamine research. Usdin, E., Snyder, S.H. (eds.), pp. 567–574. New York: Pergamon 1973

    Google Scholar 

  • Roth, R.H., Murrin, L.C., Walters, J.R.: Central dopaminergic neurons: effects of alterations in impulse flow on the accumulation of dihydroxyphenylacetic acid. Eur. J. Pharmacol. 36, 163–171 (1976)

    PubMed  CAS  Google Scholar 

  • Scheel-Kriiger, J.: Studies on the accumulation of O-methylated dopamine and noradrenaline in the rat brain following various neuroleptics, thymoleptics and aceperone. Arch. Int. Pharmacodyn. 195, 372–378 (1972)

    Google Scholar 

  • Schubert, J.: Effect of spinal transection on the metabolism of 5-hydroxyindoles formed in vivo from 3H-tryptophan in the rat spinal cord. Acta Physiol. Scand. 87, 557–566 (1972)

    Google Scholar 

  • Schubert, J., Nybäck, H., Sedvall, G.: Accumulation and disappearance of 3H-5-hydroxytryptamine formed from 3H-tryptophan in mouse brain; effect of LSD-25. Eur. J. Pharmacol. 10, 215–224 (1970)

    PubMed  CAS  Google Scholar 

  • Sedvall, G.C., Kopin, I.J.: Acceleration of norepinephrine synthesis in the rat submaxillary gland in vivo during sympathetic nerve stimulation. Life Sci. 6, 45–51 (1967)

    PubMed  CAS  Google Scholar 

  • Segal, M., Bloom, F.E.: The action of norepinephrine in the rat hippocampus. I. Iontophoretic studies. Brain Res. 72, 79–97 (1974 a)

    PubMed  CAS  Google Scholar 

  • Segal, M., Bloom, F.E.: The action of norepinephrine in the rat hippocampus. II. Activation of the input pathway. Brain Res. 72, 99–114 (1974 b)

    PubMed  CAS  Google Scholar 

  • Sheard, M.H., Aghajanian, G.K.: Stimulation of the midbrain raphe: effect on serotonin metabolism. J. Pharmacol. Exp. Ther. 163, 425–430 (1968)

    PubMed  CAS  Google Scholar 

  • Shields, P.J., Eccleston, D.: Effects of electrical stimulation of rat midbrain on 5-hydroxytryptamine synthesis as determined by a sensitive radioisotope method. J. Neurochem. 19, 265–272 (1972)

    PubMed  CAS  Google Scholar 

  • Shields, P.J., Eccleston, D.: Evidence for the synthesis and storage of 5-hydroxytryptamine in two separate pools in the brain. J. Neurochem. 20, 881–888 (1973)

    PubMed  CAS  Google Scholar 

  • Spector, S., Sjoerdsma, A., Udenfriend, S.: Blockade of endogenous norepinephrine synthesis by α-methyl-tyrosine, an inhibitor of tyrosine hydroxylase. J. Pharmacol. Exp. Ther. 147, 86–95 (1965)

    PubMed  CAS  Google Scholar 

  • Starke, K.: Influence of α-receptor stimulants on noradrenaline release. Naturwissenschaften 58, 420 (1971)

    PubMed  CAS  Google Scholar 

  • Starke, K.: Regulation of noradrenaline release by presynaptic receptor systems. Rev. Physiol. Biochem. Pharmacol. 77, 1–124 (1977)

    PubMed  CAS  Google Scholar 

  • Starke, K., Altmann, K.P.: Inhibition of adrenergic neurotransmission by clonidine: an action on prejunctional α-receptors. Neuropharmacol. 12, 339–347 (1973)

    CAS  Google Scholar 

  • Starke, K., Montel, H.: Alpha-receptor-mediated modulation of transmitter release from central noradrenergic neurones. Naunyn-Schmiedebergs Arch. Pharmacol. 279, 53–60 (1973 a)

    PubMed  CAS  Google Scholar 

  • Starke, K., Montel, H.: Involvement of α-receptors in clonidine-induced inhibition of transmitter release from central monoamine neurones. Neuropharmacol. 12, 1073–1080 (1973 b)

    CAS  Google Scholar 

  • Starke, K., Montel, H.: Sympathomimetic inhibition of noradrenaline release: mediated by prostaglandins? Naunyn-Schmiedebergs Arch. Pharmacol. 278, 111–116 (1973c)

    CAS  Google Scholar 

  • Starke, K., Montel, H.: Interaction between indomethacin, oxymetazoline and phentolamine on the release of [3H] noradrenaline from brain slices. J. Pharm. Pharmacol. 25, 758–759 (1973 d)

    Google Scholar 

  • Starke, K., Borowski, E., Endo, T.: Preferential blockade of presynaptic a-adrenoceptors by yohimbine. Eur. J. Pharmacol. 34, 385–388 (1975 a)

    PubMed  CAS  Google Scholar 

  • Starke, K., Endo, T., Taube, H.D.: Relative pre- and postsynaptic potencies of α-adrenoceptor agonists in the rabbit pulmonary artery. Naunyn-Schmiedebergs Arch. Pharmacol. 291, 55–78 (1975 b)

    PubMed  CAS  Google Scholar 

  • Starke, K., Endo, T., Taube, H.D., Borowski, E.: Presynaptic receptor systems on noradrenergic nerves. In: Chemical tools in catecholamine research, Vol. II. Almgren, O., Carlsson, A., Engel, J. (eds.), pp. 193–200. Amsterdam, Oxford: North-Holland 1975 c

    Google Scholar 

  • Stjärne, L.: Prostaglandin- versus α-adrenoceptor-mediated control of sympathetic neurotransmitter secretion in guinea-pig isolated vas deferens. Eur. J. Pharmacol. 22, 233–238 (1973)

    PubMed  Google Scholar 

  • Stock, G., Magnusson, T., Andén, N.-E.: Increase in brain dopamine after axotomy or treatment with gammahydroxybutyric acid due to elimination of the nerve impulse flow. Naunyn-Schmiedebergs Arch. Pharmacol. 278, 347–361 (1973)

    CAS  Google Scholar 

  • Strömbom, U.: Catecholamine receptor agonists. Effects on motor activity and rate of tyrosine hydroxylation in mouse brain. Naunyn-Schmiedebergs Arch. Pharmacol. 292, 167–176 (1976)

    Google Scholar 

  • Strömbom, IL: Antagonism by haloperidol of locomotor depression induced by small doses of apomorphine. J. Neural Transm. 40, 191–194 (1977)

    PubMed  Google Scholar 

  • Svensson, T.H.: Central α-adrenoceptors and affective symptoms and disorders. In: Depressive disorders. Symposia Medica Hoechst 13. Lindenlaub, E., Garattini, S. (eds.), pp. 245–254. Stuttgart, New York: Schattauer 1978

    Google Scholar 

  • Svensson, T.H., Bunney, B.S., Aghajanian, G.K.: Inhibition of both noradrenergic and serotonergic neurons in brains by the a-adrenergic agonist Clonidine. Brain Res. 92, 291–306 (1975)

    PubMed  CAS  Google Scholar 

  • Thoenen, H.: Trans-synaptic enzyme induction. Life Sci. 14, 223–235 (1974)

    PubMed  CAS  Google Scholar 

  • Thoenen, H., Hiirlimann, A., Haefely, W.: Wirkungen von Phenoxybenzamin, Phentolamin und Azapetin auf adrenergische Synapsen der Katzenmilz: Blockierung der α-adrenergi- schen Rezeptoren und Hemmung der Wiederaufnahme von neural freigesetztem Noradrenalin. Helv. Physiol. Pharmacol. Acta 22, 148–161 (1964)

    PubMed  CAS  Google Scholar 

  • Trendelenburg, U.: Some aspects of the pharmacology of autonomic ganglion cells. Ergebn. Physiol 59, 1–85 (1967)

    Google Scholar 

  • Trulson, M.E., Jacobs, B.L.: Raphe neurons: depression of activity by L-5-hydroxytryptophan. Brain Res. 97, 350–355 (1975)

    PubMed  CAS  Google Scholar 

  • Ungerstedt, U., Butcher, L.L., Butcher, S.G., Andén, N.-E., Fuxe, K.: Direct chemical stimulation of dopaminergic mechanisms in the neostriatum of the rat. Brain Res. 14, 461–471 (1969)

    PubMed  CAS  Google Scholar 

  • Walter, D.S., Eccleston, D.: Increase of noradrenaline metabolism following electrical stimulation of the locus coeruleus in the rat. J. Neurochem. 21, 281–289 (1973)

    PubMed  CAS  Google Scholar 

  • Walters, J.R., Roth, R.H.: Dopaminergic neurons: drug-induced antagonism of the increase in tyrosine hydroxylase activity produced by cessation of impulse flow. J. Pharmacol. Exp. Ther. 191, 82–91 (1974)

    PubMed  CAS  Google Scholar 

  • Walters, J.R., Roth, R.H.: Dopaminergic neurons - alteration in the sensitivity of tyrosine hydroxylase to inhibition by endogenous dopamine after cessation of impulse flow. Biochem. Pharmacol. 25, 649–654 (1976 a)

    PubMed  CAS  Google Scholar 

  • Walters, J.R., Roth, R.H.: Dopaminergic neurons: an in vivo system for measuring drug interactions with presynaptic receptors. Naunyn-Schmiedebergs Arch. Pharmacol. 296, 5–14 (1976 b)

    Google Scholar 

  • Walters, J.R., Roth, R.H., Aghajanian, G.K.: Dopaminergic neurons: similar biochemical and histochemical effects of γ-hydroxybutyrate and acute lesions of the nigro-neostriatal pathway. J. Pharmacol. Exp. Ther. 186, 630–639 (1973)

    PubMed  CAS  Google Scholar 

  • Weiner, N., Lee, F.-L.: The role of calcium in norepinephrine release and synthesis. In: Chemical tools in catecholamine research, Vol. II. Almgren, O., Carlsson, A., Engel, J. (eds.), pp. 61–71. Amsterdam, Oxford: North-Holland 1975

    Google Scholar 

  • Weissman, A., Koe, B.K., Tenen, S.S.: Antiamphetamine effects following inhibition of tyrosine hydroxylase. J. Pharmacol. Exp. Ther. 151, 339–352 (1966)

    PubMed  CAS  Google Scholar 

  • Werner, IL, Starke, K., Schümann, H.J.: Actions of Clonidine and 2-(2-methyl-6-ethyl-cyclo- hexylamino)-2-oxazoline on postganglionic autonomic nerves. Arch. Int. Pharmacodyn. 195, 282–290 (1972)

    PubMed  CAS  Google Scholar 

  • Westerink, B.H.C., Korf, J.: Regional rat brain levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid: concurrent fluorometric measurement and influence of drugs. Eur. J. Pharmacol. 38, 281–291 (1976)

    PubMed  CAS  Google Scholar 

  • Wiesel, F.-A., Sedvall, G.: Effect of antipsychotic drugs on homovanillic acid levels in striatum and olfactory tubercle of the rat. Eur. J. Pharmacol. 30, 364–367 (1975)

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andén, NE. (1980). Regulation of Monoamine Synthesis and Utilization by Receptors. In: Szekeres, L. (eds) Adrenergic Activators and Inhibitors. Handbook of Experimental Pharmacology, vol 54 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67505-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67505-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67507-2

  • Online ISBN: 978-3-642-67505-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics