Advertisement

A Simplified Theory of Intermittent Fully-Developed Turbulence

  • H. Mori
  • H. Fujisaka
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 5)

Abstract

Fully-developed turbulence consists of hierarchies of eddies of various sizes, where a small-scale eddy is generated from a larger eddy and disintegrates into smaller eddies of about the half-length size in a finite time. Using FRISCH-SULEM-NELKIN’s β-model of in-termittency in a slightly-extended form, we discuss how many eddies are generated from one eddy by the energy cascade. Let N be the mean number of offspring for one cascade step. For the β-model, the 1941 KOLMOGOROV theory leads to N=23, whereas a recent theory of FUJISAKA and MORI leads to N≃6.32. This number is related to the intermit-tency exponent µ by µ=3-log2N ≃0.341. This is in agreement with the experiments µexp =0.3~0.4.

Keywords

Turbulent Kinetic Energy Information Entropy Dissipative Structure Inertial Range Energy Cascade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics, Vol.2 (MIT Press, Cambridge, 1975) §21, §25.Google Scholar
  2. 2).
    E.A. Novikov and R.W. Stewart, Izv. Akad. Nauk SSSR, Ser. Geofis, no.3. (1964) 408.Google Scholar
  3. 3).
    A.M. Yaglom, Dokl. Akad. Nauk SSSR 166 (1966) 49Google Scholar
  4. 3a).
    A.S. Gurvich and A.M. Yaglom, Phys. Fluids Suppl. (1967) S59.Google Scholar
  5. 4).
    R.H. Kraichnan, J. Fluid Mech. 62 (1974) 305.MathSciNetADSMATHCrossRefGoogle Scholar
  6. 5).
    S.A. Orszag, in Fluid Dynamics ed. R. Balian and J.-L. Peube (Gordon & Breach, London, 1977) p.276.Google Scholar
  7. 6).
    U. Frisch, P.-L. Sulem and M. Nelkin, J. Fluid Mech. 87 (1978) 719 and references cited therein.ADSMATHCrossRefGoogle Scholar
  8. 7).
    A.M. Oboukhov, J. Fluid Mech. 13 (1962) 77.MathSciNetADSMATHCrossRefGoogle Scholar
  9. A.N. Kolmogorov, J. Fluid Mech. 13 (1962) 82.MathSciNetADSMATHCrossRefGoogle Scholar
  10. 8).
    A.N. Kolmogorov, C.R. Acad. Sci. USSR 30 (1941) 301, 538. This is referred to as K41.Google Scholar
  11. 9).
    G.K. Batchelor and A.A. Townsend, Proc. Roy. Soc. A199 (1949) 238.ADSGoogle Scholar
  12. 10).
    B.B. Mandelbrot, in Turbulence Seminar, Lecture Notes in Mathematics 615 (Springer-Verlag, Berlin, 1977); Fractals: Form, Chance and Dimension (Freeman, San Francisco, 1977).Google Scholar
  13. 11).
    For example, H. Haken, Synergetics (Springer-Verlag, Berlin, 1977) Chap.3.Google Scholar
  14. 12).
    H. Fujisaka and H. Mori, Prog. Theor. Phys. 62 (1979), No.1 (to be published).Google Scholar
  15. 13).
    A.S. Monin and A.M. Yaglom, ibid., pp.625–627 for a review of the experiments.Google Scholar
  16. 14).
    P.G. de Gennes, in Fluctuation, Instabilities and Phase Transitions ed. T. Riste (Plenum Press, New York, 1975).Google Scholar
  17. 15).
    M. Nelkin, Phys. Rev. A11 (1975) 1737.ADSGoogle Scholar
  18. 16).
    S. Smale et al, Turbulence Seminar, Lecture Notes in Mathematics 615 (Springer-Verlag, Berlin, 1977).MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • H. Mori
    • 1
  • H. Fujisaka
    • 1
  1. 1.Department of PhysicsKyushu UniversityFukuoka 812Japan

Personalised recommendations