Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Edwards DJ, Blau K (1972) Analysis of phenylethylamines in biological tissues by gas-liquid chromatography with electron-capture detection. Anal Biochem 45:387–402

    Article  PubMed  CAS  Google Scholar 

  • Mosnaim AD, Inwang EE (1973) A spectrophotometric method for the quantification of 2-phenylethylamine in biological specimens. Anal Biochem 54:561–577

    Article  PubMed  CAS  Google Scholar 

  • Saavedra JM (1974) Enzymatic isotopic assay for and presence of β-phenylethylamine in brain. J Neurochem 22:211–216

    Article  PubMed  CAS  Google Scholar 

  • Willner J, LeFevre HF, Costa E (1974) Assay by multiple ion detection of phenylethylamine and phenylethanolamine in rat brain. J Neurochem 23:857–859

    Article  CAS  Google Scholar 

  • Suzuki O, Yagi K (1976) A fluorometric assay for β-phenylethylamine in rat brain. Anal Biochem 75:192–200

    Article  PubMed  CAS  Google Scholar 

  • Martin IL, Baker GB (1977) A gas-liquid chromatographic method for the estimation of 2-phenylethylamine in rat brain tissue. Biochem Pharmacol 26:1513–1516

    Article  PubMed  CAS  Google Scholar 

  • Hiemke C, Kauert G, Kalbhen DA (1978) Gas-liquid chromatographic properties of catecholamines, phenylethylamines and indolalkylamines as their propionyl derivatives. J Chromatogr 153:451–460

    Article  CAS  Google Scholar 

  • Guilbault GG, Brignac PJ Jr, Juneau M (1968) New substrates for the fluorometric determination of oxidative enzymes. Anal Chem 40:1256–1263

    Article  PubMed  CAS  Google Scholar 

  • Haeffner LJ, Magen JS, Kowlessar OD (1976) The gas-liquid chromatographic separation of selected catecholamines on polyamide A103. J Chromatogr 118:425–428

    Article  PubMed  CAS  Google Scholar 

  • Henke U, Tschesche R (1976) Separation and identification of trimethylsilyl derivatives of tyramines and methodytyramines by gas-liquid chromatography. J Chromatogr 120:477–481

    Article  PubMed  CAS  Google Scholar 

  • Tallman JF, Saavedra JM, Axelrod J (1976) A sensitive enzymaticisotopic method for the analysis of tyramine in brain and other tissues. J Neurochem 27:465–469

    Article  PubMed  CAS  Google Scholar 

  • Hiemke C, Kauert G, Kalbhen DA (1978) Gas-liquid chromatographic properties of catecholamines, phenylethylamines and indolalkylamines as their propionyl derivatives. J Chromatogr 153: 451–460

    Article  CAS  Google Scholar 

  • Guldberg HC, Sharman DF, Tegerdine PR (1971) Some observations on the estimation of 3-methoxytyramine in brain tissue. Br J Pharmacol 42:505–511

    PubMed  CAS  Google Scholar 

  • Messiha FS, Raval RP (1973) Fluorometric determination of 3-methoxytyramine and 3-methoxy-4-hydroxyphenylethanol. J Pharm Pharmacol 25:184–185

    Article  PubMed  CAS  Google Scholar 

  • Henke U, Tschesche R (1976) Separation and identification of trimethylsilyl derivatives of tyramines and methoxytyramines by gas-liquid chromatography. J Chromatogr 120:477–481

    Article  PubMed  CAS  Google Scholar 

  • Galli CL, Cattabeni F, Eros T, Spano PF, Algeri S, Di Giulio A, Gropetti A (1976) A mass fragmentographic assay of 3-methoxy-tyramine in rat brain. J Neurochem 27:795–798

    Article  PubMed  CAS  Google Scholar 

  • Kilts CD, Vrbanac JJ, Rickert DE, Rech RH (1977) Mass fragmentographic determination of 3.4-dihydroxyphenylethylamine and 4-hydroxy-3-methoxyphenylethylamine in the caudate nucleus. J Neurochem 28:465–467

    Article  PubMed  CAS  Google Scholar 

  • Nielsen M, Braestrup C (1976) A method for the assay of conjugated 3.4-dihydroxyphenylglycol, a major noradrenaline metabolite in the rat brain. J Neurochem 27:1211–1217

    Article  PubMed  CAS  Google Scholar 

  • Karasawa T, Furukawa K, Shimizu M (1978) A sensitive fluorometric method for the estimation of 3.4-dihydroxyphenylethylene glycol in brain tissue. J Neurochem 30:1525–1530

    Article  PubMed  CAS  Google Scholar 

  • Sato T, DeQuattro V (1969) Enzymatic assay for 3.4-dihydroxy-mandelic acid (DOMA) in human urine, plasma, and tissues. J Lab Clin Med 74:672–681

    PubMed  CAS  Google Scholar 

  • Pisano JJ (1960) A simple analysis for normetanephrine and metanephrine in urine. Clin Chim Acta 5:406–414

    Article  PubMed  CAS  Google Scholar 

  • Anton AH, Sayre DF (1966) Distribution of metanephrine and normetanephrine in various animals and their analysis in diverse bioloqic material. J Pharmacol Exp Ther 153:15–29

    PubMed  CAS  Google Scholar 

  • Haeffner LJ, Magen JS, Kowlessar OD (1976) The gas-liquid chromatographic separation of selected catecholamines on polyamide A103. J Chromatogr 118:425–428

    Article  PubMed  CAS  Google Scholar 

  • Vlachakis ND, DeQuattro V (1978) A simple and specific radioenzymatic assay for measurement of urinary normetanephrine. Biochem Med 20:107–114

    Article  PubMed  CAS  Google Scholar 

  • Hiemke C, Kauert G, Kalbhen DA (1978) Gas-liquid chromatographic properties of catecholamines, phenylethylamines and indolalkylamines as their propionyl derivatives. J Chromatogr 153:451–460

    Article  CAS  Google Scholar 

  • Pisano JJ (1960) A simple analysis for normetanephrine and metanephrine in urine. Clin Chim Acta 5:406–414

    Article  PubMed  CAS  Google Scholar 

  • Anton AH, Sayre DF (1966) Distribution of metanephrine and normetanephrine in various animals and their analysis in diverse biologic material. J Pharmacol Exp Ther 153:15–29

    PubMed  CAS  Google Scholar 

  • Haeffner LJ, Magen JS, Kowlessar OD (1976) The gas-liquid chromatographic separation of selected catecholamines on polyamide A103. J Chromatogr 118:425–428

    Article  PubMed  CAS  Google Scholar 

  • Hiemke C, Kauert G, Kalbhen DA (1978) Gas-liquid chromatographic properties of catecholamines, phenylethylamines and indolalkylamines as their propionyl derivatives. J Chromatogr 153:451–460

    Article  CAS  Google Scholar 

  • Messina FS, Raval RP (1973) Fluorometric determination of 3-methoxytyramine and 3-methoxy-4-hydroxyphenylethanol. J Pharmacol 25:184–185

    Article  Google Scholar 

  • Muskeit FAJ, Jeuring HJ, Ader J-P, Wolthers BG (1978) Identification and quantification of 3-methoxy-4-hydroxyphenylethanol (MOPET) in human cerebrospinal fluid and rat brain by means of gas chromatography-mass spectrometry. J Neurochem 30:1495–1499

    Article  PubMed  CAS  Google Scholar 

  • Pisano JJ, Crout RJ, Abraham D (1962) Determination of 3-methoxy-4-hydroxymandelic acid in urine. Clin Chim Acta 7:285–291

    Article  PubMed  CAS  Google Scholar 

  • Vahidi A, Roberts HR, San Filippo Jr J, Siva Sankar DV (1971) Paper-chromatographic quantitation of 4-hydroxy-3-methoxy-mandelic acid (VMA) in urine. Clin Chem 17:903–907

    PubMed  CAS  Google Scholar 

  • Karoum F, Gillin JC, McCullough D, Wyatt RJ (1975) Vanilmandelic acid (VMA), free and conjugated 3-methoxy-4-hydroxyphenyl-glykol (MHPG) in human ventricular fluid. Clin Chim Acta 62: 451–455

    Article  PubMed  CAS  Google Scholar 

  • Sjöquist B (1975) Mass fragmentographic determination of 4-hydroxy-3-methoxymandelic acid in human urine, cerebrospinal fluid, brain and serum using a deuterium-labelled internal standard. J Neurochem 24:199–201

    Article  PubMed  Google Scholar 

  • Yoshida A, Yoshioka M, Tanimura T, Tamura Z (1976) Determination of vanilmandelic acid and homovanillic acid in urine by highspeed liquid chromatography, J Chromatogr 116:240–243

    Article  PubMed  CAS  Google Scholar 

  • Eccleston D, Ashcroft GW, Crawford TBB, Loose R (1966) Some observations on the estimation of tryptamine in tissues. J Neurochem 13:93–101

    Article  PubMed  CAS  Google Scholar 

  • Saavedra JM, Axelrod J (1972) A specific and sensitive enzymatic assay for tryptamine in tissues. J Pharmacol Exp Ther 182: 363–369

    PubMed  CAS  Google Scholar 

  • Graffeo AP, Karger BL (1976) Analysis for indole compounds in urine by high-performance liquid chromatography with fluorometric detection. Clin Chem 22:184–187

    PubMed  CAS  Google Scholar 

  • Donike M, Gola R, Jaenicke L (1977) Nachweis von Indolalkylaminen nach selektiver Derivatisierung. J Chromatogr 134:385–395

    Article  PubMed  CAS  Google Scholar 

  • Hiemke C, Kauert G, Kalbhen DA (1978) Gas-liquid chromatographic properties of catecholamines, phenylethylamines and indolalkylamines as their propionyl derivatives. J Chromatogr 153:451–460

    Article  CAS  Google Scholar 

  • Artigas F, Gelpi E (1979) A new mass fragmentographic method for the simultaneous analysis of tryptophan, tryptamine, indole-3-acetic acid, serotonin, and 5-hydroxyindole-3-acetic acid in the same sample of rat brain. Anal Biochem 92:233–242

    Article  PubMed  CAS  Google Scholar 

  • Donike M, Gola R, Jaenicke L (1977) Nachweis von Indolalkylaminen nach selektiver Derivatisierung. J Chromatogr 134:385–395

    Article  PubMed  CAS  Google Scholar 

  • Prozialeck WC, Boehme DH, Vogel WH (1978) The fluorometric determination of 5-methoxytryptamine in mammalian tissues and fluids. J Neurochem 30:1471–1477

    Article  PubMed  CAS  Google Scholar 

  • Hiemke C, Kauert G, Kalbhen DA (1978) Gas-liquid chromatographic properties of catecholamines, phenylethylamines and indolalkylamines as their propionyl derivatives. J Chromatogr 153:451–460

    Article  CAS  Google Scholar 

  • Atack C, Lindqvist M (1973) Conjoint native and orthophthaldial-dehyde-condensate assays for the fluorometric determination of 5-hydroxyindoles in brain. Naunyn-Schmiedebergs Arch Pharmacol 279:267–284

    Article  PubMed  CAS  Google Scholar 

  • Tachiki KH, Aprison MH (1975) Fluorometric assay for 5-hydroxy-tryptophan with sensitivity in the picomole range. Anal Chem 47:7–11

    Article  PubMed  CAS  Google Scholar 

  • Joseph MH, Baker HF (1976) The determination of 5-hydroxytryptophan and its metabolites in plasma following administration to man. Clin Chim Acta 72:125–131

    Article  PubMed  CAS  Google Scholar 

  • Donike M, Gola R, Jaenicke L (1977) Nachweis von Indolalkylaminen nach selektiver Derivatisierung. J Chromatogr 134:385–395

    Article  PubMed  CAS  Google Scholar 

  • Pelham RW, Ralph CL, Campbell IM (1972) Mass spectral identification of melatonin in blood. Biochem Biophys Res Commun 46: 1236–1241

    Article  PubMed  CAS  Google Scholar 

  • Cole ER, Crank G (1973) Tryptamines III. The estimation of melatonin in blood serum. Biochem Med 8:37–43

    Article  PubMed  CAS  Google Scholar 

  • Wilson BW, Snedden W, Silman RE, Smith I, Mullen P (1977) A gas chromatography-mass spectrometry method for the quantitative analysis of melatonin in plasma and cerebrospinal fluid. Anal Biochem 81:283–291

    Article  PubMed  CAS  Google Scholar 

  • Ellenbogen L, Markley E, Taylor RJ Jr (1969) Inhibition of histidine decarboxylase by benzyl and aliphatic aminooxyamines. Biochem Pharmacol 18:683–685

    Article  PubMed  CAS  Google Scholar 

  • Ritchie DG, Levy DA (1975) A microassay for mammalian histidine decarboxylase. Anal Biochem 66:194–205

    Article  PubMed  CAS  Google Scholar 

  • Weinreich D, Yu Y-T (1977) The characterization of histidine decarboxylase and its distribution in nerves, ganglia and in single neuronal cell bodies from the CNS of Aplysia californica. J Neurochem 28:361–369

    Article  PubMed  CAS  Google Scholar 

  • Kuo JF, Greengard P (1970) Cyclic nucleotide-dependent protein kinases. J Biol Chem 245:2493–2498

    PubMed  CAS  Google Scholar 

  • Murad F, Gilman AG (1971) Adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate: a simultaneous protein binding assay. Biochim Biophys Acta 252:397–400

    PubMed  CAS  Google Scholar 

  • Schultz G, Hardman JG, Schultz K, Davis JW, Sutherland EW (1973) A new enzymatic assay for guanosine 3′, 5′-cyclic monophosphate and its application to the ductus deferens of the rat. Proc Natl Acad Sci USA 70:1721–1725

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman TP, Winston MS, Chu L-C (1976) A more sensitive radioimmunoassay (RIA) for guanosine 3′,5′-cyclic monophosphate (cGMP) involving prior 2′-O-succinylation of samples. Anal Biochem 71: 79–95

    Article  PubMed  CAS  Google Scholar 

  • Goldberg ML (1977) Radioimmunoassay for adenosine 3′,5′-cyclic monophosphate and guanosine 3′,5′-cyclic monophosphate in human blood, urine, and cerebrospinal fluid. Clin Chem 23: 576–580

    PubMed  CAS  Google Scholar 

  • Honma M, Satoh T, Takezawa J, Ui M (1977) An ultrasensitive method for the simultaneous determination of cyclic AMP and cyclic GMP in small-volume samples from blood and tissue. Biochem Med 18:257–273

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Snyder SH (1969) Catecholamine uptake by synaptosomes in homogenates of rat brain: stereospecificity in different areas. J Pharmacol Exp Ther 170:221–231

    PubMed  CAS  Google Scholar 

  • Hershkowitz M, Goldman R, Raz A (1977) Effect of cannabinoids on neurotransmitter uptake, ATPase activity and morphology of mouse brain synaptosomes. Biochem Pharmacol 26:1327–1331

    Article  CAS  Google Scholar 

  • Ziance RJ (1977) Specificity of amphetamine induced release of norepinephrine and serotonin from rat brain in vitro. Res Commun Chem Pathol Pharmacol 18:627–644

    PubMed  CAS  Google Scholar 

  • Hochman J, Perlman RL (1976) Catecholamine secretion by isolated adrenal cells. Biochem Biophys Acta 421:168–175

    PubMed  CAS  Google Scholar 

  • Schneider AS, Herz R, Rosenheck K (1977) Stimulus-secretion coupling in chromaffin cells isolated from bovine adrenal medulla. Proc Natl Acad Sci USA 74:5036–5040

    Article  PubMed  CAS  Google Scholar 

  • Fenwide EM, Fajdiga PB, Howe NBS, Livett BG (1978) Functional and morphological characterization of isolated bovine adrenal medullary cells. J Cell Biol 76:12–30

    Article  Google Scholar 

  • Liang BT, Perlman RL (1979) Catecholamine secretion by hamster adrenal cells. J Neurochem 32:927–933

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Witte, P.U., Matthaei, H. (1980). Literaturhinweise für weitere Bestimmungsmethoden. In: Mikrochemische Methoden für neurobiologische Untersuchungen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67496-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67496-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09784-6

  • Online ISBN: 978-3-642-67496-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics